内质网应激与疾病的关系研究进展

张倩雯 ,  刘兴会

重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (11) : 1345 -1349.

PDF (519KB)
重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (11) : 1345 -1349. DOI: 10.13406/j.cnki.cyxb.003616
综述

内质网应激与疾病的关系研究进展

作者信息 +

Advances in the association between endoplasmic reticulum stress and human diseases

Author information +
文章历史 +
PDF (531K)

摘要

内质网(endoplasmic reticulum,ER)是真核细胞的重要细胞器,负责绝大多数蛋白质的合成、加工及转运。为维持正常生理功能,细胞内质网对各种诱发因素极为敏感,通过激活自身应激状态缓解内质网压力以恢复稳态,持续或严重的内质网应激(endoplasmic reticulum stress,ERS)状态则促进细胞走向凋亡。目前发现ERS介导的细胞凋亡与疾病发生密切相关,本文将ERS相关信号通路、ERS与疾病的关系研究进展作一综述,为探索其参与疾病发生的机理、靶向干预ERS在疾病治疗中的作用提供新思路。

Abstract

Endoplasmic reticulum is an important organelle of eukaryotic cells and is responsible for the synthesis,processing,and transportation of most proteins. In order to maintain the normal physiological function,endoplasmic reticulum is extremely sensitive to various predisposing factors and is restored to homeostasis by activating endoplasmic reticulum stress(ERS) to alleviate endoplasmic reticulum pressure,but persistent or severe ERS can promote cell apoptosis. Current studies have shown that ERS-mediated cell apoptosis is closely associated with the development of diseases. This article reviews the research advances in the association between ERS and diseases,in order to provide new ideas for exploring the mechanism and targeted intervention of ERS in diseases.

关键词

内质网应激 / 肌醇需求酶1 / 蛋白激酶R样内质网激酶 / 转录激活因子6 / 机制

Key words

endoplasmic reticulum stress / inositol-requiring enzyme 1 / protein kinase R-like endoplasmic reticulum kinase / activating transcription factor 6 / mechanism

引用本文

引用格式 ▾
张倩雯,刘兴会. 内质网应激与疾病的关系研究进展[J]. 重庆医科大学学报, 2024, 49(11): 1345-1349 DOI:10.13406/j.cnki.cyxb.003616

登录浏览全文

4963

注册一个新账户 忘记密码

内质网(endoplasmic reticulum,ER)是真核细胞中蛋白质合成、折叠、修饰、转运及脂质合成、囊泡运输、胞内钙离子浓度调节的重要场所[1]。为确保蛋白质的正确生成,内质网自身作为感受器和质控系统,根据细胞环境变化动态调节内质网腔压力,这种适应性防御机制,即内质网应激(endoplasmic reticulum stress,ERS),内源性或外源性因素导致细胞内错误折叠或未折叠蛋白过度累积,均会诱发ERS [2]

1 ERS的诱发因素

正常内质网需要较高的氧化还原环境,饥饿、缺氧、氧化应激、低糖、高糖、高脂、钙离子浓度失衡、感染或炎症刺激等外源性因素引起细胞氧化还原状态改变,促进错误折叠或未折叠蛋白增加,或机体内源性因素产生的异常蛋白质累积,都可能导致内质网腔压力增加,诱发ERS[3]。此外,部分药物可以干扰内质网处理蛋白质的过程而诱发ERS[4-5],衣霉素(tunicamucin,TM)和2-脱氧葡萄糖(2-deoxy-D-glucose,2-DG)通过抑制蛋白质N端糖基化修饰、导致糖蛋白类在内质网中异常累积;β-巯基乙醇(β-mercaptoethanol,β-ME)和二硫苏糖醇(dithiothreitol,DTT)通过抑制蛋白质二硫键的形成导致错误折叠蛋白增加;毒胡萝卜素(thapsigargin,TG)通过抑制内质网膜的钙离子通道活性,导致钙离子浓度失衡。

2 ERS相关信号通路

ERS通过促进一系列信号通路去除内质网内异常聚集的蛋白,恢复内质网自身稳态,称为未折叠蛋白反应(unfolded protein response,UPR)。一方面,UPR可以上调分子伴侣和蛋白水解酶的活性,提高蛋白质折叠效率,同时促进内质网相关蛋白降解和自噬,从而消除错误折叠或未折叠蛋白,当内质网恢复稳态后,UPR接收到负反馈,ERS停止;另一方面,UPR通过协调下游凋亡和抗凋亡相关信号通路,根据ERS的持续时间和严重程度决定细胞最终走向凋亡或存活[6]。内质网膜上有3种跨膜感受器:蛋白激酶R样内质网激酶(protein kinase R-like endoplasmic reticulum kinase,PERK)、肌醇需求酶1(inositol-requiring enzyme 1,IRE1)和转录激活因子6(activating transcription factor 6,ATF6),内质网处于稳态时,分子伴侣蛋白与感受器结合,使其处于失活状态,ERS时,活化后的感受器则组成UPR分支:IRE1信号通路、PERK信号通路、ATF6信号通路,3条信号通路既有各自独立的反馈回路、又构成交叉调控网络[7]

2.1 IRE1信号通路

1993年,研究者们在酵母细胞中首次发现IRE1蛋白,它作为内质网膜上的I型跨膜蛋白,N端位于内质网腔,C端位于细胞质,该端含有1个激酶结构域和1个RNA酶结构域[8]。内质网稳态条件下,分子伴侣蛋白GRP78(glucose-regulated protein 78)与IRE1的N端结合,使其处于静默状态,ERS时,内质网中错误或未折叠蛋白可以竞争性结合GRP78,导致IRE1磷酸化或二聚化,活化后的IRE1通过自身的激酶活性和RNA酶活性介导下游XBP1、ASK1-JNK信号通路[9]:①活化的IRE1可以剪切X-框结合蛋白1(X-box binding protein 1,XBP1)mRNA的一段碱基,改变其开放性阅读框,翻译生成新蛋白剪切型XBP1(spliced XBP1,sXBP1),sXBP1作为转录因子直接促进UPR相关基因的表达,抑制新生肽链的生成速度、加快蛋白质的折叠、修饰、转运、分泌;②IRE1还可以特异性识别和剪切部分mRNA、核糖体RNA(ribosomal RNA,rRNA)及微小RNA(microRNA,miRNA)的特异性序列,通过调控这些RNA的表达促进内质网错误蛋白的降解,这个过程被称为IRE1调控依赖的降解(regulated IRE1 dependent decay,RIDD);③IRE1激活的未剪切型蛋白XBP1u(unspliced XBP1,XBP1u)则根据细胞状态调整其活性,在ERS持续期间,正反馈促进IRE1对XBP1的剪切,内质网稳态恢复时,XBP1u与sXBP1形成复合体,负反馈抑制UPR相关基因的表达,包括同源蛋白(C/EBP homologous protein,CHOP),促进细胞生存。持续或严重的ERS无法恢复时,一方面,XBP1u正反馈促进CHOP表达上调,CHOP通过抑制Bcl-2促进线粒体途径的细胞凋亡,并促进内质网氧化酶ERO-1α的表达,激活内质网膜的钙离子通道IP3R1,诱导活性氧ROS产生,促进细胞凋亡;另一方面,二聚化的IRE1可以招募TNF受体相关因子2(TNF receptor associated factor 2,TRAF2)和激活凋亡信号调节激酶1(apoptosis signal regμlating kinase 1,ASK1),形成IRE1-TRAF2-ASK1复合体直接激活JNK通路介导的凋亡[10]

2.2 PERK信号通路

1999年,Harding HP等[11]发现了定位于内质网膜的蛋白PERK,其N端和IRE1结构相同,位于内质网腔,C端位于细胞质,因结构类似蛋白激酶R(protein kinase R,PKR)故而得名。ERS状态下,GRP78与PERK-N端解离活化PERK,进一步激活底物真核起始因子2α(eukaryotic initiation factor 2α,eIF2α),磷酸化的eIF2α可以直接抑制蛋白质的翻译起始,还能通过上调活化转录因子4(activating transcription factor 4,ATF4)的表达,促进UPR相关基因的转录,缓解内质网压力[12]。ATF4的活性同样可以根据细胞状态进行调整,当ERS持续时,它正反馈促进eIF2α的表达;当内质网稳态恢复时,它通过上调蛋白磷酸酶1(protein phosphatase1,PP1)的亚基DNA诱导损伤蛋白(growth arrest and DNA damage-inducible gene 34,GADD34),促进PP1-GADD34蛋白复合体对eIF2α的去磷酸化作用;持续或严重的ERS无法缓解时,ATF4则促进CHOP介导的细胞凋亡[13]

2.3 ATF6信号通路

1998年,Haze K等[14]发现了能特异性结合内质网应激元件的ATF6,它属于Ⅱ型跨膜糖蛋白,与IRE1、PERK不同,ATF6的N端位于细胞质,C端位于内质网腔。内质网稳态条件下,GRP78结合ATF6的C端使其失活,ERS时,GRP78解离、ATF6依靠C端的信号肽定向转移至高尔基体,先后被高尔基体膜上的位点1蛋白酶(site-1 protease,S1p)和位点2蛋白酶(site-2 protease,S2p)切割,释放出N端结构域,形成有活性的ATF6(ATF6 p50),转录因子ATF6p50可以直接进入细胞核促进UPR相关基因的表达,还能与XBP1构成复合体,共同参与到IRE1信号通路的调控之中[15]

3 ERS与人类疾病

细胞环境改变时,ERS这种适应性调节可以维持细胞存活,而ERS状态无法逆转的内质网功能紊乱则会通过促凋亡机制造成机体损伤[16]

3.1 ERS与感染性疾病

作为蛋白质、脂质等多种营养物质合成丰富的细胞器,内质网腔成为了细菌、病毒等病原体的理想潜伏地。布鲁氏菌的相关研究最多,它刺激机体炎症反应分泌出效应蛋白VceC,该蛋白通过分子伴侣GRP78的协助,依靠VceC-N端结构域定位至内质网膜,导致内质网结构重排,为菌体形成囊泡创造条件;布鲁氏菌自身结构域还存在蛋白TcpB,能协同上调UPR相关基因GRP78、XBP1、CHOP等的转录[17]。李斯特菌、幽门螺杆菌依靠自身的特异性蛋白结构,作为“成孔毒素”干扰内质网膜钙通道、促进内质网钙离子外流、介导细胞凋亡[18]。此外,霍乱弧菌及杆菌产生的霍乱毒素、大肠杆菌产生的志贺毒素,通过结合分子伴侣干扰蛋白质的折叠,引发ERS介导的细胞凋亡而损伤宿主[19]。病毒与ERS的关系密切,它们感染宿主细胞后进行复制需消耗大量蛋白质,从而诱发ERS,但未折叠蛋白反应会抑制蛋白质生成速率,因此,病毒又通过调控未折叠蛋白反应保障自身的需求[20]。以丙型肝炎病毒(hepatitis C virus,HCV)为例,HCV通过多途径抑制内质网应激eIF2α磷酸化,①调控E2蛋白充当PERK的底物;②上调P58的转录,促进P58对PERK的抑制作用;③上调磷酸酶亚基GADD34蛋白的表达,促进GADD34对eIF2α的去磷酸化;即便eIF2α被高度磷酸化,HCV仍然能够利用自身结构的进入内部核糖体位点,直接启动蛋白质的翻译[21]

3.2 ERS与代谢性疾病

研究表明,ERS诱发的肝脏胰岛β细胞凋亡是2型糖尿病发病的重要原因,由于自身存在胰岛素抵抗,胰岛β细胞的内质网高负荷运转产生胰岛素以补偿处理糖原,诱发ERS持续状态,同时,机体高血糖、高血脂的细胞环境加重ERS,形成恶性循环,导致胰岛β细胞进行性减少[22]。有研究在肝脏疾病相关的动物模型中发现,蛋白二硫键异构酶可以调控IRE1通路的内质网相关蛋白降解过程,以维持胰岛素分泌;水杨醛胺类MCK-3946、STF-083010可以通过抑制IRE1的RNA剪切酶活性,减少sXBP1的生成,缓解肝细胞凋亡[23]。动脉粥样硬化疾病中,巨噬细胞吞噬的游离胆固醇、血清高半胱氨酸同样会诱发细胞ERS,导致巨噬细胞凋亡和内皮细胞损伤[24]。利用胆固醇干预血管平滑肌细胞,发现细胞内钙离子浓度失衡、ERS关键信号通路蛋白表达明显增加,平滑肌细胞凋亡增多,而抑制IRE1通路可以显著缓解平滑肌细胞凋亡[25]

3.3 ERS与神经退行性疾病

阿尔茨海默病(Alzheimer’s disease,AD)和帕金森病(Parkinson’s disease,PD)是最常见的神经退行性疾病,它们的典型病变是神经元中沉积大量错误折叠蛋白,导致神经元生理功能广泛受损[26]。内质网功能稳定状态下,对错误折叠蛋白高度敏感的神经元通过启动ERS动态清除,当持续ERS状态仍无法处理过量的错误蛋白,内质网介导的细胞凋亡机制启动,导致神经元退化、消失[27]。AD患者神经元内沉积的主要是细胞外β-淀粉样蛋白(amyloid β,Aβ),由γ-分泌酶对淀粉样前体蛋白(amyloid precursor protein,APP)的异常剪切产生,Aβ蛋白诱发ERS本可以促进其降解,但是,Aβ蛋白可以直接干扰内质网钙离子通道、促进钙离子外流,而且γ-分泌酶的催化亚基突变直接抑制未折叠蛋白反应的降解,导致内质网功能紊乱[28]。PD患者神经元内沉积的是突变的α突触核蛋白(α-synuclein,α-Syn),过度累积的α-Syn通过干扰内质网中蛋白质的囊泡转运过程引发ERS,并持续激活内质网应激PERK-eIF2α-ATF4通路介导的凋亡,导致多巴胺神经元退化、消失[29]

3.4 ERS与肿瘤疾病

卵巢癌、宫颈癌、乳腺癌、胃癌、结直肠癌、肝癌、皮肤癌及肾癌等发生发展机制与肿瘤细胞ERS相关。一方面,肿瘤发生时,受致癌基因调控的蛋白质需要大量合成,直接促进ERS以满足肿瘤细胞的过度增殖;另一方面,在低氧、低营养、放疗、化疗等环境条件下,肿瘤细胞为提高其生存、转移能力,可以通过UPR促进所需蛋白质的生成,包括上调促血管生长因子和下调抗血管生成因子的表达,同时抑制ERS介导的凋亡机制[30]。血管内皮生长因子A(vascular endothelial growth factor A,VEGFA)是调控血管生成的关键因子,肿瘤细胞通过ERS信号通路的转录因子sXBP1、ATF6、ATF4直接结合VEGFA的启动区,上调VEGFA的表达,促进血管新生,拮抗肿瘤细胞的ERS可以明显抑制肿瘤血管生成[31]。有研究者还发现,与正常细胞不同,持续或严重的ERS主要抑制其RIDD降解功能,且不介导肿瘤细胞走向凋亡,肿瘤细胞还可以利用磷酸化eIF2α,抑制部分蛋白质的多肽链生成,提高自身的免疫逃逸能力[32-33]

ERS还通过多种途径参与肿瘤细胞转移及化疗耐药。有研究者发现,血管紧张素Ⅱ能直接调节卵巢癌细胞中的GRP78、CHOP和p-PERK、促进卵巢癌细胞在小鼠腹腔内定植和转移,利用血管紧张素拮抗剂则减少其腹腔内种植[34]。肿瘤抑制候选基因3表达下降能促进卵巢癌细胞增殖及迁移,在TR170和SKOV-3细胞中下调该基因表达,能促进细胞内ERS相关信号通路的凋亡,从而减少E-钙黏蛋白表达、抑制细胞黏附及迁移能力[35]。化疗药物能直接导致未折叠和错误折叠的蛋白质在卵巢癌细胞内质网腔内积聚,诱发ERS,去泛素酶USP11能通过抑制GRP78的稳定性进而增强卵巢癌细胞的化学抵抗力,诱导其对顺铂类药物产生耐药[36-37]。有研究者发现氧固醇结合蛋白相关蛋白5(oxysterol binding protein related protein 5,ORP5)在体内、体外均能促进宫颈癌细胞的侵袭及转移,其机制是促进胆固醇调节元件结合蛋白1(sterol-regulatory element binding protein 1,SREBP1)的泛素化、抑制细胞内ERS,进而促进宫颈癌进展[38]。He CX等[39]利用不同浓度的槲皮素处理宫颈HeLa细胞,对比检测GRP78、CHOP、IRE1及Bcl-2等变化、发现槲皮素通过诱导ERS通路促进HeLa细胞凋亡。ERS在肿瘤治疗中的靶点干预作用逐渐显现,针对IRE1-XBP1、PERK-eIF2α、ATF6p50设计出多种特异性抑制剂,如特异性抑制IRE1的RNA酶活性的STF083010,PERK抑制剂GSK2656157、ATF6p50的特异性抑制剂Ceapein,已证实能有效抑制实体瘤的生长[38]。此外,内质网中分子伴侣GRP78是触发ERS的关键蛋白,靶向干预GRP78达到缓解ERS正是肿瘤治疗研究的新方向[39]

3.5 ERS与缺血再灌注疾病

细胞ERS对于缺血再灌注损伤的器官代偿性功能维持十分重要,随着损伤的持续,ERS则从保护性防御转为促凋亡效应,导致器官功能逐渐衰竭[40]。在高血压、冠心病、心肌梗死等缺血性心脏病中,由于心肌细胞缺血再灌注,产生大量氧自由基、钙离子超载等,诱发ERS,上调UPR相关基因的表达,以维持心肌细胞的功能,促进细胞重塑、心肌肥大,同时,持续ERS介导的心肌细胞凋亡促进心力衰竭[41]。在肾小球肾炎及肾缺血再灌注损伤中,低氧、低营养、钙离子失衡等因素直接诱发细胞ERS,以维持肾小球代偿功能,同时,持续ERS的凋亡机制导致肾小球血管内皮细胞损伤、间质化,促进慢性肾功能不全[42]。4-苯基丁酸(4-phenylbutyric acid,4-PBA)是一种化学分子伴侣,可以促进错误蛋白质的正确折叠,有研究者发现,在慢性肾病(chronic kidney disease,CKD)的动物模型中,大量蛋白尿导致钙离子释放,持续ERS信号通路的转录因子ATF4促进脂质运载蛋白-2(lipocalin 2,LCN2)的过度表达,损伤肾小管内皮细胞,而4-PBA可以通过抑制该途径缓解肾小管细胞凋亡和肾损伤,推测4-PBA可能有延缓CKD进展的疗效[43]

3.6 ERS与妊娠期疾病

胎盘功能正常是妊娠维持的关键,而胎盘滋养细胞ERS持续状态介导的凋亡增加,可能参与妊娠期疾病发生。Xu TT等[46]发现早发型妊娠期肝内胆汁淤积症(intrahepatic cholestasis of pregnancy,ICP)患者的血液中Wolframin蛋白质表达水平升高,在体内实验中证实胎盘内的WFS1基因在转录水平即异常高表达,其编码的Wolframin蛋白持续激活ERS、滋养细胞凋亡增加,导致胎盘缺氧。Lorenzon AR等[47]用葡萄糖处理BeWo细胞,发现与非胰岛素干预的BeWo细胞相比,胰岛素处理后的细胞中基质细胞衍生因子2(stromal cell-derived factor 2,SDF2)、ERS关键信号通路表达明显缓解,而胰岛素干预良好的GDM患者胎盘内同样出现类似结果,表明滋养细胞的ERS与GDM密切相关。Du L等[48]发现ERS信号通路蛋白标记物在子痫前期(preeclampsia,PE)胎盘中表达升高,与缺氧相关的一氧化氮合酶(nitric oxide synthase,NOS)上调趋势一致,同时,PE胎盘滋养细胞的凋亡增加,推测严重的ERS促进胎盘滋养细胞凋亡可能参与PE的发病。关于ERS与妊娠期疾病的关系研究尚少,值得进一步探索。

4 总结与展望

ERS的本质是细胞受刺激时内质网作出的适应性调节机制,目的在于恢复内质网稳态,保证各种蛋白质、脂类分子的正常生成,以维持细胞的生存,当持续或严重的ERS仍无法消除内质网中的错误/未折叠蛋白时,细胞凋亡增加导致机体损伤。越来越多的研究证实ERS广泛参与着人类疾病,深入理解细胞ERS在病理生理中的调控机制,一方面,通过消除ERS的诱发因素,另一方面,靶向干预ERS信号通路的关键节点,有助于探索ERS相关疾病的临床诊疗新方向[49]

参考文献

[1]

Lee JECathey PIWu HXet al. Endoplasmic reticulum contact sites regulate the dynamics of membraneless organelles[J]. Science2020367(6477):507-508.

[2]

Wang MKaufman RJ. Protein misfolding in the endoplasmic reticulum as a conduit to human disease[J]. Nature2016529(7586):326-335.

[3]

Liu QKörner HWu HXet al. Endoplasmic reticulum stress in autoimmune diseases[J]. Immunobiology2020225(2):151881.

[4]

Keestra-Gounder AMByndloss MXSeyffert Net al. NOD1 and NOD2 signalling links ER stress with inflammation[J]. Nature2016532(7599):394-397.

[5]

Wu LLHuang XMKuang YQet al. Thapsigargin induces apoptosis in adrenocortical carcinoma by activating endoplasmic reticulum stress and the JNK signaling pathway:an in vitro and in vivo study[J]. Drug Des Devel Ther201913:2787-2798.

[6]

Berner NReutter KRWolf DH. Protein quality control of the endoplasmic reticulum and ubiquitin-proteasome-triggered degradation of aberrant proteins:yeast pioneers the path[J]. Annu Rev Biochem201887:751-782.

[7]

Hwang JQi L. Quality Control in the Endoplasmic Reticulum:Crosstalk between ERAD and UPR pathways[J].Trends Biochem Sci201843(8):593-605.

[8]

Cox JSWalter P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response[J]. Cell199687(3):391-404.

[9]

Urano FWang XBertolotti Aet al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1[J]. Science2000287(5453):664-666.

[10]

Tam ABKoong ACNiwa M. Ire1 has distinct catalytic mechanisms for XBP1/HAC1 splicing and RIDD[J]. Cell Rep20149(3):850-858.

[11]

Harding HPZhang YRon D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase[J]. Nature1999397(6716):271-274.

[12]

Harding HPZhang YHScheuner Det al. Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha(eIF2alpha) dephosphorylation in mammalian development[J]. Proc Natl Acad Sci USA2009106(6):1832-1837.

[13]

Jiang YNChen XYFan MYet al. TRAIL facilitates cytokine expression and macrophage migration during hypoxia/reoxygenation via ER stress-dependent NF-κB pathway[J]. Mol Immunol201782:123-136.

[14]

Haze KYoshida HYanagi Het al. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress[J]. Mol Biol Cell199910(11):3787-3799.

[15]

Han JKaufman RJ. Physiological/pathological ramifications of transcription factors in the unfolded protein response[J]. Genes Dev201731(14):1417-1438.

[16]

Iurlaro RMuñoz-Pinedo C. Cell death induced by endoplasmic reticulum stress[J]. FEBS J2016283(14):2640-2652.

[17]

Hu HTian MXDing Cet al. The C/EBP homologous protein(CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection[J]. Front Immunol20189:3083-3096.

[18]

Choi JASong CH. Insights into the role of endoplasmic reticulum stress in infectious diseases[J]. Front Immunol202010:3147-3154.

[19]

Banerjee TGrabon ATaylor Met al. cAMP-independent activation of the unfolded protein response by cholera toxin[J]. Infect Immun202189(2):420-447.

[20]

Alshareef MHHartland ELMcCaffrey K. Effectors targeting the unfolded protein response during intracellular bacterial infection[J]. Microorganisms20219(4):705-717.

[21]

Smith JA. Regulation of cytokine production by the unfolded protein response:implications for infection and autoimmunity[J]. Front Immunol20189:422-443.

[22]

Eletto DEletto DBoyle Set al. PDIA6 regulates insulin secretion by selectively inhibiting the RIDD activity of IRE1[J]. FASEB J201630(2):653-665.

[23]

Sanches MDuffy NMTalukdar Met al. Structure and mechanism of action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease inhibitors[J].Nat Commun20145:4202-4236.

[24]

Dickhout JGColgan SMLhoták Set al. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome:a balancing act between plaque stability and rupture[J].Circulation2007116(11):1214-1216.

[25]

Hong JPark ELee Jet al. Exercise training mitigates ER stress and UCP2 deficiency-associated coronary vascular dysfunction in atherosclerosis[J]. Sci Rep202111(1):15449-15459.

[26]

Kurtishi ARosen BPatil KSet al. Cellular proteostasis in neurodegeneration[J]. Mol Neurobiol201956(5):3676-3689.

[27]

Krishnadas NVillemagne VLDoré Vet al. Advances in brain amyloid imaging[J]. Semin Nucl Med202151(3):241-252.

[28]

Benilova IKarran EDe Strooper B. The toxic Aβ oligomer and Alzheimer’s disease:an emperor in need of clothes[J]. Nat Neurosci201215(3):349-357.

[29]

Cooper AAGitler ADCashikar Aet al. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models[J].Science2006313(5785):324-328.

[30]

Pommier AAnaparthy NMemos Net al. Unresolved endoplasmic reticulum stress engenders immune-resistant,latent pancreatic cancer metastases[J]. Science2018360(6394):4908-4934.

[31]

Coleman OILobner EMBierwirth Set al. Activated ATF6 induces intestinal dysbiosis and innate immune response to promote colorectal tumorigenesis[J]. Gastroenterology2018155(5):1539-1552.

[32]

Muñoz-Guardiola PCasas JMegías-Roda Eet al. The anti-cancer drug ABTL0812 induces ER stress-mediated cytotoxic autophagy by increasing dihydroceramide levels in cancer cells[J]. Autophagy202117(6):1349-1366.

[33]

Markouli MStrepkos DPapavassiliou AGet al. Targeting of endoplasmic reticulum(ER) stress in gliomas[J]. Pharmacol Res2020157:104823.

[34]

Zhang QYYu SLam MMTet al. Angiotensin Ⅱ promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress[J]. J Exp Clin Cancer Res201938(1):116-134.

[35]

El-Kott AFShati AAAl-Kahtani MAet al. Kaempferol induces cell death in A2780 ovarian cancer cells and increases their sensitivity to cisplatin by activation of cytotoxic endoplasmic reticulum-mediated autophagy and inhibition of protein kinase B[J]. Folia Biol202066(1):36-46.

[36]

Hou XJJiang JHTian ZQet al. Autophagy and tumour chemotherapy[J]. Adv Exp Med Biol20201207:351-374.

[37]

Zhu XLZhang YPLuo QYet al. The deubiquitinase USP11 promotes ovarian cancer chemoresistance by stabilizing BIP[J]. Signal Transduct Target Ther2021,6(1):264-267.

[38]

Wu YMin LYZhang Pet al. ORP5 promotes migration and invasion of cervical cancer cells by inhibiting endoplasmic reticulum stress[J]. Cell Stress Chaperones202328(4):395-407.

[39]

He CXLu XHLi Jet al. The effect of quercetin on cervical cancer cells as determined by inducing tumor endoplasmic reticulum stress and apoptosis and its mechanism of action[J]. Am J Transl Res202113(5):5240-5247.

[40]

Gopal UMowery YYoung Ket al. Targeting cell surface GRP78 enhances pancreatic cancer radiosensitivity through YAP/TAZ protein signaling[J]. J Biol Chem2019294(38):13939-13952.

[41]

Bailly CWaring MJ. Pharmacological effectors of GRP78 chaperone in cancers[J]. Biochem Pharmacol2019163:269-278.

[42]

Zhao HHHan QXDing XNet al. Critical hubs of renal ischemia-reperfusion injury:endoplasmic reticulum-mitochondria tethering complexes[J]. Chin Med J2020133(21):2599-2609.

[43]

Zhou GXPeng YCGuo MYet al. Esomeprazole inhibits endoplasmic reticulum stress and ameliorates myocardial ischemia-reperfusion injury[J]. Biochem Biophys Res Commun2022627:84-90.

[44]

Yang YFWang HSong Net al. Dexmedetomidine attenuates ischemia/reperfusion-induced myocardial inflammation and apoptosis through inhibiting endoplasmic reticulum stress signaling[J]. J Inflamm Res202114:1217-1233.

[45]

El Karoui KViau ADellis Oet al. Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via Lipocalin 2[J].Nat Commun20167:10330-10343.

[46]

Xu TTZhou ZYLiu Net al. Disrupted compensatory response mediated by Wolfram syndrome 1 protein and corticotrophin-releasing hormone family peptides in early-onset intrahepatic cholestasis pregnancy[J]. Placenta201983:63-71.

[47]

Lorenzon ARMoreli JBde Macedo Melo Ret al. Stromal cell-derived factor(SDF) 2 and the endoplasmic reticulum stress response of trophoblast cells in gestational diabetes mellitus and in vitro hyperglycaemic condition[J]. Curr Vasc Pharmacol202119(2):201-209.

[48]

Du LHe FKuang Let al. eNOS/iNOS and endoplasmic reticulum stress-induced apoptosis in the placentas of patients with preeclampsia[J]. J Hum Hypertens201731(1):49-55.

[49]

Marciniak SJChambers JERon D. Pharmacological targeting of endoplasmic reticulum stress in disease[J]. Nat Rev Drug Discov202221(2):115-140.

基金资助

国家重点研发计划资助项目(2021YFC2701503)

四川省卫生健康委员会普及应用项目资助项目(21PJ053)

AI Summary AI Mindmap
PDF (519KB)

1404

访问

0

被引

详细

导航
相关文章

AI思维导图

/