Objective To investigate the influencing factors for dysphagia in the elderly,to construct a predictive model for dysphagia,and to provide a theoretical basis for clinical practice. Methods In this case-control study,the patients with dysphagia who attended Department of Geriatrics in the first affiliated hospital of Chongqing Medical University from March 2016 to June 2023 were enrolled as case group,and the patients without dysphagia who attended the same department during the same period of time were enrolled as control group. The correlation analysis,least absolute shrinkage and selection operator(LASSO) regression,and multivariate logistic regression analysis were used to investigate the influencing factors for dysphagia;the 10-fold cross-validation Extreme Gradient Boosting(XGBoost) model was used to predict dysphagia,and the SHapley additive exPlanations(SHAP) method was used for model visualization. Results There were 1009 cases in the case group and 2125 cases in the control group. The correlation analysis and LASSO regression analysis identified 12 factors for the multivariate logistic regression analysis,and the results showed that sarcopenia,increasing age,children or caretakers as caregivers,frail health,poor oral health,poor self-care ability,depression,and cognitive impairment were risk factors for dysphagia(odds ratio[OR]>1,P<0.05),and female sex and participation in community activities were protective factors against dysphagia(OR<1,P<0.05). The XGBoost model had a good predictive efficacy,with an accuracy rate of 0.795,a precision rate of 0.711,a sensitivity of 0.613,a specificity of 0.881,an F1 value of 0.661,and an area under the ROC curve of 0.855. The SHAP plot showed that the top five important characteristics were caregiver,oral score,frail health condition,activities of daily living,and cognitive function. Conclusion There are various influencing factors for dysphagia in the elderly,and the elderly patients with poor oral health,frailty,dependence on others for daily life,and cognitive impairment should be taken seriously in clinical practice. The XGBoost model has a good performance in predicting dysphagia in the elderly,which can provide a reference for clinical practice.
近年来,随着老龄化进程的不断加快,老年群体的规模亦逐步扩大,但老年人群的生活质量和健康预期寿命受多种慢性疾病和退行性疾病的影响,其中吞咽障碍是一种常见老年综合征,在老年人群中的患病率为10%~33%[1-2]。吞咽障碍(dysphagia,swallowing disorders)是指因口腔、喉部、食管等器官的结构或者功能受损,导致不能安全有效地将食物由口腔输送到胃内取得足够营养和水分,由此产生的进食困难[3-4]。世界卫生组织(World Health Organization,WHO)已将吞咽障碍列入国际疾病分类第10版(ICD-10)及国际功能、残疾和健康分类(international classification of functioning,disability and health,ICF)[5]。
①衰弱评定量表。研究采用衰弱与平衡评估的综合评定量表评估患者的衰弱情况,在老年人群中具有较好的适用性[19]。该量表包含8个条目,总分8分。0分为无衰弱,1~2分为衰弱前期,≥3分为衰弱。②生活能力评定量表。研究采用日常生活活动能力(activity of daily living,ADL)量表的Barthel指数对患者的自理生活能力进行评定,该量表已被证实具有较好的信效度[20-21]。该量表包含日常活动的10个评定条目,总分100分。100分表示患者有良好的基本日常生活能力,无需依赖他人;61~99分表示轻度依赖,日常生活仍能基本自理;41~60分表示中度依赖,患者需要一定帮助才能进行日常生活;≤40分则表示重度依赖,患者需要明显依赖他人才能完成日常生活。③营养状况评定量表。研究采用简易营养评估量表(mini nutritional assessment,MNA)评估研究对象的营养状况,该量表被推荐用于老年住院患者的营养评价,具有良好的信效度[22-23]。总分30分,其中筛选类指标14分,评价类指标16分。当评定总分≥24分表示营养状况良好,17~24分表示存在营养不良的危险,<17分则表示明确为营养不良。④睡眠质量量表。研究采用匹兹堡睡眠质量指数(pittsburgh sleep quality index,PSQI)量表评估患者的睡眠情况。该量表从7个方面评价睡眠质量,总分21分,其中,0~5分提示睡眠质量优,6~10分提示睡眠质量良,11~15分提示睡眠质量中等,16~21分则提示睡眠质量差。⑤老年抑郁量表。研究采用老年抑郁量表(geriatric depression scale-5,GDS-5)评估老年患者的心理健康状况,该量表可用于抑郁的快速筛查,信效度良好[24-25]。其包括5个心理状态相关问题,肯定回答得1分,否定得0分,分数≥2分则考虑为异常。⑥认知功能量表。研究采用简易智力状态检查(minimum mental state examination,MMSE)量表进行认知功能评估,该量表在国际上应用广泛,信效度良好[24]。该量表认为受教育程度与认知功能有关,其中文盲得分低于17分,小学文化水平得分低于20分,中学及以上文化水平得分低于27分,则表示存在认知功能障碍。⑦简易口腔量表。使用汉化版Kayser-Jones简明口腔健康检查(brief oral health status examination,BOHSE)量表评价老年患者的口腔健康情况,该具有良好的信效度[26]。该量表包含10个条目。每个条目均采用3级评分法,0分正常、1分问题轻、2分问题重,总分20分,分数越高口腔健康状况越差。⑧查尔森共病指数。查尔森共病指数(Charlson comorbidity index,CCI)是评价患者共病情况的良好指标[27],多用于计算患者的共病负担。考虑到不同年龄对共病情况的影响,本研究采用经年龄校正后的查尔森共病指数[28](age-adjusted Charlson comorbidity index,ACCI),基于研究对象的既往病史和检查结果,计算其共病评分。
1.3 数据处理
在临床专家的指导下进行数据清洗,对异常值和逻辑错误值进行重新核查或直接删除。采用多重填补法对基本诊断资料的缺失数据进行填补,考虑到各变量数据的缺失占比均<10%,故定量变量资料使用中位数填补,定性变量资料使用众数填补。最终纳入22个变量进入研究,具体见表1。同时,基于数据分析及指标可解释性的需要,将原始数据中的连续变量转换为分类变量,如年龄、体质指数(body mass index,BMI)、衰弱、营养、睡眠质量、日常生活能力、抑郁、认知功能等。
ZhouMG, WangHD, ZengXY,et al. Mortality,morbidity,and risk factors in China and its provinces,1990-2017:a systematic analysis for the global burden of disease study 2017[J]. Lancet,2019,394(10204):1145-1158.
[2]
ThiyagalingamS, KulinskiAE, ThorsteinsdottirB,et al. Dysphagia in older adults[J]. Mayo Clin Proc,2021,96(2):488-497.
Rehabilitation Committee of Swallowing Disorders of the Chinese Society of Rehabilitation Medicine, DouZL, WenHM,et al. Guidelines for rehabilitation management of dysphagia in China(2023 edition)[J]. Chinese Journal of Physical Medicine and Rehabilitation,2023,45(12):1057-1072.
Consensus Group of Swallowing Disorder Rehabilitation Assessment and Treatment in China. Consensus of Chinese experts on swallowing disorder assessment and treatment(2017 edition):part two, treatment and rehabilitation management[J]. Chin J Phys Med Rehabil, 2018, 40(1): 1-10.
[7]
HarrisonJE, WeberS, JakobR,et al. ICD-11:an international classification of diseases for the twenty-first century[J]. BMC Med Inform Decis Mak,2021,21(Suppl 6):206.
[8]
Nakao-KatoM, RathoreFA. An overview of the management and rehabilitation of dysphagia[J]. J Pak Med Assoc,2023,73(8):1749-1752.
[9]
WarneckeT, LabeitB, SchroederJ,et al. Neurogenic dysphagia:systematic review and proposal of a classification system[J]. Neurology,2021,96(6):e876-e889.
[10]
LeKHN, LowEE, YadlapatiR. Evaluation of esophageal dysphagia in elderly patients[J]. Curr Gastroenterol Rep,2023,25(7):146-159.
[11]
LiWY, GaoMJ, LiuJ,et al. The prevalence of oropharyngeal dysphagia in patients with chronic obstructive pulmonary disease:a systematic review and meta-analysis[J]. Expert Rev Respir Med,2022,16(5):567-574.
XuS, CaiWW, LiCY,et al. Prevalence and influencing factors of dysphagia in community-dwelling elderly: A cross-sectional study [J]. Chin Gen Pract,2024,27(17):2083-2090.
[14]
SakaiK, NakayamaE, YoneokaD,et al. Association of oral function and dysphagia with frailty and sarcopenia in community-dwelling older adults:a systematic review and meta-analysis[J]. Cells,2022,11(14):2199.
MaoYJ, FanH, ZhangW,et al. Systematic review of risk prediction models for dysphagia in stroke patients [J]. Mil Nurs,2023,40(10):96-100+106.
[17]
LuQ, YuJY, ZhouYY,et al. Prediction of postoperative dysphagia in patients with oral cancer:a prospective cohort study[J]. J Stomatol Oral Maxillofac Surg,2024,125(5S2):101957.
[18]
AylwardA, ParkJ, AbdelazizS,et al. Individualized prediction of late-onset dysphagia in head and neck cancer survivors[J]. Head Neck,2020,42(4):708-718.
[19]
YuLL, LiYQ, ZhangDY,et al. A risk prediction model for dysphagia in older patients:a single-center prospective study[J]. Geriatr Nurs,2022,44:24-29.
[20]
HeijnenBJ, BöhringerS, SpeyerR. Prediction of aspiration in dysphagia using logistic regression:oral intake and self-evaluation[J]. Eur Arch Otorhinolaryngol,2020,277(1):197-205.
QianQQ, FangF. Research progress on bedside evaluation tools for post-extubation dysphagia in critically ill patients after mechanical ventilation[J]. Chin Nurs Res,2023,37(14):2576-2580.
BoYY, MoYZ, OuyangXJ,et al. Analysis of influencing factors of dysphagia in hospitalized elderly patients with sarcopenia[J]. Pract Geriatr,2022,36(6):632-635.
[25]
刘 蓓. 基于综合评估的高龄老人的临床特点分析[D]. 重庆:重庆医科大学,2019.
[26]
LiuB. Analysis of clinical characteristics of the elderly based on comprehensive evaluation[D]. Chongqing:Chongqing Medical University,2019.
[27]
ClarkDO, StumpTE, TuWZ,et al. A comparison and cross-validation of models to predict basic activity of daily living dependency in older adults[J]. Med Care,2012,50(6):534-539.
ZhaoYP, DingR, XieH. Development and validation of reliability and validity of Chinese version of activities of daily living scale[J]. Pract Geriatr,2022,8(12):1215-1219.
[30]
VellasB, GuigozY, GarryPJ,et al. The Mini Nutritional Assessment(MNA) and its use in grading the nutritional state of elderly patients[J]. Nutrition,1999,15(2):116-122.
[31]
Leandro-MerhiVA, De AquinoJL. Anthropometric parameters of nutritional assessment as predictive factors of the Mini Nutritional Assessment(MNA) of hospitalized elderly patients[J]. J Nutr Health Aging,2011,15(3):181-186.
LiuS, LiuXH. How to use self-rating scale to screen depression in the elderly[J]. Chin J Clin Healthc,2020,23(5):586-589.
[34]
FolsteinMF, FolsteinSE, McHughPR. “Mini-mental state” A practical method for grading the cognitive state of patients for the clinician[J]. J Psychiatr Res,1975,12(3):189-198.
ZhaoCJ, DingF. Translation and psychometric evaluation of the Kayser-Jones Brief Oral Health Status Examination[J]. Chin Nurs Manag,2016,2(1):38-41.
[37]
CharlsonME, PompeiP, AlesKL,et al. A new method of classifying prognostic comorbidity in longitudinal studies:development and validation[J]. J Chronic Dis,1987,40(5):373-383.
[38]
CharlsonM, SzatrowskiTP, PetersonJ,et al. Validation of a combined comorbidity index[J]. J Clin Epidemiol,1994,47(11):1245-1251.
DouZL, WenHM, DaiM,et al. On-the-spot report of the 7th Annual Meeting of European Dysphagia and the 1st World Dysphagia Forum[J]. Chin J Phys Med Rehabil,2017,39(12):957-960.
[43]
RajatiF, AhmadiN, NaghibzadehZA,et al. The global prevalence of oropharyngeal dysphagia in different populations:a systematic review and meta-analysis[J]. J Transl Med,2022,20(1):175.
[44]
ChaS, KimWS, KimKW,et al. Sarcopenia is an independent risk factor for dysphagia in community-dwelling older adults[J]. Dysphagia,2019,34(5):692-697.
ZhiMJ, WangTT, HongXL,et al. Study on the dysphagia and risk factors in community-dwelling Elders in Beijing[J]. J Nurs Adm,2019,19(11):834-838.
[47]
PanebiancoM, Marchese-RagonaR, MasieroS,et al. Dysphagia in neurological diseases:a literature review[J]. Neurol Sci,2020,41(11):3067-3073.
[48]
ZhaoWT, YangM, WuHM,et al. Systematic review and meta-analysis of the association between sarcopenia and dysphagia[J]. J Nutr Health Aging,2018,22(8):1003-1009.
[49]
YangEJ, KimMH, LimJY,et al. Oropharyngeal Dysphagia in a community-based elderly cohort:the Korean longitudinal study on health and aging[J]. J Korean Med Sci,2013,28(10):1534-1539.
LiuYX, JiangYL, HuangXX,et al. The prevalence of dysphagia among Chinese older adults:a meta-analysis[J]. Chin Gen Pract,2023,9(12):1496-1502,1512.
[52]
MachidaN, ToharaH, HaraK,et al. Effects of aging and sarcopenia on tongue pressure and jaw-opening force[J]. Geriatr Gerontol Int,2017,17(2):295-301.
[53]
ShiraishiA, YoshimuraY, WakabayashiH,et al. Prevalence of stroke-related sarcopenia and its association with poor oral status in post-acute stroke patients:Implications for oral sarcopenia[J]. Clin Nutr,2018,37(1):204-207.
[54]
BunoutD, BarreraG, HirschS,et al. Association between activity energy expenditure and peak oxygen consumption with sarcopenia[J]. BMC Geriatr,2018,18(1):298.
[55]
ZhangH, GuoF, TangM,et al. Association between skeletal muscle strength and dysphagia among Chinese community-dwelling elderly adults[J]. J Nutr Health Aging,2020,24(6):642-649.
[56]
SuiSX, HordacreB, PascoJA. Are sarcopenia and cognitive dysfunction comorbid after stroke in the context of brain-muscle crosstalk?[J]. Biomedicines,2021,9(2):223.
ZhouSX, ZhangJ, WangZP,et al. Predictive value of Logistic regression and XGBoost models for dysphagia in patients with acute ischemic stroke[J]. J Xinjiang Med Univ,2024,47(8):1179-1185.
XieLN, ChenWY. A risk prediction model of swallowing dysfunction in elderly patients with mild cognitive impairment based on decision tree method[J]. Nurs J Chin People’s Liberation Army,2023,40(10):71-74.