M1型巨噬细胞极化与高脂饮食诱导的NAFLD相关性研究

刘华 ,  孟齐 ,  郝杨敏 ,  杜国利

重庆医科大学学报 ›› 2025, Vol. 50 ›› Issue (05) : 595 -601.

PDF (2330KB)
重庆医科大学学报 ›› 2025, Vol. 50 ›› Issue (05) : 595 -601. DOI: 10.13406/j.cnki.cyxb.003743
基础研究

M1型巨噬细胞极化与高脂饮食诱导的NAFLD相关性研究

作者信息 +

Association between M1 macrophage polarization and nonalcoholic fatty liver disease induced by high-fat diet

Author information +
文章历史 +
PDF (2385K)

摘要

目的:探讨肝脏M1型巨噬细胞流式细胞计数方案及M1型巨噬细胞极化与非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)相关性。方法:高脂饮食喂养建立NAFLD小鼠模型,12只C57BL/6小鼠按照随机数字表法分为普通饮食(normal diet,ND)组、高脂饮食(high fat diet,HFD)组喂养24周,检测小鼠血糖、血脂等代谢指标,实时荧光定量PCR法检测小鼠M1型巨噬细胞相关因子,HE染色观察肝脏病理表现。利用Percoll分离液梯度离心法收集肝脏Kupffer细胞,流式细胞仪检测小鼠肝脏M1型巨噬细胞(分选方案:应用FSC-A、SSC-A分群,去除肝脏中的红细胞及杂质;FITC CD45(+)/PE-cy7 CD11clow,将白细胞分群;APC CD115(+)/Percp cy5.5 CD11bhigh筛选单核细胞,应用Apc-cy7 F4/80low/PE Ly-6Chigh分选出M1巨噬细胞)。结果:与普通饮食组相比,24周HFD小鼠各项代谢指标明显升高,体质量[(28.35±1.71) g vs.(38.43±4.41) g,P<0.001]、肝脏重量[(1.03±0.18) g vs.(1.85±0.41) g,P=0.003]、空腹血糖[(7.07±0.58) mmol/L vs.(10.23±1.58) mmol/L,P<0.001]、胰岛素[(18.62±3.84) pg/mL vs.(28.84±8.3) pg/mL,P<0.001]、甘油三酯[(2.97±0.67) mmol/L vs.(4.05±0.99) mmol/L,P=0.01]、总胆固醇[(0.23±0.06) mmol/L vs.(0.55±0.17) mmol/L,P<0.001]、谷丙转氨酶(alanine aminotransferase,ALT)5.67(3.16,9.23) U/L vs. 35.86(19.68,58.33) U/L,P=0.003]和谷草转氨酶(aspartate aminotransferase,AST)[53.14(38.18,64.40) U/L vs. 155.10(113.60,192.20) U/L,P<0.001],NAFLD小鼠M1型巨噬细胞极化明显增加[9.95%(3.10,12.00) vs. 42.00%(26.50,45.50),P=0.003]。HFD诱导的小鼠肝脏中重组人白细胞介素-1β(human interleukin-1 beta protein,IL-1β)、白细胞介素-6(interleukin-6,IL-6)、F4/80和肿瘤坏死因子(tumor necrosis factor-α,TNF-α)mRNA水平明显升高。结论:流式细胞检测方案可应用于肝脏M1型巨噬细胞检测,NAFLD炎症反应明显加重,M1型巨噬细胞极化与NAFLD发生呈正相关。

Abstract

Objective To investigate the flow cytometry cell sorting regimen for M1 macrophages and the association between M1 macrophage polarization and nonalcoholic fatty liver disease(NAFLD). Methods High-fat diet(HFD) was used to establish a mouse model of NAFLD. Twelve C57BL/6 mice were randomly divided into control group(normal diet) and HFD group using a random number table and were fed for 24 weeks. Metabolic markers including blood glucose and blood lipids were measured;quantitative real-time PCR was used to measure the factors associated with M1 macrophages in mice;HE staining was used to observe liver pathology. The Percoll gradient centrifugation method was used to collect liver Kupffer cells,and flow cytometry was used to measure M1 macrophages in mouse liver(sorting regimen:FSC-A/SSC-A for grouping and removing red blood cells and impurities in the liver;FITC CD45(+)/PE-cy7 CD11clow for grouping leukocytes;APC CD115(+)/Percp cy5.5 CD11bhigh for the screening of monocytes;Apc-cy7 F4/80low/PE Ly-6Chigh for separating M1 macrophages). Results Compared with the control group at week 24,the HFD group had significant increases in the indicators of body weight [(28.35±1.71) g vs. (38.43±4.41) g,P<0.001),liver weight [(1.03±0.18) g vs. (1.85±0.41) g,P=0.003),fasting blood glucose [(10.23±1.58) mmol/L vs. (7.07±0.58) mmol/L,P˂0.001)],insulin [(18.62±3.84) pg/mL vs. (28.84±8.3) pg/mL,P˂0.001)],triglyceride [(2.97±0.67) mmol/L vs. (4.05±0.99) mmol/L,P=0.01)],cholesterol[(0.23±0.06) mmol/L vs. (0.55±0.17) mmol/L,P<0.001)],alanine aminotransferase [5.67(3.16,9.23) U/L vs. 35.86(19.68,58.33) U/L,P=0.003],and aspartate aminotransferase [53.14(38.18,64.40) U/L vs. 155.10 (113.60,192.20) U/L,P<0.001],and there was a significant increase in M1 macrophage polarization in NAFLD mice [42.00%(26.50,45.50) vs. 9.95%(3.1,12),P=0.003]. There were significant increases in the mRNA levels of IL-β,IL-6,F4/80,and TNF-α in the liver of mice induced by HFD. Conclusion The flow cytometry sorting regimen can be used to measure M1 macrophages in the liver. Significant aggravation of inflammatory response is observed in NAFLD,and M1 macrophage polarization is positively correlated with the onset of NAFLD.

关键词

非酒精性脂肪性肝病 / 流式细胞术 / M1型巨噬细胞

Key words

nonalcoholic fatty liver disease / flow cytometry / M1 macrophages

引用本文

引用格式 ▾
刘华,孟齐,郝杨敏,杜国利. M1型巨噬细胞极化与高脂饮食诱导的NAFLD相关性研究[J]. 重庆医科大学学报, 2025, 50(05): 595-601 DOI:10.13406/j.cnki.cyxb.003743

登录浏览全文

4963

注册一个新账户 忘记密码

非酒精性脂肪肝(nonalcoholic fatty liver disease,NAFLD),是全球最常见的肝脏疾病。由于全球肥胖的日益流行,NAFLD的发病率可能持续上升,在未来几十年内将造成严重的健康危机和巨大的经济负担,全球患病率约为30%[1]。在中国,预计NAFLD的发生率将大幅增加,从2016年的2.436 6亿例增加到2030年的3.145 8亿例[2-3]。从NAFLD到非酒精性脂肪性肝炎(nonalcoholic steatohepatitis,NASH)、晚期纤维化等一系列肝脏异常,病程多变[4-5]。而这些肝损伤最终导致肝星状细胞(hepatic stellate cells,HSC)的激活,增加胶原和细胞外基质(extracellular Matrix,ECM)的产生或沉积,从而促进肝纤维化和肝硬化[6]
库普弗(Kupffer,KC)细胞是存在于肝脏中的巨噬细胞的主要群体,在维持肝脏的免疫耐受性方面起着关键作用[7-8]。其在NAFLD的发病机制中与其他肝细胞相互作用,这种相互作用可能会延迟或加剧疾病进展。内源性信号的刺激触发KCs的激活,导致肿瘤坏死因子(tumor necrosis factor-α,TNF-α)、重组人白细胞介素-1β(human interleukin-1 beta protein,IL-1β)和白细胞介素-6(interleukin-6,IL-6)等各种炎症因子和趋化因子的表达,并促进炎症级联反应[9]。F4/80high KCs是主要的肝脏驻留巨噬细胞,也是接触进入肝脏病原体的第1个免疫细胞[10]。但根据其来源和环境的不同,KCs存在多种表型和亚群,各型之间也可相互转化。针对于M1型巨噬细胞的检测有多种方法,例如选择性贴壁法、磁珠分选法等,本研究组采用胰酶灌洗和Percoll密度梯度离心的方法,方法更温和,对细胞损害少。本研究流式方案中使用的CD115抗体(又称为M-CSF受体),长期以来一直被用作小鼠和人类单核细胞和巨噬细胞的固体表面标志物[11]。M-CSF控制巨噬细胞的产生、分化和功能,并可以通过产生不同表型和功能来控制巨噬细胞的极化[12]。因此CD115作为巨噬细胞标志分子,可能在巨噬细胞极化中的起着重要作用,但目前大部分分选方法没有应用CD115,所以本实验研究加入了CD115检测M1型巨噬细胞,探讨肝脏M1型巨噬细胞新的流式细胞计数方案,以及M1型巨噬细胞极化与NAFLD相关性。

1 材料与方法

1.1 实验动物

C57小鼠(12只雄性),SPF级,体质量16~19g,4~8周龄。所有实验及操作遵循《实验动物管理条例》进行。本研究经新疆医科大学实验动物伦理委员会批准通过(伦理审批号:20220308-139)。

1.2 实验方法

1.2.1 动物建模

首先对购买的小鼠适应喂养后随机分为 2 组,每组6只,对照组为普通饮食(normal diet,ND)组,实验组为高脂饮食(high fat diet,HFD)组为60%高脂饲料,观察食欲行为、精神状态和毛发状态等,并每周进行体质量测量,造模24周后,对所有小鼠给予禁食12 h,收集血清和肝脏组织。

1.2.2 肝脏消化液的制备

胶原酶灌注:小鼠给予腹腔注射,麻醉后消毒皮毛剪开腹腔,暴露肝脏门静脉,24 G留置针穿刺门静脉后用动脉夹固定,于常温以8 mL/min的速度注入D-Hanks液,剪断下腔静脉,继续灌注至肝脏变为白色。再缓慢灌注含1% DNase Ⅰ的ProE(200 U/mL)、DMEM溶液和胶原酶Ⅰ(200 U/mL)15 mL,至肝脏按压后不回弹即可。将肝脏取出置于培养皿中,用剪刀剪碎,用含200目尼龙滤网过滤至15 mL离心管。

1.2.3 密度梯度离心分离肝脏非实质细胞

将单细胞悬液,离心(50 g,5 min,4 ℃)2次,收取上清液,弃沉淀;离心(500 g,4 ℃,10 min);弃上清,细胞沉淀应用25%的Percoll液6 mL悬浮。在离心管底部加入70% Percoll液3 mL,离心(800 g,20 min,20 ℃,加速度:6,减速度:0)后,收集梯度界面中液体,并用PBS洗涤后离心(500 g,10 min,4 ℃),弃上清,沉淀用1 mL红细胞裂解液(0.5~1.0 min),PBS终止,离心(363 g,5 min,4 ℃),以PBS重悬并细胞计数。

1.2.4 流式细胞染色

取分离的细胞2×10个,用1 mL PBS定容悬浮,每个加入30 μL封闭液,4 ℃ 20 min;加入900 μL PBS悬浮,离心(4 189 g,3 min,4 ℃);向每管加入对应的抗体,30 min,避光,4 ℃;将每组加入1 mL PBS,轻轻吹打均匀,离心(4 189 g,2 min,4 ℃),弃上清,向每管中加入300 μL PBS重悬细胞,经200目尼龙网过滤并上机进行检测(应用FSC-A、SSC-A分群,去除肝脏中的红细胞及杂质;FITC CD45(+)/PE-cy7 CD11clow,将白细胞分群;APC CD115(+)/Percp cy5.5 CD11bhigh筛选单核细胞应用;Apc-cy7 F4/80low/PE Ly-6Chigh分选出M1巨噬细胞)。

1.2.5 肝组织病理学检测

取小鼠肝脏右叶,4%多聚甲醛溶液固定48 h,石蜡包埋,并切片进行HE染色40 s,脱水后中性树胶封闭并显微镜下观察。

1.2.6 血清学实验室指标检测

对小鼠进行摘眼球取血,离心(1 109 g,15 min,25 ℃)分离血清,应用ELISA方法检测甘油三酯(triglyceride,TG)、总胆固醇(total cholesterol,TC)、胰岛素(insulin,INS)、谷丙转氨酶(alanine aminotransferase,ALT)及谷草转氨酶(aspartate aminotransferase,AST)。

1.2.7 实时荧光定量PCR(quantitative real-time PCR,qPCR)检测基因表达

小鼠肝脏组织样本使用Trizol试剂提取组织mRNA,使用TaKaRa qPCR试剂盒将mRNA逆转录为cDNA,应用TB Green Premix Ex TapTM Ⅱ进行RT-qPCR 检测,反应体系配比为:10 µL TB Green,6 µL灭菌水,上下游引物各0.8 µL和2 µL cDNA。qPCR反应条件:95 ℃ 30 min,95 ℃ 5 s,60 ℃ 34 s,循环40 次。mRNA的内参基因为GAPDH,基因表达量采用2- ΔΔCt 法计算。基因引物序列设计合成由上海生工生物工程有限公司完成,引物序列见表1

1.3 统计学方法

应用SPSS 26.0软件进行统计学分析,应用GraphPad prism 8软件绘图。正态分布的计量资料,采用均数±标准差(x±s)表示,采用t检验分析。非正态分布数据使用中位数(四分位间距)即MdP 25P 75)表示,并通过秩和检验进行分析。检验水准α=0.05。

2 结 果

2.1 高脂饮食诱导NAFLD小鼠模型建立

结果显示经过24周的高脂饲养,与ND组相比,体质量[(28.35±1.71) g vs. (38.43±4.41) g,t=6.45,P<0.001]、肝脏重量[(1.03±0.18) g vs. (1.85±0.41) g,t=4.16,P=0.003]、空腹血糖[(7.07±0.58) mmol/L vs. (10.23±1.58) mmol/L,t=5.67,P<0.001]、胰岛素水平[(18.62±3.84) pg/mL vs. (28.84±8.3) pg/mL,t=3.38,P=0.004],见图1表2

本研究发现NAFLD的小鼠肝脏组织病理学变化,肝脏外表表现为体积增加,色泽为灰黄色,切面油腻。2组肝脏组织HE染色显示HFD组肝脏可见大小不一的脂滴沉积(图2)。

2.2 NAFLD小鼠血清血脂和肝功能的影响

与ND组相比,NAFLD小鼠血清的甘油三酯[(2.97±0.67) mmol/L vs. (4.05±0.99) mmol/L,t=2.77,P=0.01]、总胆固醇[(0.23±0.06) mmol/L vs. (0.55±0.17) mmol/L,t=4.81,P<0.001]、ALT[5.67(3.16,9.23) U/L vs. 35.86(19.68,58.33) U/L,Z=3.72,P=0.003]和AST[53.14(38.18,64.40) U/L vs. 155.10(113.60,192.20) U/L,Z=5.14,P<0.001],HFD组小鼠各项代谢指标明显升高(图3)。

2.3 NAFLD小鼠肝脏组织炎症因子的影响

实验结果显示,与ND组相比,NAFLD肝脏组织中IL-β mRNA明显升高1.58±0.31 vs. 4.13±0.54,t=8.89,P<0.001,NAFLD肝脏组织中(3.25±0.48 vs. 1.82±0.35,t=4.02,P=0.004)、F4/80(2.97±0.42 vs. 1.75±0.29,t=4.08,P=0.004)和TNF-α(5.62±0.71 vs. 2.38±0.46,t=6.44,P<0.001)比ND组mRNA水平均明显升高,见图4

2.4 流式细胞仪检测分选

应用Percoll分离液梯度离心法收集肝脏Kupffer细胞,行流式细胞术检测,评价NAFLD对肝脏组织中M1型巨噬细胞的影响。本研究发现流式细胞术的结果显示,与ND相比,HFD组肝脏的M1型巨噬细胞占比明显升高[9.95%(3.10,12.00) vs. 42.00%(26.50,45.50),Z=3.12,P=0.003],见图5

3 讨 论

NAFLD已成为全球成人和儿童中最常见的慢性肝病形式,通常与代谢合并症有关[13-14]。其中肥胖是NAFLD发生和进展的重要独立危险因素,而BMI每增加一个单位,NAFLD疾病风险就呈剂量依赖性的正相关[15]。在本研究中,高脂喂养的小鼠从第4周开始体质量比普通饮食小鼠增加明显,ND组的肝脏重量比HFD组明显降低。2型糖尿病(type 2 diabetes mellitus,T2DM)是NAFLD的重要危险因素,NAFLD在T2DM患者中的患病率很高[16],且肥胖和胰岛素抵抗,会增加肝纤维化进展的速度,导致肝硬化、HCC和/或死亡[17]。本实验结果中ND组的空腹血糖、胰岛素明显比HFD组降低。故提示NAFLD有合并T2DM的风险。普通饮食小鼠的肝功能较高脂饮食明显降低,反映了当前NAFLD小鼠的肝脏有炎症损伤。在NAFLD建模成后,从肝脏HE染色可以看到,HFD小鼠肝脏呈现大小不一的脂滴。

肝脏作为一种免疫活性器官,包含最大的网状内皮细胞吞噬系统,可检测通过肠道进入的病原体和内源性产生的抗原[18]。肝细胞可以产生多种细胞因子来调节肝损伤、修复和损伤中的炎症[19]。肝脏有2种主要的细胞类型:实质细胞和非实质细胞,实质肝细胞占肝脏总细胞数的60%;非实质细胞占肝脏总细胞数的35%[20]。它含有丰富的先天性和适应性免疫细胞,包括中性粒细胞、Kupffer细胞、自然杀伤细胞、自然杀伤T细胞、T淋巴细胞和肝星状细胞[21]。肝脏炎症不仅在感染性肝病的发生和发展中起着重要作用,而且在非感染性肝病的发生和发展中也起着重要作用[22-25]。Kupffer细胞和循环巨噬细胞是NAFLD发病机制的驱动因素,在NASH小鼠模型和人体肝脏样本中,C-C趋化因子受体2在单核细胞来源的促炎巨噬细胞上高度表达,并且与肥胖患者的NAFLD严重程度呈正相关[26]。在NAFLD疾病的发展中巨噬细胞通过调节肝脏中的炎症反应和代谢稳态[27],在炎症明显之前门脉巨噬细胞浸润就已出现,并与疾病的进展有关[28-29]

巨噬细胞的表型是基于特定受体的存在及其产生的细胞因子和趋化因子,将巨噬细胞分为2个亚群,定义为M1和M2[30]。M1巨噬细胞是已知最经典的巨噬细胞在促炎介质如脂多糖或干扰素的诱导下产生促炎细胞因子和趋化因子,如TNF-α、IL-1、IL-6和诱导型一氧化氮合酶[31]。从本研究中发现与ND组相比,HFD小鼠M1型巨噬细胞相关因子IL-β、IL-6、和TNF-α mRNA水平均明显升高。这些分泌物能够杀死细菌、病毒和恶性肿瘤细胞等传染性生物,死细胞通过吞噬作用被巨噬细胞吸收[32]。相反,M2巨噬细胞受到IL-4和IL-13的刺激,这种刺激诱导低水平的促炎细胞因子和高水平的IL-10[33]。巨噬细胞极化的一个关键方面是细胞表面标志物表达的改变。M1巨噬细胞过表达CD80、CD86 和CD16/32,能够分泌促炎细胞因子[34]。有研究表明,长期HFD可诱导KCs的M1极化增加,并促进TNF-α的表达,平衡M1和M2 KCs的百分比可以预防NAFLD的发生[35],提示肝脏M1型巨噬细胞功能的异常在NAFLD进展中的重要作用。

然而,有文献报道的肝免疫细胞分离纯化技术差异很大,如体外或原位机械解剖或胶原酶消化,采用不同的胶原酶浓度和不同的Percoll密度梯度和纯化免疫磁珠分选法[36-39]。F4/80表达在小鼠单核细胞群中各不相同,破骨细胞、T细胞区和边缘区的巨噬细胞、肺泡巨噬细胞和大多数经典树突状细胞的表达非常低或不存在[40],F4/80抗原通常用作巨噬细胞的标志物[41]。Ly6C是一种单核细胞/巨噬细胞分化抗原,常用于分化经典单核细胞(Ly6Chigh)和非经典的(Ly6Clow)。机械解剖法可能因机械性损伤使得肝脏免疫细胞的生存能力差,免疫细胞与肝组织分离不充分导致细胞产量低,而酶消化法影响较温和[42]。因此,有效分离和纯化肝脏免疫细胞对于准确、成功地观察肝病发展过程中的肝内免疫反应至关重要。为了观察靶细胞的变化,排除其他污染细胞群是至关重要的。Percoll是一种广泛使用的密度梯度离心介质,具有经济、无毒等优点,可用于分离肝脏非实质细胞[43]。本研究采用Percoll密度梯度离心的方法,在2组小鼠肝脏流式检测M1型巨噬细胞中发现与ND相比,NAFLD组的M1型巨噬细胞占比明显升高。

综上所述,本研究通过建立NAFLD小鼠模型,收集 2 组小鼠的血清相关指标和肝脏病理组织切片来观察NAFLD和对照组之间的病理生理学的变化,通过qPCR和流式细胞检测肝脏M1型巨噬细胞发现相关促炎细胞因子增加使肝脏组织也处于高炎症状态,因此说明M1型巨噬细胞分化是造成组织炎症损伤的关键,也是NAFLD疾病发展过程中的关键因素。但本实验尚存在一定的局限性,后续课题组将仍需从多角度进行更深层次的研究与验证。

参考文献

[1]

Han SK Baik SK Kim MY. Non-alcoholic fatty liver disease:definition and subtypes[J]. Clin Mol Hepatol202329(Suppl):S5-S16.

[2]

Zhou JH Zhou F Wang WX,et al. Epidemiological features of NAFLD from 1999 to 2018 in China[J]. Hepatology202071(5):1851-1864.

[3]

Estes C Anstee QM Arias-Loste MT,et al. Modeling NAFLD disease burden in China,France,Germany,Italy,Japan,Spain,United Kingdom,and United States for the period 2016-2030[J]. J Hepatol201869(4):896-904.

[4]

Pouwels S Sakran N Graham Y,et al. Non-alcoholic fatty liver disease(NAFLD):a review of pathophysiology,clinical management and effects of weight loss[J]. BMC Endocr Disord202222(1):63.

[5]

Friedman SL Neuschwander-Tetri BA Rinella M,et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med201824(7):908-922.

[6]

Tan Z Sun HB Xue TX,et al. Liver fibrosis:therapeutic targets and advances in drug therapy[J]. Front Cell Dev Biol20219:730176.

[7]

Musrati MA De Baetselier P Movahedi K,et al. Ontogeny,functions and reprogramming of Kupffer cells upon infectious disease[J]. Front Immunol202314:1238452.

[8]

Nguyen-Lefebvre AT Horuzsko A. Kupffer cell metabolism and function[J]. J Enzymol Metab20151(1):101.

[9]

Xu GX Wei S Yu C,et al. Activation of Kupffer cells in NAFLD and NASH:mechanisms and therapeutic interventions[J]. Front Cell Dev Biol202311:1199519.

[10]

Nakashima H Kearney BM Kato A,et al. Novel phenotypical and functional sub-classification of liver macrophages highlights changes in population dynamics in experimental mouse models[J]. Cytometry A2023103(11):902-914.

[11]

Zou YY Kamada N Seong SY,et al. CD115-monocytic myeloid-derived suppressor cells are precursors of OLFM4high polymorphonuclear myeloid-derived suppressor cells[J]. Commun Biol20236:272.

[12]

Jeannin P Paolini L Adam C,et al. The roles of CSFs on the functional polarization of tumor-associated macrophages[J]. FEBS J2018285(4):680-699.

[13]

Kaufmann B Reca A Wang BC,et al. Mechanisms of nonalcoholic fatty liver disease and implications for surgery[J]. Langenbeck’s Arch Surg2021406(1):1-17.

[14]

Younossi Z Anstee QM Marietti M,et al. Global burden of NAFLD and NASH:trends,predictions,risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol201815(1):11-20.

[15]

Safari Z Gérard P. The links between the gut microbiome and non-alcoholic fatty liver disease(NAFLD)[J]. Cell Mol Life Sci201976(8):1541-1558.

[16]

Younossi ZM Golabi P de Avila L,et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes:a systematic review and meta-analysis[J]. J Hepatol201971(4):793-801.

[17]

Palma R Pronio A Romeo M,et al. The role of insulin resistance in fueling NAFLD pathogenesis:from molecular mechanisms to clinical implications[J]. J Clin Med202211(13):3649.

[18]

Parlar YE Ayar SN Cagdas D,et al. Liver immunity,autoimmunity,and inborn errors of immunity[J]. World J Hepatol202315(1):52-67.

[19]

Gong J Tu W Liu JM,et al. Hepatocytes:a key role in liver inflammation[J]. Front Immunol202313:1083780.

[20]

Kumar S Duan QH Wu RX,et al. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis[J]. Adv Drug Deliv Rev2021176:113869.

[21]

Li L Zeng ZT. Live imaging of innate and adaptive immune responses in the liver[J]. Front Immunol202011:564768.

[22]

Zhao J Bian DD Liao H,et al. Serum HBsAg and HBcrAg is associated with inflammation in HBeAg-positive chronic hepatitis B patients[J]. Front Cell Infect Microbiol202313:1083912.

[23]

Li HG Zheng J Xu Q,et al. Hepatocyte adenosine kinase promotes excessive fat deposition and liver inflammation[J]. Gastroenterology2023164(1):134-146.

[24]

Brenner C Galluzzi L Kepp O,et al. Decoding cell death signals in liver inflammation[J]. J Hepatol201359(3):583-594.

[25]

Getachew Y Cusimano FA James LP,et al. The role of intrahepatic CD3+/CD4-/CD8- double negative T(DN T) cells in enhanced acetaminophen toxicity[J]. Toxicol Appl Pharmacol2014280(2):264-271.

[26]

Lee YA Friedman SL. Inflammatory and fibrotic mechanisms in NAFLD-Implications for new treatment strategies[J]. J Intern Med2022291(1):11-31.

[27]

Vonderlin J Chavakis T Sieweke M,et al. The multifaceted roles of macrophages in NAFLD pathogenesis[J]. Cell Mol Gastroenterol Hepatol202315(6):1311-1324.

[28]

Hoogerland JA Staels B Dombrowicz D. Immune-metabolic interactions in homeostasis and the progression to NASH[J]. Trends Endocrinol Metab202233(10):690-709.

[29]

Gadd VL Skoien R Powell EE,et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease[J]. Hepatology201459(4):1393-1405.

[30]

Zhou JW Tang ZW Gao SY,et al. Tumor-associated macrophages:recent insights and therapies[J]. Front Oncol202010:188.

[31]

Fleetwood AJ Lawrence T Hamilton JA,et al. Granulocyte-macrophage colony-stimulating factor(CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities:implications for CSF blockade in inflammation[J]. J Immunol2007178(8):5245-5252.

[32]

Kadomoto S Izumi K Mizokami A. Macrophage polarity and disease control[J]. Int J Mol Sci202123(1):144.

[33]

Jenkins SJ Ruckerl D Thomas GD,et al. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1[J]. J Exp Med2013210(11):2477-2491.

[34]

Chen YN Hu MR Wang L,et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol2020877:173090.

[35]

Luo WJ Xu QY Wang Q,et al. Effect of modulation of PPAR-γ activity on Kupffer cells M1/M2 polarization in the development of non-alcoholic fatty liver disease[J]. Sci Rep20177:44612.

[36]

Sun C Luo QB Lu XX,et al. Isolation and purification of primary Kupffer cells from mouse liver[J]. BMJ201632(8):1021-1025.

[37]

Aktories P Petry P Glatz P,et al. An improved organotypic cell culture system to study tissue-resident macrophages ex vivo [J]. Cell Rep Methods20222(8):100260.

[38]

Dong ZJ Wei HM Sun R,et al. Isolation of murine hepatic lymphocytes using mechanical dissection for phenotypic and functional analysis of NK1.1 cells[J]. World J Gastroenterol200410(13):1928-1933.

[39]

Zhang C Lu Y Zhou H,et al. Acquiring Kupffer cells in mice using a MACS-based method[J]. Transplant Proc201547(2):553-557.

[40]

Waddell LA Lefevre L Bush SJ,et al. ADGRE1(EMR1,F4/80) is a rapidly-evolving gene expressed in mammalian monocyte-macrophages[J]. Front Immunol20189:2246.

[41]

Liyanage SE Gardner PJ Ribeiro J,et al. Flow cytometric analysis of inflammatory and resident myeloid populations in mouse ocular inflammatory models[J]. Exp Eye Res2016151:160-170.

[42]

Blom KG Qazi MR Noronha Matos JB,et al. Isolation of murine intrahepatic immune cells employing a modified procedure for mechanical disruption and functional characterization of the B,T and natural killer T cells obtained[J]. Clin Exp Immunol2009155(2):320-329.

[43]

Pertoft H. Fractionation of cells and subcellular particles with Percoll[J]. J Biochem Biophys Methods200044(1/2):1-30.

基金资助

国家自然科学基金资助项目(81960078)

新疆维吾尔自治区自然科学基金杰出青年科学基金资助项目(2021D01E28)

省部共建中亚高发病成因与防治国家重点实验室开放课题资助项目(SKL-HIDCA-2021-2)

新疆青年科技顶尖人才专项资助项目(2022TSYCCX0103)

AI Summary AI Mindmap
PDF (2330KB)

468

访问

0

被引

详细

导航
相关文章

AI思维导图

/