地黄梓醇抗糖脂代谢紊乱相关疾病及其机制的研究进展

孙梦 , 钟杨 , 杨涵珺 , 万东 , 祝慧凤

重庆医科大学学报 ›› 2025, Vol. 50 ›› Issue (07) : 849 -859.

PDF (2321KB)
重庆医科大学学报 ›› 2025, Vol. 50 ›› Issue (07) : 849 -859. DOI: 10.13406/j.cnki.cyxb.003857
卓越医见:中药药理学与疾病

地黄梓醇抗糖脂代谢紊乱相关疾病及其机制的研究进展

作者信息 +

Research progress on the mechanisms of action of catalpol from Rehmannia glutinosa against glycolipid metabolic disorders and related diseases

Author information +
文章历史 +
PDF (2376K)

摘要

梓醇作为地黄的主要活性成分,具有良好的抗氧化、抗炎和调节糖脂代谢作用。本文整理并归纳了近年来关于梓醇对糖脂代谢紊乱相关疾病的影响及作用机制。发现梓醇能够纠正糖脂代谢紊乱,防治糖尿病并发症包括大血管和微血管病变的发生发展:梓醇能够通过调节5’-腺苷-磷酸活化蛋白激酶(adenosine 5’-monophosphate-activated protein kinase,AMPK)信号通路调控脂肪生成与氧化,影响叉头转录因子1(forehead transcription factor 1,FOXO1)和糖原合成酶激酶3(glycogen synthase kinase 3,GSK-3)的磷酸化进而调节糖原合成与分解,从而直接影响糖脂代谢。梓醇通过介导磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,PKB或AKT)、氧化低密度脂蛋白(oxidized low-density lipoprotein,oxLDL)/凝集素样氧化低密度脂蛋白受体-1(lectin like oxidized low density lipoprotein receptor 1,LOX-1)等信号通路保护心脑血管系统、肾功能和视网膜结构与功能。梓醇还通过抑制核因子κB(nuclear factor kappa-light-chain-enhancer of activated B cells,NF-κB)信号通路以及内质网应激等方式减轻炎症反应,进一步缓解了由炎症引起的胰岛素抵抗和糖脂代谢紊乱。

Abstract

Catalpol,the primary active component of Rehmannia glutinosa,exhibits potent antioxidant and anti-inflammatory effects and regulatory effects on glucose and lipid metabolism. This article systematically reviews recent studies on the impact of catalpol in addressing glycolipid metabolic disorders and related diseases and the underlying mechainsms. Catalpol can correct glucose and lipid metabolism imbalances to prevent the development and progression of diabetes complications including macrovascular and microvascular diseases,through modulating the adenosine 5’-monophosphate-activated protein kinase signaling pathway to regulate lipogenesis and fat oxidation and altering the phosphorylation of forkhead transcription factor 1 and glycogen synthase kinase 3 to influence glycogen synthesis and breakdown. Catalpol plays a protective role in the cardio-cerebrovascular system,renal function,and retinal structure and function through mediating signaling pathways such as phosphatidylinositol 3-kinase/protein kinase B and oxidized low-density lipoprotein /lectin-like oxidized low-density lipoprotein receptor-1. By suppressing the nuclear factor kappa-light-chain-enhancer of activated B cells pathway and endoplasmic reticulum stress,catalpol can alleviate inflammatory responses,thereby mitigating inflammation-induced insulin resistance and glycolipid metabolic disorders.

Graphical abstract

关键词

梓醇 / 糖脂代谢 / 糖尿病并发症 / 作用机制

Key words

catalpol / glycolipid metabolism / diabetes complication / mechanism of action

引用本文

引用格式 ▾
孙梦,钟杨,杨涵珺,万东,祝慧凤. 地黄梓醇抗糖脂代谢紊乱相关疾病及其机制的研究进展[J]. 重庆医科大学学报, 2025, 50(07): 849-859 DOI:10.13406/j.cnki.cyxb.003857

登录浏览全文

4963

注册一个新账户 忘记密码

糖脂代谢紊乱是代谢功能障碍综合征(metabolic dysfunction syndrome,MDS)的一个组成部分,是导致高脂血症、肥胖、糖尿病、动脉粥样硬化以及中风等疾病的重要原因[1-4],或者互为因果,促进疾病进展,严重威胁我国居民的身心健康,也是全世界所共同面临的难题[5]。国际糖尿病联盟发布,2021年全球有5.37亿糖尿病患者,较2019年增加12.9%,预计到2045年将有7.83亿成年人患糖尿病[5]。血脂异常常继发于如糖尿病、肥胖等疾病,有些患者虽无高脂血症,但其脂蛋白和载脂蛋白成分比例可能失调,血脂异常不仅增加了患心血管疾病的风险,还可能加速糖尿病并发症的发展[6]。目前临床上用于治疗糖脂代谢紊乱的药物主要有司美格鲁肽、二甲双胍和他汀类药物等,但其长期使用会引起胃肠道和肝肾功能异常,因此,寻找安全性高的天然药物替代品迫在眉睫。
中药地黄为玄参科植物地黄Rehmannia glutinosa libosch.的新鲜或干燥块根,具有清热凉血,养阴生津等功效,临床上被用于治疗贫血、慢性肾炎、慢性肝炎和糖尿病血糖轻度升高[7-8]。梓醇为小分子环烯醚萜类化合物,是中药地黄的主要活性成分,作为防治糖尿病的一类新药,正在完成临床试验,梓醇对肥胖、高脂血症和动脉粥样硬化也有良好的防治作用[9-11],本文就梓醇调控糖脂代谢紊乱及糖尿病并发症的影响及作用机制作一综述,以期为开发基于多靶点协同作用的代谢性疾病干预策略提供依据。

1 梓醇的结构与功能

梓醇具有良好的抗氧化[12-13]、抗炎[14]、抗凋亡[15],降低血糖[1316-17]、血脂[9]、保护心脑血管系统[18-20]等作用,梓醇的环烯醚萜骨架、羟基及糖苷基团是其抗氧化和抗炎功能的化学基础。如图1所示,梓醇的核心是一个高度氧化的环烯醚萜骨架,含有一个不饱和的环状烯醚(环戊烷并环烯醚),双键(C=C)和醚键(C-O-C)的存在使得梓醇具有较强的电子传递能力,可以通过捕获自由基发挥抗氧化作用。而且环烯醚萜骨架的刚性结构可稳定自由基中间体,增强抗氧化活性。梓醇凭借优异的抗氧化抗炎特性,在防治糖脂代谢紊乱中起着重要作用。

2 梓醇防治糖脂代谢紊乱的作用和信号机制

2.1 梓醇防治糖脂代谢紊乱

梓醇能够通过调节脂质代谢和胰岛素敏感性,保护胰岛细胞,改善糖脂代谢紊乱。梓醇能够明显降低高脂饮食小鼠的体质量增长率、体脂率、最终体质量、体质指数、肝重、血清总胆固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)、高密度脂蛋白胆固醇(high-density lipoprotein cholesterol,HDL-C)、低密度脂蛋白胆固醇(low-density lipoprotein cholesterol,LDL-C)、天冬氨酸转氨酶和丙氨酸转氨酶水平(P<0.05),从而改善高脂饮食小鼠的脂代谢[21]。Xu CF等[22]通过高脂饮食和腹腔注射链脲佐菌素(stroptozotocin,STZ)建立2型糖尿病(type 2 diabetes mellitus,T2DM)小鼠模型,研究发现梓醇可以有效降低TC、TG及LDL-C浓度,同时升高HDL-C和脂联素水平,脂联素具有胰岛素增敏作用,可以降低胰岛素抵抗,梓醇还减轻了T2DM大鼠肝脏损伤[23]。邹国良等[24]利用STZ诱导的高脂高糖模型研究发现,梓醇处理组大鼠胰岛素分泌指数增加,且胰岛细胞结构相对完整,表明梓醇可保护胰岛细胞,促进胰岛素分泌。有研究发现梓醇可以改善T2DM大鼠糖代谢紊乱,降低其空腹血糖(fasting plasma glucose,FPG),维持糖代谢稳态,梓醇还具有提高T2DM大鼠胰岛素敏感性的作用[25]

糖脂代谢紊乱常伴随氧化应激和慢性炎症,二者是导致胰岛素抵抗和脂肪肝的重要机制之一,有研究利用STZ诱导的高脂高糖大鼠模型研究发现,静脉注射梓醇(50 mg/kg)后,血浆中的超氧化物歧化酶(superoxide dismutase,SOD)、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)和过氧化氢酶(catalase,CAT)活性明显增加,丙二醛(malondialdehyde,MDA)水平明显降低,梓醇明显逆转了STZ糖-脂异常引起的抗氧化水平降低和氧化应激增加,表明梓醇通过恢复氧化酶和抗氧化酶之间的平衡作用改善STZ诱发的糖尿病[7]。梓醇明显抑制NAFLD小鼠炎症因子白细胞介素-1β(interleukin-1β,IL-1β)、白细胞介素-6(interleukin-6,IL-6)和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)的释放,减少了巨噬细胞浸润到脂肪组织中的反应,从而调节血脂紊乱[26-27]。此外,梓醇提高了50 mmol/L葡萄糖诱导的大鼠肾上腺嗜铬细胞瘤细胞系PC12的存活率,降低了细胞ROS含量和LDH释放量[28]。胆汁酸在糖脂代谢中也发挥了重要作用[29-30],梓醇不仅能降低T2DM小鼠的血糖水平,还能通过调节其肝脏胆汁酸水平来改善糖脂代谢紊乱,从而提高糖耐受能力,改善肝脏和视网膜损伤,并降低周围神经病变的风险[29]

2.2 梓醇通过多靶点协同调控防治糖脂代谢紊乱

5’-腺苷-磷酸活化蛋白激酶(adenosine 5’-monophos-phate-activated protein kinase,AMPK),被称为细胞能量状态的传感器,由AMP和(或)ADP上升与ATP下降发出的能量应激激活,调节代谢以恢复能量稳态[31]。梓醇可经AMPK途径有效减少棕榈酸诱导HepG2细胞的脂质蓄积和高脂饮食(high-fat diet,HFD)喂养小鼠的非酒精性脂肪肝[1232]。如图2所示,AMPK活化后可以抑制甾醇调节元件结合蛋白1c(sterol regulatory element-binding protein 1c,SREBP-1c)介导的脂肪生成,上调过氧化物酶体增殖物激活受体α(peroxisome proliferator-activated receptor alpha,PPARα)介导的脂肪酸β氧化,梓醇通过诱导AMPK激活降低了脂肪生成基因(SREBP-1c、脂肪酸合成酶和乙酰辅酶A羧化酶)的表达,增加脂肪酸氧化基因(PPARα、肉碱棕榈酰转移酶1和酰基辅酶A氧化酶1)的表达,明显改善了HFD诱导的小鼠肝损伤,减轻其肝脂肪变性[12]。梓醇还可通过激活AMPK磷酸化促进肝脏细胞转录因子EB(transcription factor EB,TFEB)核转位,诱导肝脏细胞自噬(图2),减轻肝脏脂肪变性和脂肪毒性,改善脂质代谢紊乱[16]。有研究表明,导致非酒精性脂肪性肝病和肝脂肪变性的原因是激活了p66shc蛋白/细胞色素C级联反应,而miR-96-5p可抑制这种级联反应,梓醇可能上调miR-96-5p表达水平进而改善肝脂肪变性[33-34]。另外,c-Jun氨基末端激酶(C-Jun N-terminal kinase,JNK)和核因子κB(nuclear factor kappa-light-chain-enhancer of activated B cells,NF-κB)信号通路是与脂肪组织炎症和胰岛素抵抗有关的关键信号通路,梓醇在体内外均可抑制NF-κB的活化[35-36],降低JNK和转录因子IκB激酶β的磷酸化,并抑制HFD喂养的小鼠中的NF-κB p50活化,实现其对脂肪组织炎症的保护[27],梓醇还可以通过活化PPARγ,抑制NF-κB信号通路来抑制炎症因子IL-6和TNF-α的产生(图2),减轻了T2DM大鼠肝脏损伤[23]。此外,有研究发现,梓醇可以通过激活下丘脑味觉受体TAS2R108/磷脂酶Cβ2通路介导促甲状腺激素释放激素、促甲状腺激素和三碘甲状腺原氨酸的分泌,从而调控高脂饮食小鼠肝脏脂代谢[21]

胰岛素抵抗和高血糖是T2DM的主要特征,胰岛素抵抗可导致肝脏糖异生增加,糖原合成减少,从而导致高血糖。磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶 B(protein kinase B,PKB或AKT)通路在糖异生和糖原合成的调节中起着重要作用,糖尿病中该通路受损是导致ROS水平升高诱导胰岛素抵抗的主要机制之一[37]。NADPH氧化酶4(NADPH oxidase 4,NOX4)催化产生的ROS也是导致糖尿病氧化应激的重要因素[38-39],且Nox4在STZ诱导的大鼠肝脏中过表达[40]。AMPK在调节能量代谢和控制葡萄糖稳态(抑制糖异生、促进糖原合成)中起着重要作用,激活AMPK可以激活肝脏中的PI3K/AKT信号通路,增加肝脏对胰岛素的敏感性[37]。如图2所示,磷酸烯醇式丙酮酸羧激酶(phosphoenolpyruvate carboxykinase,PEPCK)和葡萄糖-6-磷酸酶(glucose-6-phosphatase,G6pase)是催化肝糖异生的关键蛋白[41],叉头转录因子1(forehead transcription factor 1,FOXO1)可以直接结合PEPCK和G6pase靶DNA序列从而上调它们在肝脏中的表达,促进T2DM的发展。糖原合成酶激酶3β(glycogen synthase kinase 3β,GSK-3β)是参与肝糖代谢的关键酶,其磷酸化会降低PEPCK的表达,糖原合成酶(glycogen synthase,GS)可以通过增加GSK3的磷酸化来抑制GSK3,从而减少GS的磷酸化并激活GS,使糖原合成增加[37]。研究发现,梓醇可以通过抑制HepG2细胞中NOX4的过表达来减少葡萄糖胺诱导产生的ROS,增加AKT的磷酸化,抑制PEPCK和G6pase的表达,并增加FOXO1磷酸化,而且梓醇通过激活AMPK通路进一步激活了PI3K/AKT信号通路(图2),即梓醇通过AMPK/NOX4/PI3K/AKT多靶点协同调控,改善肝脏胰岛素抵抗、氧化应激和炎症反应,最终实现降血糖、增强胰岛素敏感性的效果[3741]

3 梓醇防治糖尿病并发症作用及机制

糖尿病常累及大血管和微血管,出现重要脏器和组织损害等慢性并发症,其中,破坏性的大血管(如心血管、脑血管和下肢血管的病变)和微血管(糖尿病肾病、糖尿病视网膜病变和神经病变)糖尿病并发症是糖尿病致残致死的主要原因[42]。因此,研究梓醇防治糖尿病及其相关并发症具有紧迫性。

3.1 梓醇防治糖尿病心血管疾病

糖尿病性心血管疾病是糖尿病引发的心血管系统的微血管和大血管病变,主要包括冠心病、糖尿病性心血管自主神经病变、糖尿病心肌病、糖尿病下肢动脉病变等。

血管紧张素Ⅱ(angiotensin Ⅱ,AngⅡ)是心血管疾病的效应激素,它是诱导糖尿病心血管疾病的因素之一[43]。血管紧张素Ⅱ1型受体(angiotensin Ⅱ type 1 receptor,AT1R)、血管紧张素Ⅱ2型受体(angiotensin Ⅱ type 2 receptor,AT2R)是AngⅡ的2个受体亚型[44],AT1R在肾脏损伤中具有关键作用[45],敲除AT1R后小鼠血压降低,有报道指出阻断AT2R更容易导致血管受损[46-48]。梓醇能够恢复糖尿病心肌病大鼠超声心动图的E/A值(评估心脏的舒张功能),心脏左心室充盈压、等容舒张期等功能指标,改善心脏舒张,其机制可能与梓醇降低大鼠血清AngⅡ含量有关[49]。许瑞等研究发现,梓醇可以降低T2DM大鼠FPG与心肌纤维化水平[50],从而保护T2DM大鼠心肌细胞。如图2所示,梓醇可以通过下调与细胞焦亡相关的NOD样受体家族3(NOD-like receptor family,pyrin domain containing 3,NLRP3)/半胱氨酸天冬氨酸蛋白酶1(cysteinyl aspartate specific protease 1,Caspase-1)信号通路,减轻糖尿病心肌病大鼠心肌损伤,改善心功能[51-52]

内质网应激(endoplasmic reticulum stress,ERS)与心力衰竭、心肌梗死再灌注损伤以及其他心血管疾病密切相关[53-54]。抑制ERS可能是缓解心肌梗死的有效方法,梓醇通过减轻炎症、抑制内质网相关活性保护心脏[8]。研究表明,核富集转录体1(nuclear enriched abundant transcript 1,Neat1)在心血管疾病的进程中发挥着关键作用[55],它可以作为竞争性内源RNA,通过下调miR-140-5p的转录来上调小鼠心肌细胞中组蛋白去乙酰酶4(histone deacetylase 4,HDAC4)的表达,从而加剧高糖诱导的心肌细胞凋亡,梓醇介导Neat1/miR-140-5p/HDAC4信号通路(图2),下调Neat1表达来改善心肌损伤。人单核细胞趋化蛋白1(monocyte chemoattractant protein 1,MCP-1)与糖尿病、动脉粥样硬化和肥胖的发生也可能相关[56],研究证实了梓醇可降低颈动脉MCP-1蛋白,改善新生内膜增生,保护球囊受损的血管[57]。此外,有研究表明梓醇可以通过诱导自噬减轻高糖诱导的人脐静脉内皮细胞株EA.hy926的DNA损伤[58]

血液中LDL浓度升高与动脉粥样硬化的发展以及由此导致的心血管疾病密切相关,如图2所示,氧化低密度脂蛋白(oxidized low-density lipoprotein,oxLDL)由血浆LDL氧化产生,其主要通过与凝集素样氧化低密度脂蛋白受体-1(lectin like oxidized low density lipoprotein receptor 1,LOX-1)结合发挥作用,从而激活NF-κB,进而增加IL-1β、IL-6、TNF-α、MCP-1和巨噬细胞集落刺激因子的分泌,oxLDL有利于胆固醇酯的细胞内积累和泡沫细胞的产生,从而促进动脉粥样硬化斑块的形成[59-61]。梓醇可以逆转STZ诱导的高血糖小鼠海马和额叶皮层中PI3K和AKT的异常磷酸化以及核因子红细胞2相关因子2(nuclear factor erythroid 2-related factor 2,Nrf2)、血红素氧合酶-1(heme oxygenase 1,HO-1)、SOD、GSH-Px等的异常水平(图2),增强抗氧化防御、抑制脂质过氧化损伤、恢复氧化和抗氧化损伤之间的平衡[62]。梓醇还抑制了oxLDL/LOX-1和NF-κB信号通路,降低LOX-1、NF-κB p65和MCP-1 mRNA的表达水平,MCP-1和oxLDL明显降低,从而改善糖尿病大鼠的大血管病变[63]

晚期糖基化终末产物(advanced glycation end products,AGEs)与肾损伤和心血管疾病的发生相关[64-66]。梓醇能够抑制动脉粥样硬化兔血清中MDA、AGEs水平,SOD、GSH-Px活性并减少促炎因子NF-κB和内质网应激相关蛋白如葡萄糖调节蛋白78、活化转录因子6、内质网跨膜蛋白1α和磷酸化蛋白激酶R样内质网激酶(phosphorylated protein kinase R-like endoplasmic reticulum kinase,P-PERK)的过表达,减轻了动脉粥样硬化病变[1767]。NADPH氧化酶1(NADPH oxidase 1,Nox1)与高血压和新生内膜的形成联系密切,缺失Nox1的小鼠动脉粥样硬化得以改善,靶向破坏Nox1后可减轻大血管疾病的症状[3968]。促进过氧化物酶体增殖物激活受体γ辅激活因子1α(peroxisome proliferator-activated receptor gamma coactivator 1α,PGC-1α)的表达也有助于改善动脉粥样硬化[69],Nox1可降低PGC-1α活性并促进线粒体氧化应激诱导血管平滑肌细胞衰老[70],而梓醇能上调PGC-1α,并抑制Nox2、Nox4的表达及ROS的过度产生[71],体内外实验证明梓醇促进端粒酶逆转录酶(telomerase reverse transcriptase,TERT)蛋白的表达,改善端粒功能,减少血管老化,因此梓醇延缓动脉粥样硬化病变,可能与介导PGC-1α/TERT通路保护血管有关(图2)。此外,梓醇可以通过增加雌激素受体α的表达抑制巨噬细胞极化,并预防绝经后小鼠的动脉粥样硬化[72]

3.2 梓醇防治糖尿病脑血管并发症

糖尿病神经病变是长期高血糖引起体内代谢紊乱、微循环障碍,造成神经缺血、缺氧的结果。糖尿病的神经病变可涉及中枢神经系统(脑、脊髓)及周围神经系统。目前已经证实梓醇不仅对脑缺血动物模型有明显的神经保护作用[1473-76],而且能够改善糖尿病神经病变。

糖尿病对中枢神经系统最具破坏性的慢性微血管影响之一是糖尿病脑病(diabetic encephalopathy,DE)[77],DE是指糖尿病引起的认知功能障碍,大脑出现神经功能和结构的病理性改变[78-79],由高血糖、胰岛素敏感性、淀粉样蛋白积聚、脑血管病变、神经炎症和氧化应激激活或影响的各种细胞通路的关键作用是导致DE的潜在原因[80]。口服梓醇能够降低糖尿病大鼠脂质过氧化指标MDA的表达,恢复抗氧化酶如GSH-Px、SOD和CAT的活性,明显升高神经生长因子水平,提示梓醇可能是通过减轻氧化应激改善糖尿病动物模型的神经功能损伤和认知障碍[81]。梓醇还可促进糖尿病大鼠海马区的功能蛋白Cav-1、蛋白激酶C γ亚型的表达并减少应激反应,改善大鼠记忆功能[82]

糖尿病周围神经病变(diabetic peripheral neuropathy,DPN)是糖尿病最严重的并发症之一,维生素B12、叶酸与半胱氨酸的缺乏可能会加剧小鼠周围神经病变[83]。梓醇能提高血清与肝脏中维生素B12和叶酸水平,对糖尿病小鼠的肝脏损伤及DPN具有一定的保护作用[2983]。有研究表明,DPN患者血浆中胰岛素样生长因子1(insulin-like growth factor 1,IGF-1)的水平明显降低[84],IGF-1对于神经元的生存、分化和突触形成至关重要,糖尿病大鼠背根神经节中IGF-1和p-Akt的表达减少,如图2所示,梓醇可以通过上调IGF-1,部分改善其主要传导通路PI3K/Akt的活性,从而保护DM大鼠的周围神经[15]。生长因子受体结合蛋白10(growth factor receptor-bound protein 10,Grb10)是可以与胰岛素受体(insulin receptor,IR)和胰岛素样生长因子-1受体(insulin-like growth factor 1 receptor,IGF1-R)相互作用的衔接蛋白,IGF1-IR信号通路在认知障碍的发病机制中至关重要,但Grb10具有负向调节胰岛素(insulin)/IGF-1介导的信号传导的功能[85],敲低Grb10表达已被证明可以改善DPN大鼠的认知障碍[86],如图2所示,梓醇可以下调糖尿病小鼠肾脏中的Grb10的表达,并上调IGF-1/IGF-1R信号,从而改善糖尿病小鼠的肾功能[87]

此外,糖尿病动物会出现抑郁样症状[88-90],梓醇可以改善糖尿病小鼠焦虑及尾部悬吊、旷场实验中的异常行为,通过上调PI3K/AKT/Nrf2/HO-1信号通路(图2),减弱病理性高血糖下抑郁样行为[62]。Wang YB等[91]通过慢性压迫性损伤模型评价梓醇对病理性神经疼痛的缓解作用,这种作用与梓醇下调TNF-a、IL-1β、IL-6和NF-κB p65相关。

3.3 梓醇防治糖尿病肾病(diabetic nephropathy,DN)

DN是糖尿病最常见和最严重的并发症之一,约40%的糖尿病患者会患上糖尿病肾病[92-94],高达50%的慢性糖尿病患者会发展为终末期DN,需要肾脏替代治疗[95]。DN的发生和发展涉及多种途径和介质,包括氧化应激、炎症和AngⅡ 等,其中氧化应激最为突出,大量的ROS不仅可以直接影响肾小球,损伤内皮细胞、系膜细胞和足细胞,还可以激活NF-κB、转化生长因子β1(transforming growth factor β1,TGF-β1)、AMPK等途径,诱导肾脏炎症、自噬和纤维化,引发肾脏结构和功能异常[93-94]。肾素-血管紧张素-醛固酮系统激活后可以改变肾小球内的血流动力学,并重新排列肾小球结构,导致肾功能衰竭[96]。在DN的发展过程中,PERK信号通路扮演了重要角色,如图2所示,在应激条件下,PERK会被激活,并促使eIF2α磷酸化,若有害刺激长期存在且超出内质网的代偿能力,磷酸化的PERK和eIF2α将诱导激活转录因子4(activation of the transcription factor 4,ATF4)活化,随后,ATF4进一步激活下游凋亡信号分子C/EBP同源蛋白(C/EBP homologous protein,CHOP)的转录表达,CHOP通过抑制抗凋亡蛋白Bcl-2的表达,最终导致细胞凋亡[5097]。梓醇可以抑制肾组织中PERK和CHOP的表达,减轻因持续内质网应激引起的肾组织损伤,从而延缓DN的病理进程[50]。此外,髓系相关蛋白MRP8(S100A8)在DN的病理过程中起作用,有研究发现,STZ诱导的1型糖尿病小鼠肾小球中,S100A8的mRNA表达水平普遍增高[98],而梓醇能够减少S100A8的产生,其机制可能与梓醇的抗炎抗氧化作用有关[99]

梓醇能调控糖尿病所致的脂质代谢紊乱,恢复糖尿病小鼠的肾脏功能。梓醇可减少糖尿病db/db模型小鼠的尿白蛋白、血清肌酐、血清尿素氮以及甘油三酯水平,改善肾小球足细胞的密度及细胞间隙,纠正瘦素受体缺失导致的基因表达,恢复肾小球的生理形态[100];梓醇抗肾小球细胞凋亡,降低炎症因子IL-1β、IL-6和TNF-α[67101]水平,这可能是其改善肾小球基底膜增厚和糖原沉积作用的潜在机制[102]

足细胞是导致DN的关键病理部位[103-105],在DN小鼠和高糖诱导的足细胞损伤模型中,梓醇可通过AMPK/SIRT1/NF-κB通路抑制氧化应激和炎症反应,促进DN小鼠磷酸化腺苷酸活化蛋白激酶(phosphorylated adenosine monophosphate activated protein kinase,pAMPK)和沉默信息调节因子1(silencing information regulator related enzyme 1,SIRT1)的表达,并降低磷酸化核因子κB(phosphorylated nuclear factor kappa-B,pNF-κB)、IL-1β、Caspase1等蛋白的水平(图2[106-107]。梓醇还明显下调高糖诱导的足细胞损伤中Toll样受体4(Toll-like receptor 4,TLR4)和髓系分化初级反应基因88(myeloid differentiation primary response gene 88,MyD88)的表达,并抑制p38MAPK/NF-κB信号通路,阻止NF-κB活化和易位到细胞核中,最终缓解细胞凋亡和炎症,保护足细胞免受损伤[108]。梓醇可以通过抑制NLRP3/Caspase-1通路以及Gasdermin D N端结构域(gasdermin D N-terminal domain,GSDMD-N)蛋白水平,抑制足细胞焦亡见图2[109]

AGEs是由还原糖和相关代谢物与蛋白质和氨基酸的非酶反应形成的一组化合物,在DN的发生和发展中占主导地位[9110-111],当AGEs在DN患者的肾脏中积聚时,对肾小球有直接毒性[112]。如图2所示,AGEs与晚期糖基化终末产物受体(receptor for advanced glycation end-products,RAGE)相互作用,通过激活转录因子FOXO4促进足细胞凋亡[113],在体内外足细胞损伤模型中,p38 MAPK、Nox4、p65 NF-κB可以通过RAGE被AGEs激活,诱导细胞凋亡。梓醇可以缓解AGEs诱导的足细胞凋亡,并抑制足细胞中RAGE/p38 MAPK/p65 NF-κB和RAGE/Nox4/p65 NF/κB信号通路的激活,进而抵抗DN时足细胞的凋亡[9]

Ras同源家族中的Ras同源家族成员A(Ras homolog family member A,RhoA)、细胞分裂控制蛋白42同源物(cell division control protein 42 homolog,Cdc42)和与Ras相关的C3肉毒杆菌毒素底物1对足细胞骨架的稳定至关重要[114],梓醇可抑制RhoA、Cdc42过度表达来稳定足细胞骨架,并抑制雷帕霉素靶蛋白(mechanistic target of rapamycin,mTOR)活性,促进TFEB核转位(图2),增强受损足细胞自噬,从而改善小鼠DN的病理特征[115]。如图2所示,梓醇可以抑制RAGE/RhoA/Rho激酶(Rho associated kinase,ROCK)信号通路,减少血清血管内皮生长因子(vascular endothelial growth factor,VEGF)的分泌,增加紧密连接蛋白和钙黏蛋白的表达,从而减轻肾小球内皮功能障碍和炎症,缓解糖尿病肾病[102]

与非糖尿病小鼠相比,DN小鼠肾脏中的Grb10表达明显升高,IGF-1/IGF-1R信号传导减弱,梓醇通过下调Grb10的表达,激活IGF-1/IGF-1R通路,从而缓解糖尿病相关的肾功能损伤(图2)。TGF-β被认为是DN发展过程中的关键介质[116-117],TGF-β1/Smad信号通路是导致DN发展的主要途径,其能够刺激细胞外基质(extracellular matrix,ECM)在肾小球中的合成,进而导致肾纤维化和衰竭,高水平的葡萄糖、AGE和AngII,能够通过TGF-β依赖和非依赖途径诱导TGF-β表达并激活Smad信号传导[118-119]。如图2所示,梓醇从基因和蛋白水平下调TGF-β1表达,并抑制其下游细胞因子结缔组织生长因子(connective tissue growth factor,CTGF)的表达,减少肾皮质区ECM的堆积,缓解DN[119]

3.4 梓醇防治糖尿病视网膜病变(diabetic retinopathy,DR)

DR是糖尿病最常见的微血管并发症之一,高糖渗入基底膜使基底膜加厚,蛋白质的渗漏和沉积,引起微血管血栓和新生血管形成,最终可致失明。目前激光疗法虽能一定程度改善视力,但其对眼睛具有一定损害,而VEGF抑制剂被证实能扭转DR,但抗VEGF药物并不适用每个患者[120]。梓醇可以下调炎症因子IL-1β、TNF-α和VEGF的表达,降低血管通透性;抑制AGE/RAGE/NF-κB信号通路下调RAGE、P-NF-κB p65蛋白等炎症因子表达(图2),促进视网膜神经节细胞的存活,有潜力成为治疗DR的药物[121-122]

4 小结与展望

糖脂代谢紊乱会引起体内血糖和血脂异常,进而导致糖尿病、肥胖、高脂血症、高血压、脑缺血等疾病,目前普遍认为糖脂代谢紊乱与炎症反应、氧化应激、神经内分泌失调等多种病理机制相关。梓醇能够通过调节AMPK信号通路调控脂肪生成与氧化,影响FOXO1和GSK3的磷酸化进而调节糖原合成与分解,从而直接影响糖脂代谢。梓醇通过介导PI3K/AKT、Neat1/miR-140-5p/HDAC4、oxLDL/LOX-1、PGC-1α/TERT、IGF-1/IGF-1R和RAGE/RhoA/ROCK等信号通路保护心脑血管系统、肾功能和视网膜结构与功能。梓醇还通过抑制NLRP3/Caspase-1和NF-κB/JNK信号通路以及内质网应激等方式减轻炎症反应,进一步缓解了由炎症引起的胰岛素抵抗和糖脂代谢紊乱。其中,AMPK和PI3K/AKT信号通路在糖脂代谢和炎症反应的调节过程中均具有重要作用。

梓醇防治脂代谢紊乱:梓醇可以通过活化AMPK,抑制SREBP-1c介导的脂肪生成,并促进PPARα介导的脂肪酸β氧化;通过激活TFEB核转位,诱导肝脏细胞自噬;梓醇还上调miR-96-5p而抑制p66shc蛋白/细胞色素C级联反应,抑制NF-κB/JNK信号通路减轻炎症反应,从而改善肝损伤,减轻肝脂肪变性。

梓醇防治糖代谢紊乱:梓醇可以通过AMPK/NOX4/PI3K/AKT多靶点协同调控,改善肝脏胰岛素抵抗、氧化应激和炎症反应,还可以增加FOXO1磷酸化从而抑制肝糖异生过程,减少糖原合成,最终实现降血糖、增强胰岛素敏感性的效果。

梓醇防治糖尿病心血管疾病:梓醇可以通过介导NLRP3/Caspase-1和Neat1/miR-140-5p/HDAC4信号通路,减轻糖尿病心肌病大鼠心肌损伤,改善心功能,梓醇还能够降低T2DM大鼠FPG与心肌纤维化水平;梓醇通过减轻炎症、抑制内质网相关活性保护心脏,通过降低颈动脉MCP-1蛋白,改善新生内膜增生,保护球囊受损的血管;梓醇介导PI3K/AKT/Nrf2/HO-1和oxLDL/LOX-1通路改善氧化应激,并上调PGC-1α/TERT通路保护血管,最终改善糖尿病心血管疾病。

梓醇防治糖尿病脑血管并发症:口服梓醇能够降低糖尿病大鼠MDA的表达,恢复抗氧化酶活性,梓醇还可以提高血清与肝脏中维生素B12和叶酸水平,并下调Grb10的表达,改善大鼠记忆功能,对糖尿病小鼠的肝脏损伤及DPN发挥保护作用;此外,梓醇通过上调PI3K/AKT/Nrf2/HO-1信号通路改善糖尿病小鼠的抑郁样行为。

梓醇防治DN:梓醇可以下调肾组织PERK、CHOP和Grb10的表达,并激活IGF-1/IGF-1R通路,缓解肾组织损伤;通过AMPK/SIRT1/NF-κB通路抑制氧化应激和炎症反应,减少S100A8的产生,改善肾小球基底膜增厚和糖原沉积;梓醇可通过抑制p38MAPK/NF-κB和NLRP3/Caspase-1通路以及GSDMD-N蛋白水平,保护足细胞免受损伤;梓醇还可以缓解AGEs诱导的足细胞凋亡,并抑制RhoA、Cdc42过表达来稳定足细胞骨架,抑制mTOR活性,促进TFEB核转位,增强受损足细胞自噬;梓醇通过抑制RAGE/RhoA/ROCK信号通路减少VEGF的分泌,减轻肾小球内皮功能障碍和炎症;梓醇还可以下调TGF-β1表达,减少ECM的堆积,缓解DN。

梓醇防治DR:梓醇可以下调炎症因子IL-1β、TNF-α和VEGF的表达,抑制AGE/RAGE/NF-κB信号通路,促进视网膜神经节细胞的存活。

虽然梓醇对治疗糖脂代谢紊乱及糖尿病并发症有明显效果,但当前的研究尚未完善:①临床上出现糖脂代谢紊乱的患者中,女性占据多半,而大多关于梓醇治疗代谢疾病的文献只是针对雄性动物进行研究;②尽管目前已有研究揭示梓醇通过AMPK、PI3K/AKT等通路调控糖脂代谢的关键作用,但其多靶点协同机制及代谢与炎症的交互作用仍需深入解析;③多数研究缺乏临床试验进行验证,实验数据仅限细胞和动物模型研究结果。

未来的研究需要进一步深入和拓展,以全面认识和评价梓醇抗糖脂代谢的作用和机制:①关注梓醇对雌性动物代谢紊乱的作用,探究雌激素与代谢紊乱的联系以及梓醇的干预作用和机制。②采用网络药理学生信分析方法,探索梓醇影响糖脂代谢紊乱多信号通路之间的关联和协同机制。③梓醇作为一类新药,需要加强临床试验研究,以期从细胞、动物、临床等多个方面验证和阐述梓醇抗糖脂代谢紊乱的机制及效果,使研究更具说服力,为梓醇进一步开发利用提供坚实的理论和实验基础。

参考文献

[1]

Sanidas EΜ VelliouPapadopoulos D,et al. Healthy and non healthy obese patients. The truth lies in the adipose tissue[J]. Eur J Intern Med202082:133-134.

[2]

Morigny PBoucher JArner P,et al. Lipid and glucose metabolism in white adipocytes:pathways,dysfunction and therapeutics[J]. Nat Rev Endocrinol202117(5):276-295.

[3]

Poznyak AGrechko AVPoggio P,et al. The diabetes mellitus-atherosclerosis connection:the role of lipid and glucose metabolism and chronic inflammation[J]. Int J Mol Sci202021(5):E1835.

[4]

Chávez-Talavera OTailleux ALefebvre P,et al. Bile acid control of metabolism and inflammation in obesity,type 2 diabetes,dyslipidemia,and nonalcoholic fatty liver disease[J]. Gastroenterology2017152(7):1679-1694.

[5]

Sun HSaeedi PKaruranga S,et al. IDF Diabetes Atlas:Global,regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract2022183:109119.

[6]

Pirillo ACasula MOlmastroni E,et al. Global epidemiology of dyslipidaemias[J]. Nat Rev Cardiol202118(10):689-700.

[7]

国家药典委员会. 中华人民共和国药典-四部:2020年版[M]. 北京:中国医药科技出版社,2020

[8]

Chinese Pharmacopoeia Commission. People’s republic of China (PRC) pharmacopoeia-part Ⅳ:2020 edition[M]. Beijing:China Medical Science Press,2020

[9]

沈丕安. 中药药理与临床运用[M]. 北京:人民卫生出版社,2006

[10]

Shen PA. Pharmacology and clinical application of traditional Chinese medicine[M]. Beijing:People’s Medical Publishing House,2006

[11]

Tian XRu QXiong Q,et al. Catalpol attenuates hepatic steatosis by regulating lipid metabolism via AMP-activated protein kinase activation[J]. Biomed Res Int20202020:6708061.

[12]

Ren HHWang DZhang L,et al. Catalpol induces autophagy and attenuates liver steatosis in ob/ob and high-fat diet-induced obese mice[J]. Aging(Albany NY)201911(21):9461-9477.

[13]

Liu JYZhang DJ. Amelioration by catalpol of atherosclerotic lesions in hypercholesterolemic rabbits[J]. Planta Med201581(3):175-184.

[14]

郎晓娜,冯 鑫,李陆, 梓醇抗氧化作用机制的研究进展[J]. 天津药学202436(2):69-75.

[15]

Lang XNFeng XLi L,et al. Research progress on antioxidant mechanism of catalpol[J]. Tianjin Pharm202436(2):69-75.

[16]

Zhu HFWang YLiu ZQ,et al. Antidiabetic and antioxidant effects of catalpol extracted from Rehmannia glutinosa(Di Huang) on rat diabetes induced by streptozotocin and high-fat,high-sugar feed[J]. Chin Med201611:25.

[17]

Bi FJXu YJChen GX,et al. Anti-inflammatory and Anti-endoplasmic reticulum stress effects of catalpol Against myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats[J]. An Acad Bras Cienc202092(4):e20191148.

[18]

Chen YPChen JJiang M,et al. Loganin and catalpol exert cooperative ameliorating effects on podocyte apoptosis upon diabetic nephropathy by targeting AGEs-RAGE signaling[J]. Life Sci2020252:117653.

[19]

Bao QWShen XZQian L,et al. Anti-diabetic activities of catalpol in db/db mice[J]. Korean J Physiol Pharmacol201620(2):153-160.

[20]

Liu JYZheng CZHao XP,et al. Catalpol ameliorates diabetic atherosclerosis in diabetic rabbits[J]. Am J Transl Res20168(10):4278-4288.

[21]

闫金慧,邹国良. 梓醇对糖尿病心肌病大鼠心功能及心肌组织TGF-β1表达的影响[J]. 吉林中医药201838(5):573-575.

[22]

Yan JHZou GL. Effect of Catalpa on cardiac function and cardiac tissue of diabetic cardiomyopathy rats[J]. Jilin J Chin Med201838(5):573-575.

[23]

Zhu HFWan DLuo Y,et al. Catalpol increases brain angiogenesis and up-regulates VEGF and EPO in the rat after permanent middle cerebral artery occlusion[J]. Int J Biol Sci20106(5):443-453.

[24]

刘 丹. 梓醇在糖尿病大鼠周围神经病变中的作用及机制探讨[D]. 大连:大连医科大学,2006

[25]

Liu D. Study on the effects of catalpol and the mechanism in experimental diabetic peripheral neuropathy [D]. Dalian:Dalian Medical University,2006

[26]

许忆彤. 梓醇激活下丘脑TAS2R108/PLCβ2通路介导TRH/TSH/T3调控高脂饮食小鼠肝脏脂代谢的研究[D]. 重庆:西南大学,2024.

[27]

Xu YT. Study on the activation of hypothalamic TAS2R108/PLCβ2 pathway by catalpol mediating TRH/TSH/T3 regulation of lipid metabolism in the liver of high-fat diet mice[D]. Chongqing:Southwest University,2024.

[28]

Xu CFCao QZhang BF. Catalpol improves insulin resistance and lipid metabolism disorder in diabetic mice by inhibiting microRNA-101-3p to up-regulate FOS-related antigen 2[J/OL]. J Physiol Pharmacol2024[epub ahead of print]. DOI:10.26402/jpp.2024.3.05 .

[29]

王冉冉,孙政勤,刘江月. 梓醇通过PPARγ/NF-κB信号通路减轻2型糖尿病大鼠肝脏损伤[J]. 中国病理生理杂志202137(12):2189-2196.

[30]

Wang RRSun ZQLiu JY. Catalpol alleviates liver injury in T2DM rats through PPARγ/NF-κB signaling pathway[J]. Chin J Pathophysiol202137(12):2189-2196.

[31]

邹国良,仲维莉,许 瑞, 梓醇对2型糖尿病大鼠胰岛细胞的保护作用[J]. 中西医结合心脑血管病杂志201614(15):1727-1729.

[32]

Zou GLZhong WLXu R,et al. The protective effects of catalpol on the islet cells in rats with type 2 diabetes mellitus[J]. Chin J Integr Med Cardio-cerebrovascular Dis201614(15):1727-1729.

[33]

沈鹏宇. 梓醇对2型糖尿病大鼠骨骼肌AMPK/GLUT4信号通路调控的机制研究[D]. 哈尔滨:黑龙江中医药大学,2023

[34]

Shen PY. Mechanism of catalpol regulation of AMPK/GLUT4 signaling pathway in skeletal muscle of rats with type 2 diabetes[D]. Harbin:Heilongjiang University of Chinese Medicine,2023

[35]

田 香,熊 琪,陈琳, 梓醇对高脂诱导小鼠非酒精性脂肪肝的干预作用[J]. 中国医学科学院学报201941(6):746-755.

[36]

Tian XXiong QChen L,et al. Intervention of catalpol on high-fat diet induced nonalcoholic fatty liver disease in mice[J]. Acta Acad Med Sin201941(6):746-755.

[37]

Zhou JXu GMa S,et al. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways[J]. Biochem Biophys Res Commun2015467(4):853-858.

[38]

刘凤祺,高 峰,薛彩彩, 高糖诱导PC12细胞损伤的影响因素及梓醇的保护作用[J]. 山东大学学报(医学版)202361(7):34-39.

[39]

Liu FQGao FXue CC,et al. Influencing factors of PC12 cell injury induced by high glucose and the protective effects of catalpol[J]. J Shandong Univ Health Sci202361(7):34-39.

[40]

曾卿,陈小芳,刘畅, 梓醇对糖尿病小鼠肝肾并发症与肝脏胆汁酸作用的研究[J]. 世界中医药202217(21):3006-3013.

[41]

Zeng QChen XFLiu C,et al. Study on the effects of catalpol on hepatic and renal complications and liver bile acids in diabetic mice[J]. World Journal of Traditional Chinese Medicine202217(21):3006-3013.

[42]

周 莹,刘军彤,宁顺宇, 胆汁酸代谢与2型糖尿病研究进展[J]. 辽宁中医药大学学报202325(3):142-146.

[43]

Zhou YLiu JTNing SY,et al. Research progress on bile acid metabolism and type 2 diabetes[J]. J Liaoning Univ Tradit Chin Med202325(3):142-146.

[44]

Steinberg GRHardie DG. New insights into activation and function of the AMPK[J]. Nat Rev Mol Cell Biol202324(4):255-272.

[45]

布兰娜,郝月梅,李晓敬, 柚皮素调控SIRT1/PGC-1α通路对妊娠期糖尿病模型大鼠糖脂代谢和氧化应激的影响[J]. 中华内分泌外科杂志202418(6):794-800.

[46]

Zhang YKWang CYLu JW,et al. Targeting of miR-96-5p by catalpol ameliorates oxidative stress and hepatic steatosis in LDLr-/- mice via p66shc/cytochrome C cascade[J]. Aging(Albany NY)202012(3):2049-2069.

[47]

Lin CLu YYan XJ,et al. Catalpol protects glucose-deprived rat embryonic cardiac cells by inducing mitophagy and modulating estrogen receptor[J]. Biomed Pharmacother201789:973-982.

[48]

Xiao WQYin GJFan YT,et al. Catalpol ameliorates sodium taurocholate-induced acute pancreatitis in rats via inhibiting activation of nuclear factor kappa B[J]. Int J Mol Sci201415(7):11957-11972.

[49]

Fu KPiao TKWang MZ,et al. Protective effect of catalpol on lipopolysaccharide-induced acute lung injury in mice[J]. Int Immunopharmacol201423(2):400-406.

[50]

Yan JTWang CYJin Y,et al. Catalpol ameliorates hepatic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/PI3K/AKT pathway[J]. Pharmacol Res2018130:466-480.

[51]

Araki EMiyazaki JI. Metabolic disorders in diabetes mellitus:impact of mitochondrial function and oxidative stress on diabetes and its complications[J]. Antioxid Redox Signal20079(3):289-291.

[52]

Vermot APetit-Härtlein ISmith SME,et al. NADPH oxidases (NOX):an overview from discovery,molecular mechanisms to physiology and pathology[J]. Antioxidants (Basel)202110(6):890.

[53]

Kanikarla-Marie PJain SK. Role of hyperketonemia in inducing oxidative stress and cellular damage in cultured hepatocytes and type 1 diabetic rat liver[J]. Cell Physiol Biochem201537(6):2160-2170.

[54]

史丽伟. 新消渴方调控AMPK信号通路改善2型糖尿病肝脏胰岛素抵抗的机制研究[D]. 北京:中国中医科学院,2019

[55]

Shi LW. Study on the mechanism of xinxiaoke formula in the treatment of hepatic insulin resistance in type 2 diabetes through acting on AMPK pathway[D]. Beijing:China Academy of Chinese Medical Sciences,2019

[56]

Cole JBFlorez JC. Genetics of diabetes mellitus and diabetes complications[J]. Nat Rev Nephrol202016(7):377-390.

[57]

Burrell LMJohnston CITikellis C,et al. ACE2,a new regulator of the renin-angiotensin system[J]. Trends Endocrinol Metab200415(4):166-169.

[58]

de Gasparo MHusain AAlexander W,et al. Proposed update of angiotensin receptor nomenclature[J]. Hypertension199525(5):924-927.

[59]

Wichi RBFarah VChen YF,et al. Deficiency in angiotensin AT1a receptors prevents diabetes-induced hypertension[J]. Am J Physiol Regul Integr Comp Physiol2007292(3):1184-1189.

[60]

Iwai MChen RLi Z,et al. Deletion of angiotensin Ⅱ type 2 receptor exaggerated atherosclerosis in apolipoprotein E-null mice[J]. Circulation2005112(11):1636-1643.

[61]

Brede MHadamek KMeinel L,et al. Vascular hypertrophy and increased P70S6 kinase in mice lacking the angiotensin Ⅱ AT(2) receptor[J]. Circulation2001104(21):2602-2607.

[62]

Steckelings UMWiddop RESturrock ED,et al. The angiotensin AT2 receptor:from a binding site to a novel therapeutic target[J]. Pharmacol Rev202274(4):1051-1135.

[63]

赵 双. 梓醇对糖尿病大鼠心脏舒张功能及血清AngⅡ的影响[D]. 哈尔滨:黑龙江中医药大学,2016

[64]

Zhao S. The effect of catalpol on cardiac diastolic function and serum angⅡ induced dibetic rats[D]. Harbin:Heilongjiang University of Chinese Medicine,2016

[65]

郭 雪,刘 萍,梁智慧, 梓醇对糖尿病肾病大鼠肾内质网通路PERK、CHOP表达影响[J]. 锦州医科大学学报202445(5):25-29,33.

[66]

Guo XLiu PLiang ZH,et al. Effect of catalpol on the expression of PERK and CHOP in renal endoplasmic reticulum pathway with diabetic nephropathy rats[J]. J Jinzhou Med Univ202445(5):25-29,33.

[67]

程慧娟,陈永忠,林倩倩, 从NLRP3/Caspase-1/GSDMD信号通路探讨健心颗粒对糖尿病心肌病大鼠心肌焦亡的影响[J]. 福建中医药202354(9):56-59.

[68]

Cheng HJChen YZLin QQ,et al. Discussion on the effect of jianxin particles on pyroptosis of cardiomyopathy in diabetic rats from the perspective of NLRP3/Caspase-1/GSDMD signaling pathway [J]. Fujian Journal of TCM202354(9):56-59.

[69]

于 平,展美屏,祝欣欣, 梓醇通过NLRP3/Caspase-1通路对糖尿病心肌病大鼠心脏的保护作用及机制[J]. 锦州医科大学学报202445(3):13-18.

[70]

Yu PZhan MPZhu XX,et al. Protective effect and mechanism of catalpol on rats with diabetic cardiomyopathy through NLRP3/caspase-1 pathway[J]. J Jinzhou Med Univ202445(3):13-18.

[71]

Guo JJXu FQLi YH,et al. Alginate oligosaccharide alleviates myocardial reperfusion injury by inhibiting nitrative and oxidative stress and endoplasmic reticulum stress-mediated apoptosis[J]. Drug Des Devel Ther201711:2387-2397.

[72]

Yarmohammadi FHayes AWKarimi G. The cardioprotective effects of hydrogen sulfide by targeting endoplasmic reticulum stress and the Nrf2 signaling pathway:a review[J]. Biofactors202147(5):701-712.

[73]

Zou GLZhong WLWu F,et al. Catalpol attenuates cardiomyocyte apoptosis in diabetic cardiomyopathy via Neat1/miR-140-5p/HDAC4 axis[J]. Biochimie2019165:90-99.

[74]

Jun P. Monocyte chemoattractant protein 1 (MCP-1) in obesity and diabetes[J]. Cytokine201260(1):1-12.

[75]

Lin CMWang BWFang WJ,et al. Catalpol ameliorates neointimal hyperplasia in diabetic rats[J]. Planta Med201985(5):406-411.

[76]

李文涛,王韵涵,刘江月. 梓醇诱导自噬减轻高糖诱导的血管内皮细胞DNA损伤的机制研究[J]. 中国病理生理杂志202238(12):2243-2248.

[77]

Li WTWang YHLiu JY. Study of catalpol-induced autophagy in reducing DNA damage in high glucose-induced vascular endothelial cells[J]. Chin J Pathophysiol202238(12):2243-2248.

[78]

Catar RChen LZhao HF,et al. Native and oxidized low-density lipoproteins increase the expression of the LDL receptor and the LOX-1 receptor,respectively,in arterial endothelial cells[J]. Cells202211(2):204.

[79]

Di Pietro NFormoso GPandolfi A. Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis[J]. Vascul Pharmacol201684:1-7.

[80]

Ahmadi APanahi YJohnston TP,et al. Antidiabetic drugs and oxidized low-density lipoprotein:a review of anti-atherosclerotic mechanisms[J]. Pharmacol Res2021172:105819.

[81]

Wu XHWang JMSong LL,et al. Catalpol weakens depressive-like behavior in mice with streptozotocin-induced hyperglycemia via PI3K/AKT/Nrf2/HO-1 signaling pathway[J]. Neuroscience2021473:102-118.

[82]

罗传超,王佳星,朱勤伟. 梓醇对T2DM大鼠大血管病变的保护作用及与oxLDL/LDL和NF-κB信号通路的关系[J]. 河北医药202345(24):3708-3711,3716.

[83]

Luo CCWang JXZhu QW. The protective effect of catalpol on vascular lesions of T2DM rats and the involvement of the oxLDL/LDL and NF-κB signaling pathway[J]. Hebei Med J202345(24):3708-3711,3716.

[84]

Soro-Paavonen AWatson AMDLi JZ,et al. Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes[J]. Diabetes200857(9):2461-2469.

[85]

Watson AMDGray SPLi JZ,et al. Alagebrium reduces glomerular fibrogenesis and inflammation beyond preventing RAGE activation in diabetic apolipoprotein E knockout mice[J]. Diabetes201261(8):2105-2113.

[86]

Zheng FHe CJCai WJ,et al. Prevention of diabetic nephropathy in mice by a diet low in glycoxidation products[J]. Diabetes Metab Res Rev200218(3):224-237.

[87]

Hu HMWang CYJin Y,et al. Catalpol inhibits homocysteine-induced oxidation and inflammation via inhibiting Nox4/NF-κB and GRP78/PERK pathways in human aorta endothelial cells[J]. Inflammation201942(1):64-80.

[88]

Sheehan ALCarrell SJohnson B,et al. Role for Nox1 NADPH oxidase in atherosclerosis[J]. Atherosclerosis2011216(2):321-326.

[89]

Fei JCook CSantanam N. ω-6 lipids regulate PPAR turnover via reciprocal switch between PGC-1 alpha and ubiquitination[J]. Atherosclerosis2012222(2):395-401.

[90]

Tsai ICPan ZCCheng HP,et al. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence[J]. J Mol Cell Cardiol201698:18-27.

[91]

Zhang YKWang CYJin Y,et al. Activating the PGC-1 α/TERT pathway by catalpol ameliorates atherosclerosis via modulating ROS production,DNA damage,and telomere function:implications on mitochondria and telomere link[J]. Oxid Med Cell Longev20182018:2876350.

[92]

Chen QQi XZhang WW,et al. Catalpol inhibits macrophage polarization and prevents postmenopausal atherosclerosis through regulating estrogen receptor alpha[J]. Front Pharmacol202112:655081.

[93]

Zhu HFWang JHShao YL,et al. Catalpol may improve axonal growth via regulating miR-124 regulated PI3K/AKT/mTOR pathway in neurons after ischemia[J]. Ann Transl Med20197(14):306.

[94]

Wan DYang XWang Y,et al. Catalpol stimulates VEGF production via the JAK2/STAT3 pathway to improve angiogenesis in rats' stroke model[J]. J Ethnopharmacol2016191:169-179.

[95]

Wang JHWan DWan GR,et al. Catalpol induces cell activity to promote axonal regeneration via the PI3K/AKT/mTOR pathway in vivo and in vitro stroke model[J]. Ann Transl Med20197(23):756.

[96]

Zhu HFWang YYang X,et al. Catalpol improves axonal outgrowth and reinnervation of injured sciatic nerve by activating Akt/mTOR pathway and regulating BDNF and PTEN expression[J]. Am J Transl Res201911(3):1311-1326.

[97]

Dolatshahi MSanjari Moghaddam HSaberi P,et al. Central nervous system microstructural alterations in Type 1 diabetes mellitus:a systematic review of diffusion Tensor imaging studies[J]. Diabetes Res Clin Pract2023205:110645.

[98]

Chen RShi JWYin QS,et al. Morphological and pathological characteristics of brain in diabetic encephalopathy[J]. J Alzheimers Dis201865(1):15-28.

[99]

Srikanth VSinclair AJHill-Briggs F,et al. Type 2 diabetes and cognitive dysfunction-towards effective management of both comorbidities[J]. Lancet Diabetes Endocrinol20208(6):535-545.

[100]

Nagayach ABhaskar RGhosh S,et al. Advancing the understanding of diabetic encephalopathy through unravelling pathogenesis and exploring future treatment perspectives[J]. Ageing Res Rev2024100:102450.

[101]

Wang CFLi DQXue HY,et al. Oral supplementation of catalpol ameliorates diabetic encephalopathy in rats[J]. Brain Res20101307:158-165.

[102]

任丽媛. 梓醇对糖尿病大鼠学习记忆能力的影响及机制探讨[D]. 大连:大连医科大学,2008

[103]

Ren LY .Effect and mechanism discussion of catalpol on learning and memory abilities in diabetic rats[D].Dalian:Dalian Medical University,2008

[104]

倪文婧,李 婕,南月敏. 非酒精性脂肪性肝病合并糖尿病的综合管理:2024年美国糖尿病学会指南解读[J]. 中华肝脏病杂志202432(6):504-507.

[105]

Ni WJLi JNan YM. Interpretation of the 2024 American Diabetes Association guidelines for the comprehensive management of non-alcoholic fatty liver disease combined with diabetes mellitus[J]. Chin J Hepatol202432(6):504-507.

[106]

Migdalis INKalogeropoulou KKalantzis L,et al. Insulin-like growth factor-I and IGF-I receptors in diabetic patients with neuropathy[J]. Diabet Med199512(9):823-827.

[107]

Li LLi XWZhu YX,et al. Growth receptor binding protein 10 inhibits glucose-stimulated insulin release from pancreatic β-cells associated with suppression of the insulin/insulin-like growth factor-1 signalling pathway[J]. Clin Exp Pharmacol Physiol201340(12):841-847.

[108]

Ma LWei QDeng H,et al. Growth factor receptor-bound protein 10-mediated negative regulation of the insulin-like growth factor-1 receptor-activated signalling pathway results in cognitive disorder in diabetic rats[J]. J Neuroendocrinol201325(7):626-634.

[109]

Yang SSDeng HCZhang QZ,et al. Amelioration of diabetic mouse nephropathy by catalpol correlates with down-regulation of Grb10 expression and activation of insulin-like growth factor 1/insulin-like growth factor 1 receptor signaling[J]. PLoS One201611(3):e0151857.

[110]

Bampi SRCasaril AMDomingues M,et al. Depression-like behavior,hyperglycemia,oxidative stress,and neuroinflammation presented in diabetic mice are reversed by the administration of 1-methyl-3-(phenylselanyl)-1H-indole[J]. J Psychiatr Res2020120:91-102.

[111]

Zhou XYZhang FYing CJ,et al. Inhibition of iNOS alleviates cognitive deficits and depression in diabetic mice through downregulating the NO/sGC/cGMP/PKG signal pathway[J]. Behav Brain Res2017322:70-82.

[112]

Ke YTBu SZMa H,et al. Preventive and therapeutic effects of astaxanthin on depressive-like behaviors in high-fat diet and streptozotocin-treated rats[J]. Front Pharmacol202010:1621.

[113]

Wang YBZhang RZXie JQ,et al. Analgesic activity of catalpol in rodent models of neuropathic pain,and its spinal mechanism[J]. Cell Biochem Biophys201470(3):1565-1571.

[114]

Selby NMTaal MW. An updated overview of diabetic nephropathy:Diagnosis,prognosis,treatment goals and latest guidelines[J]. Diabetes Obes Metab202022():S3-S15.

[115]

Jin QLiu TTQiao Y,et al. Oxidative stress and inflammation in diabetic nephropathy:role of polyphenols[J]. Front Immunol202314:1185317.

[116]

Szostak JGorący ADurys D,et al. The role of microRNA in the pathogenesis of diabetic nephropathy[J]. Int J Mol Sci202324(7):6214.

[117]

Yarahmadi AShahrokhi SZMostafavi-Pour Z,et al. MicroRNAs in diabetic nephropathy:From molecular mechanisms to new therapeutic targets of treatment[J]. Biochem Pharmacol2021189:114301.

[118]

Chawla TSharma DSingh A. Role of the renin angiotensin system in diabetic nephropathy[J]. World J Diabetes20101(5):141-145.

[119]

Carmela GGiovanna G. Flavonoids from plants to foods:from green extraction to healthy food ingredient[J]. Molecules202227(9):2633.

[120]

Kuwabara TMori KMukoyama M,et al. Macrophage-mediated glucolipotoxicity via myeloid-related protein 8/toll-like receptor 4 signaling in diabetic nephropathy[J]. Clin Exp Nephrol201418(4):584-592.

[121]

张 翠,王继胜,王 林, 梓醇对STZ诱导的糖尿病大鼠肾脏的保护作用[J]. 承德医学院学报202239(3):192-196.

[122]

Zhang CWang JSWang L,et al. Protective effects of catalpol on the diabetic nephropathy in STZ-induced diabetic rats[J]. J Chengde Med Univ202239(3):192-196.

[123]

Jiang PPXiang LChen ZW,et al. Catalpol alleviates renal damage by improving lipid metabolism in diabetic db/db mice[J]. Am J Transl Res201810(6):1750-1761.

[124]

Wang YShao YLGao YQ,et al. Catalpol prevents denervated muscular atrophy related to the inhibition of autophagy and reduces BAX/BCL2 ratio via mTOR pathway[J]. Drug Des Devel Ther201813:243-253.

[125]

Shu AMDu QChen J,et al. Catalpol ameliorates endothelial dysfunction and inflammation in diabetic nephropathy via suppression of RAGE/RhoA/ROCK signaling pathway[J]. Chem Biol Interact2021348:109625.

[126]

D’Agati VD. Podocyte injury in focal segmental glomerulosclerosis:Lessons from animal models (a play in five acts)[J]. Kidney Int200873(4):399-406.

[127]

Dai HRLiu QQLiu BL. Research progress on mechanism of podocyte depletion in diabetic nephropathy[J]. J Diabetes Res20172017:2615286.

[128]

Kim DYKang MKLee EJ,et al. Eucalyptol inhibits advanced glycation end products-induced disruption of podocyte slit junctions by suppressing rage-erk-C-myc signaling pathway[J]. Mol Nutr Food Res201862(19):e1800302.

[129]

Chen JYang YWLv ZY,et al. Study on the inhibitive effect of Catalpol on diabetic nephropathy[J]. Life Sci2020257:118120.

[130]

Nie WJZhu HSun X,et al. Catalpol attenuates hepatic glucose metabolism disorder and oxidative stress in triptolide-induced liver injury by regulating the SIRT1/HIF-1α pathway[J]. Int J Biol Sci202420(10):4077-4097.

[131]

Chen YLiu QPShan ZF,et al. The protective effect and mechanism of catalpol on high glucose-induced podocyte injury[J]. BMC Complement Altern Med201919(1):244.

[132]

陈慧,杨洪涛,许正锦, 地黄梓醇对高糖介导足细胞焦亡的抑制作用及机制研究[J]. 中国中西医结合肾病杂志202324(11):953-956.

[133]

Chen HYang HTXu ZJ,et al .Study on the inhibitory effect and mechanism of catalpol from rehmannia on high glucose-mediated podocyte pyroptosis[J]. Journal of Integrated Traditional Chinese and Western Medicine Nephrology202324(11):953-956.

[134]

Steenbeke MSpeeckaert RDesmedt S,et al. The role of advanced glycation end products and its soluble receptor in kidney diseases[J]. Int J Mol Sci202223(7):3439.

[135]

Rabbani NThornalley PJ. Advanced glycation end products in the pathogenesis of chronic kidney disease[J]. Kidney Int201893(4):803-813.

[136]

Mallipattu SKUribarri J. Advanced glycation end product accumulation:a new enemy to target in chronic kidney disease?[J]. Curr Opin Nephrol Hypertens201423(6):547-554.

[137]

Chuang PYDai YLiu RJ,et al. Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus[J]. PLoS One20116(8):e23566.

[138]

Wang LMEllis MJGomez JA,et al. Mechanisms of the proteinuria induced by rho GTPases[J]. Kidney Int201281(11):1075-1085.

[139]

Chen YLiu QPShan ZF,et al. Catalpol ameliorates podocyte injury by stabilizing cytoskeleton and enhancing autophagy in diabetic nephropathy[J]. Front Pharmacol201910:1477.

[140]

Ziyadeh FN. Mediators of diabetic renal disease:the case for tgf-beta as the major mediator[J]. J Am Soc Nephrol200415():S55-S57.

[141]

Lai HChen AQCai H,et al. Podocyte and endothelial-specific elimination of BAMBI identifies differential transforming growth factor-β pathways contributing to diabetic glomerulopathy[J]. Kidney Int202098(3):601-614.

[142]

Lan HY. Transforming growth factor-β/Smad signalling in diabetic nephropathy[J]. Clin Exp Pharmacol Physiol201239(8):731-738.

[143]

Dong ZChen CX. Effect of catalpol on diabetic nephropathy in rats[J]. Phytomedicine201320(11):1023-1029.

[144]

Heng LZComyn OPeto T,et al. Diabetic retinopathy:pathogenesis,clinical grading,management and future developments[J]. Diabet Med201330(6):640-650.

[145]

Shao YZhang YYu Y,et al. Impact of catalpol on retinal ganglion cells in diabetic retinopathy[J]. Int J Clin Exp Med20169(9):17274-17280.

[146]

吴震,杜秋. 梓醇对糖尿病小鼠视网膜病变的影响及作用机制[J]. 中国医药导报202118(19):17-21.

[147]

Wu ZDu Q. Effect and Mechanism of catalpol on retinopathy in diabetic mice [J]. China Medical Herald202118(19):17-21.

基金资助

国家自然科学基金面上资助项目(81873034)

重庆市自然科学基金面上资助项目(CSTB2022NSCQ-MSX1578)

AI Summary AI Mindmap
PDF (2321KB)

251

访问

0

被引

详细

导航
相关文章

AI思维导图

/