基于通道注意力机制改进的对抗体序列结合概率进行预测的深度学习方法

丁关祎盟, 王骏

南京大学学报(自然科学) ›› 2025, Vol. 61 ›› Issue (02) : 189 -201.

PDF
南京大学学报(自然科学) ›› 2025, Vol. 61 ›› Issue (02) : 189 -201. DOI: 10.13232/j.cnki.jnju.2025.02.001

基于通道注意力机制改进的对抗体序列结合概率进行预测的深度学习方法

    丁关祎盟, 王骏
作者信息 +

Author information +
文章历史 +
PDF

摘要

当前,AI大模型逐渐被应用于蛋白质科学和生物信息学中,但其复杂性常常使人们无法解释神经网络如何从复杂的生物数据中提取和理解关键特征.为了理解这类计算模型如何拥有推断生物大分子的结构、功能和相互作用的能力,在前人关于预测治疗性抗体结合特异性的研究基础上进一步拓展,提出了基于通道注意力机制可解释的残差卷积神经网络.该网络能够有效预测具有不同氨基酸序列的抗体特异性结合概率,网络交叉验证的AUC (Area under Curve)达到0.943,与传统方法相比有显著提高.其次,通过非线性变换和积分梯度的方法获得各位点对于结合能力的贡献,从而推断出抗体序列的残基分布模式.提出的方法可以获得氨基酸序列背后潜在的信息,也能显著减小特异性抗体预测未知的突变空间,证明该网络不仅性能更优,对于理解复杂的神经网络背后的逻辑也有所帮助.

关键词

蛋白质序列 / 深度学习 / 注意力机制 / 可分离卷积

Key words

引用本文

引用格式 ▾
基于通道注意力机制改进的对抗体序列结合概率进行预测的深度学习方法[J]. 南京大学学报(自然科学), 2025, 61(02): 189-201 DOI:10.13232/j.cnki.jnju.2025.02.001

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

57

访问

0

被引

详细

导航
相关文章

AI思维导图

/