3D打印个性化钛网辅助应用于牙槽骨缺损修复的临床观察及组织学分析

赵鹏宇 ,  陈岗 ,  程熠 ,  王超 ,  陈丹 ,  黄海涛

华西口腔医学杂志 ›› 2025, Vol. 43 ›› Issue (04) : 592 -602.

PDF (3359KB)
华西口腔医学杂志 ›› 2025, Vol. 43 ›› Issue (04) : 592 -602. DOI: 10.7518/hxkq.2025.2024481
临床研究

3D打印个性化钛网辅助应用于牙槽骨缺损修复的临床观察及组织学分析

作者信息 +

Clinical and histological evaluation of three-dimensional printing individualized titanium mesh for alveolar bone defect repair

Author information +
文章历史 +
PDF (3438K)

摘要

目的 评估3D打印个性化钛网(3D-PITM)作为支架材料在引导骨再生术(GBR)中的成骨效能。 方法 1)选取因牙槽骨缺损接受GBR治疗的患者作为研究对象,记录术后愈合并发症发生情况;2)获取术后至少6个月的颌骨锥形束计算机断层扫描(CBCT)影像数据,计算实际成骨体积百分比;3)在种植一期手术同期收集牙槽骨标本进行组织计量学分析,定量检测标本内新生骨及新生未矿化骨占比。同时,根据愈合并发症将标本分为3组(创口愈合良好组、创口裂开组、3D-PITM暴露组),比较各组间新生骨及新生未矿化骨比例的差异。 结果 1)本研究共纳入12例患者。其中1例GBR手术失败,3例发生3D-PITM暴露(暴露率25%)。2)11例GBR手术成功患者的实际成骨体积百分比为95.23%±28.85%。3)组织计量学分析显示,牙槽骨标本中新生骨占比40.35%,其中新生未矿化骨占新生骨的13.84%。组间比较显示:创口愈合良好组的新生骨及新生未矿化骨占比与创口裂开组及3D-PITM暴露组相比,差异无统计学意义(P>0.05)。 结论 3D-PITM影像学评估显示成骨体积良好,组织学分析证实术区有大量新生矿化骨形成,可实现理想的骨增量效果。

Abstract

Objective To evaluate the osteogenic efficacy of three-dimensional printing individualized titanium mesh (3D-PITM) as a scaffold material in guided bone regeneration (GBR). Methods 1) Patients undergoing GBR for alveolar bone defects were enrolled as study subjects, and postoperative healing complications were recorded. 2) Postoperative cone beam computed tomography (CBCT) scans acquired at least 6 months post-surgery were used to calculate the percentage of actual bone formation volume. 3) Alveolar bone specimens were collected during the first-stage implant surgery for histomorphometric analysis. This analysis quantitatively measured the proportions of newly formed bone and newly formed unmineralized bone within the specimens. Specimens were categorized into three groups based on healing complications (good healing group, wound dehiscence group, 3D-PITM exposure group) to compare differences in the proportions of newly formed bone and newly formed unmineralized bone. Results 1) Twelve patients were included. Guided bone regeneration failed in one patient, and 3D-PITM exposure occurred in three patients (exposure rate: 25%). 2) The mean percentage of actual bone formation volume in the 11 successful guided bone regeneration cases was 95.23%±28.85%. 3) Histomorphometric analysis revealed that newly formed bone constituted 40.35% of the alveolar bone specimens, with newly formed unmineralized bone accounting for 13.84% of the newly formed bone. Intergroup comparisons showed no statistically significant differences (P>0.05) in the proportions of newly formed bone or newly formed unmineralized bone between the good healing group and the wound dehiscence group or the 3D-PITM exposure group. Conclusion 3D-PITM enables effective bone augmentation. Radiographic assessment demonstrated favorable bone formation volume, while histological analysis confirmed substantial formation of newly formed mineralized bone within the surgical site.

Graphical abstract

关键词

3D打印个性化钛网 / 引导骨再生 / 组织学 / 组织计量学 / 钛网暴露

Key words

three-dimensional printing individualized titanium mesh / guided bone regeneration / histology / histomorphometry / titanium mesh exposure

引用本文

引用格式 ▾
赵鹏宇,陈岗,程熠,王超,陈丹,黄海涛. 3D打印个性化钛网辅助应用于牙槽骨缺损修复的临床观察及组织学分析[J]. 华西口腔医学杂志, 2025, 43(04): 592-602 DOI:10.7518/hxkq.2025.2024481

登录浏览全文

4963

注册一个新账户 忘记密码

引导骨再生术(guided bone regeneration,GBR)与块状自体骨移植、牙槽骨劈开、牵张成骨等其他骨增量手术相比具有创伤小、并发症少、成骨效果显著等优点,临床应用广泛[1-3]。支架材料稳定的空间维持能力是GBR成功的关键[4]。传统钛网虽具备一定的强度及刚性,适用于大范围颌骨缺损修复手术[5],但存在术中修剪费时,术后黏膜破裂、钛网暴露风险高等问题,临床应用受限[6-7]
近来随着3D打印技术的飞速发展,GBR进入数字化、精准化的新阶段。Ciocca等[8]率先尝试将3D打印个性化钛网(three-dimensional printing individualized titanium mesh,3D-PITM)作为支架材料应用于GBR手术。相比传统钛网,3D-PITM经由三维数字化软件设计制作而成,与牙槽骨原始缺损轮廓精密贴合,无需术中修剪弯制,可以有效缩短手术时间,降低手术技术敏感性[9]。3D-PITM的应用,是对Chiapascp等[10]提出的“以修复为导向引导组织再生”理念的具体实践。
尽管现有研究已证实3D-PITM作为GBR屏障支架材料能实现理想的成骨效果[11-12],但当前评估体系主要依赖影像学指标,难以全面反映新生骨的内在质量特征。种植体骨结合效能及长期稳定性不仅取决于新生骨量,更与其组织形态特征和成分构成密切相关[13-15]
本研究创新性地采用“影像学—组织学”双模态评估策略:在通过影像学评估以3D-PITM为支架材料的GBR成骨效果的同时,重点对新生骨区种植位点牙槽骨标本进行组织学计量分析,通过定量测定新生骨组织成分占比,准确评估其矿化质量。

1 材料和方法

本项研究为队列研究,已通过大连医科大学附属第一医院伦理审查(批件号:PJ-KS-KY-2023-277)。

1.1 研究对象

选取2019年1月—2024年10月因牙槽骨缺损在大连医科大学附属第一医院接受GBR治疗的患者作为研究对象。

纳入标准:1)年龄≥18岁,口腔健康状况良好,无不可控性牙周疾患。2)牙槽骨缺损呈Terheyden 2/4型(水平向不利型骨缺损)、3/4型(水平向及垂直向骨缺损)和4/4型(完全骨缺损)缺损类型者[16]

排除标准:1)存在局部/全身严重感染性疾病者。2)存在肝脏、肾脏或自身免疫性疾病者。3)既往存在头颈部放射治疗史者。

1.2 3D-PITM设计制作

将患者术前颌骨锥形束计算机断层扫描(conebeam computed tomography,CBCT)的医学数字成像和通信数据(digital imaging and communications in medicine,DICOM),导入Mimics Research软件(Materialise公司,比利时)进行三维重建,获得3D颌骨缺损模型。将重建信息以STL(stereolithography)文件格式导入3-Matic软件(Ma-terialise公司,比利时)。在3-Matic软件上根据邻牙及对颌牙位置关系,以生物学及修复学为导向进行虚拟排牙及种植体虚拟植入。根据模拟植体植入后的颌骨模型使用Geomagic Studio软件(3D Systems公司,美国)参考种植体周围理想骨量要求进行牙槽骨重建,获得3D理想颌骨模型。在3-Matic软件上根据3D理想颌骨模型设计3D-PITM(孔隙为不规则个性化设计,孔隙率占比约60%~80%,厚度约为0.2~0.3 mm)。最后,将设计完成的3D-PITM以STL格式将三维数字模型数据传输到激光增材制造设备(上海瑞博医疗科技有限公司),使用医用级钛合金粉末通过选择性激光熔化技术完成制作[17]图1)。

1.3 GBR手术过程

牙槽嵴顶偏颊作嵴顶水平切口(按需行辅助垂直松弛切口),翻开全厚黏骨膜瓣,充分暴露术区。将3D-PITM置于设计位置保持稳定,螺钉固定。两侧软组织瓣行骨膜松弛切口,进行黏膜松弛减张,确保切口能够无张力闭合。取出钛网及固定螺钉备用,使用自体骨取骨钻避开重要解剖结构收集自体骨颗粒,将其与人工骨移植材料按照2∶3比例混合备用。钛网重新复位固定,将混合植骨颗粒经钛网孔隙充分填入其下方骨缺损腔隙,填塞压实后,在钛网表面行(0.5~1.0)mm厚度过量填充。覆盖可吸收胶原膜,间断联合褥式缝合关闭切口。

1.4 愈合并发症评估

嘱患者GBR术后定期复诊,密切观察创口软组织愈合情况。参考Fontana等[18]提出的GBR术后愈合并发症分类标准,重点观察软组织有无以下表现:1)创口裂开;2)3D-PITM暴露;3)伴或不伴3D-PITM暴露的术区感染或脓肿形成[19]

1.5 三维骨增量体积影像学评估

GBR术后至少6个月再次拍摄CBCT观察骨缺损区成骨效果。若成骨情况符合术前预期设计,可考虑行后续种植一期手术。将此阶段获取的CBCT数据导入Mimics Research软件,获取3D颌骨重建模型。

应用Geomagic软件的三维分析模块,通过“布尔减运算”进行以下体积计算。

1)计划骨增量体积=3D理想颌骨模型-3D颌骨缺损模型。

2)实际骨增量体积=3D颌骨重建模型-3D颌骨缺损模型。并据此计算实际成骨体积百分比(%)=实际骨增量体积/计划骨增量体积[20-22]

1.6 种植一期手术及牙槽骨标本处理

切口同GBR,显露术区,取出固定螺钉及钛网。在确保不影响种植治疗程序的前提下使用取骨环钻于拟种植位点获取2~4 mm柱状牙槽骨标本(图2),之后按照术前设计进行种植一期手术。

将牙槽骨标本固定、脱钙处理后常规脱水、包埋。修整组织蜡块,沿纵轴连续切片,切片厚度约为(5±1)μm,每块组织连续切20张,选取标本组织中心区域切片行苏木精-伊红(hematoxylin-eosin,HE)及马松三色(Masson’s trichrome,Masson)染色。

1.7 牙槽骨标本组织学分析

1.7.1 组织计量学分析

牙槽骨标本经Masson染色后行组织计量学计算,统计分析各标本感兴趣区(region of interest,ROI)内新生骨及新生未矿化骨占比(新生矿化骨呈红染,新生未矿化骨因Ⅰ型胶原存在呈蓝染[23-24])。

ROI设定:因原始自体基骨与新生已矿化骨较难分辨,为避免将自体基骨混淆为新生矿化骨纳入计算,影响实验数据准确性,本实验仅将仍可见“空白泡沫状”骨替代材料的区域纳入实验感兴趣区。

组织标本成像及占比分析:使用SlideViewer 2.5扫描软件(3DHISTECH公司,匈牙利)选取标本ROI进行20倍成像,尽量使组织充满整个视野。使用Image-Pro Plus 6.0(Media Cybernetics公司,美国)分析软件,确定不规则区域面积的分析模式,统一以mm作为标准单位,测量每张图片中待测组织面积。

标本内新生骨占比(%)=新生骨总面积/视野内组织总面积;新生未矿化骨占比(%)=新生未矿化骨面积/新生骨总面积[19,25-26]

1.7.2 组织计量学组间差异分析

将牙槽骨标本按GBR术后愈合并发症分为3组,分别为创口愈合良好组、创口裂开组、3D-PITM暴露组。研究分析创口愈合良好组与其他2组在新生骨占比和新生未矿化骨占比方面的组间差异。

1.8 统计方法

使用SPSS 26.0软件(IBM公司,美国)进行数据整理分析,评估数据信息的完整性、准确性及一致性。对连续变量数据进行Shapiro-Wilk正态性检验(检验水准α=0.05)。对连续变量进行组间差异性分析时,选用结果相对稳健的Wilcoxon秩和检验进行分析,双侧P值<0.05时认为组间差异具有统计学意义。

2 结果

2.1 患者基本情况

本研究共纳入12例GBR病例,按照纳入时间顺序进行连续编号(1~12号)(表1)。

2.2 愈合并发症评估结果

术后2周内,4例病例出现创口裂开伴可吸收胶原膜暴露。经口腔卫生指导后,其中2例创口在4周内实现二次愈合;另2例创口裂开持续进展,发展为3D-PITM早期暴露(暴露时间≤术后4周)。

本研究共观察到3例3D-PITM暴露(暴露率25%),包括早期暴露2例,晚期暴露(暴露时间>术后4周)1例。值得注意的是,1例早期暴露病例(9号)于术后10个月取出钛网时,术区骨质松软,提示钛网下方成骨失败,为本研究中唯一GBR手术失败病例(表2图3)。

2.3 三维骨增量体积影像学评估结果

本研究11例GBR手术成功病例,计划骨增量体积为(623.36±366.89)mm3,实际骨增量体积为(528.55±225.30)mm3,实际成骨体积百分比为95.23%±28.85%(表3)。

2.4 牙槽骨标本组织学分析结果

2.4.1 组织计量学分析结果

本研究共获取19例牙槽骨标本(含1例GBR手术失败病例标本)。光镜下观察发现,该失败病例标本中未见新生骨形成,为避免对实验结果产生偏倚,予以排除。

本研究最终纳入18例牙槽骨标本行组织计量学分析,新生骨占比约为40.35%(48.44%),其中新生未矿化骨占新生骨的13.84%(21.66%)。表4为各标本组织计量学详细结果(18例标本依次编号1~18号)。

2.4.2 组织计量学组间差异分析结果

创口愈合良好组标本牙槽骨新生矿化状况良好,已矿化成熟的新生骨呈结构层次清晰的板层状,与仍处于改建阶段的未矿化骨紧密交融,外层由致密的类骨质结构包绕,骨髓腔内及新生骨间可见新生血管组织形成(图4)。而3D-PITM暴露组标本新生骨区主要由肉芽组织构成,新生骨散在分布(图5),占比仅为15.06%。

独立样本Wilcoxon秩和检验结果显示:在新生骨占比和新生未矿化骨占比两项指标上,创口愈合良好组与创口裂开及3D-PITM暴露组间无显著统计学差异(P>0.05)(表5~6)。

3 讨论

本研究组织计量学结果新生矿化骨比例40.35%(48.44%)与MacBeth等[27]的系统分析结果基本吻合。但与近期2项类似研究存在差异:相较于Cucchi等[26]报道(矿化骨35.3%、未矿化组织50.2%)及Dellavia等[28]报道(矿化骨35.88%、编织骨16.42%、类骨质10.88%),本研究中新生矿化骨占比相对较高,而未矿化骨占比相对较低。此差异可能归因于以下因素。

1)组织学定义差异。本研究将Masson染色后标本蓝染区域定义为未矿化骨组织,而Cucchi等[26]将骨髓及松散纤维结缔组织纳入未矿化组织范畴。分类标准差异直接影响组分占比的统计结果。

2)愈合时间差异。Aludden等[29]研究表明骨组织矿化速率约为1 mm/月,且矿化程度与愈合时间呈正相关[30-31]。不同研究间愈合时间的差异可能是导致结果不一致的重要原因。

3)植骨材料配比差异。既往研究虽表明植骨材料不同配比在组织计量学上无显著差异,但自体骨作为成骨细胞来源,可为术区提供多种成骨相关生长因子,其占比不同势必会影响植骨区细胞活性与颌骨改建重塑进程[16,32-34]

本研究影像学结果显示,11例GBR手术成功病例实际成骨体积百分比为95.23%±28.85%,2例3D-PITM暴露病例分别达114.83%和117.72%。影像学数据表明,即使发生创口裂开或钛网暴露等愈合并发症,基于3D-PITM的GBR仍可能实现预期骨量的重建。然而,早期暴露组标本组织计量学新生骨占比极低(16号标本:新生矿化骨15.06%,新生未矿化骨2.46%)。

这种显著差异提示影像学测量的“骨体积”可能包含纤维组织占位,导致对骨再生效果的高估,相比之下,组织学分析能有效鉴别新生骨的矿化质量,对准确判断骨改建进程具有重要临床意义。

创口裂开常被视为轻度愈合并发症。在确保软组织瓣充分游离和无张力缝合的前提下,其发生多与组织水肿或缝线松脱相关[35],术后积极维护口腔卫生常可自行愈合[36]。然而,创口裂开有时也可能是屏障材料暴露的前兆[37],Lizio等[38]研究显示83.33%的钛网暴露源于软组织裂开。本研究中9号及11号病例术后2周即出现术区牙龈红肿,创口裂开,4周后创口裂开范围扩大,导致3D-PITM早期暴露。

屏障支架材料暴露会损害其空间维持与细胞隔离功能,导致骨替代材料直接接触口腔环境,增加材料流失与感染的风险[39-42]。文献[39-40]报道3D-PITM暴露率多为20%~40%,本研究出现了3例3D-PITM暴露病例(暴露率25%),其中2例为早期暴露,1例为晚期暴露。

早期暴露与创口早期愈合及黏膜软组织的健康状况密切相关。本研究中2例早期暴露原因分析如下:上颌腭侧黏膜质地坚韧,软组织瓣松解困难,为达到无张力缝合,常需广泛游离颊侧黏骨膜。这导致软组织厚度减薄、血供降低,引发创口早期裂开。同时,2例病例术区牙龈均呈炎症红肿状态,进一步阻碍黏膜早期自愈,最终导致钛网早期暴露[13,43]。早期暴露时,术区成骨环境尚未稳定,骨缺损区纤维结缔组织侵入可破坏成骨细胞参与的骨再生过程,导致骨替代材料异常吸收和新骨形成减少[5,42,44-45]。然而,黏膜早期二次愈合,可通过及时封闭暴露区域来减轻钛网暴露对最终效果的影响[13,28](如11号病例,术后1月即实现钛网内侧面黏膜的再上皮化,后续骨再生进程未受显著影响)。

牙槽骨缺损类型[42]及钛网厚度等因素也通过影响软组织早期愈合间接影响着钛网暴露的发生。复杂性牙槽骨缺损常伴软组织同期缺损,导致软组织瓣宽度不足,早期无张力缝合难度增大[46]。钛网厚度是决定其机械强度的关键参数,增加厚度虽可提升结构稳定性,但会同步增大其对上方黏膜组织的闭合张力[5,47],进而干扰创口愈合进程。

晚期暴露主要与术区牙龈组织特征相关。本研究中晚期暴露病例表现为薄龈型牙龈(厚度≤1 mm)伴角化龈宽度不足(<2 mm)。薄龈型黏膜质地菲薄,耐磨性差,受炎症、创伤或机械刺激后易形成瘢痕,术后瘢痕挛缩将增加黏膜萎缩破裂及钛网暴露的风险[46,48-50]。充足的角化组织(≥2 mm)才能有效分散黏膜承受的应力,减少压力作用下黏膜向骨面的位移幅度,降低钛网暴露的风险[51-52]。现有证据表明,钛网晚期暴露时植骨区骨再生已进入相对稳定的生物学阶段,虽可能出现骨替代材料的渐进性吸收,但通常不会导致明显的成骨缺陷[28,53]

目前为降低钛网暴露风险,临床采取多方面改进策略:一方面改良减张缝合技术,力求实现创口早期无张力闭合[32,54];另一方面,在GBR术前/术中应用自填充性组织扩张器、血小板浓缩物、颊脂垫游离脂肪组织等,旨在改善软组织的质量与愈合能力,促进早期无张力缝合,减少钛网暴露风险[55-57]

综上,本研究证实3D-PITM在GBR中应用具有良好的成骨效果。影像学评估显示术后能实现预期设计的成骨体积。组织计量学结果显示在新生骨区有大量新生矿化骨形成,但钛网暴露组标本成骨效果较差,新生骨占比较低。

尽管组间差异分析显示创口裂开及钛网暴露对术区成骨质量未见显著影响,但受限于样本量规模,统计检验效能不足。未来需开展更大样本量的长期随访研究,以明确软组织愈合并发症对成骨质量的影响。

参考文献

[1]

Alotaibi FF, Rocchietta I, Buti J, et al. Comparative evidence of different surgical techniques for the management of vertical alveolar ridge defects in terms of complications and efficacy: a systematic review and network meta-analysis[J]. J Clin Periodontol, 2023, 50(11): 1487-1519.

[2]

Li SH, Zhao YX, Tian TR, et al. A minimally invasive method for titanium mesh fixation with resorbable sutures in guided bone regeneration: a retrospective study[J]. Clin Implant Dent Relat Res, 2023, 25(1): 87-98.

[3]

Yang W, Chen D, Wang C, et al. The effect of bone defect size on the 3D accuracy of alveolar bone augmentation performed with additively manufactured patient-specific titanium mesh[J]. BMC Oral Health, 2022, 22(1): 557.

[4]

Wang HL, Boyapati L. “PASS” principles for predicta-ble bone regeneration[J]. Implant Dent, 2006, 15(1): 8-17.

[5]

Xie Y, Li SH, Zhang TX, et al. Titanium mesh for bone augmentation in oral implantology: current application and progress[J]. Int J Oral Sci, 2020, 12(1): 37.

[6]

Cunha G, Carvalho PHA, Quirino LC, et al. Titanium mesh exposure after bone grafting: treatment approaches-a systematic review[J]. Craniomaxillofac Trauma Reconstr, 2022, 15(4): 397-405.

[7]

Briguglio F, Falcomatà D, Marconcini S, et al. The use of titanium mesh in guided bone regeneration: a systematic review[J]. Int J Dent, 2019, 2019: 9065423.

[8]

Ciocca L, Fantini M, De Crescenzio F, et al. Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches[J]. Med Biol Eng Comput, 2011, 49(11): 1347-1352.

[9]

Sumida T, Otawa N, Kamata YU, et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: clinical application and the comparison with conventional titanium mesh[J]. J Craniomaxillofac Surg, 2015, 43(10): 2183-2188.

[10]

Chiapasco M, Casentini P. Horizontal bone-augmentation procedures in implant dentistry: prosthetically guided regeneration[J]. Periodontol 2000, 2018, 77(1): 213-240.

[11]

Sagheb K, Schiegnitz E, Moergel M, et al. Clinical outcome of alveolar ridge augmentation with individualized CAD-CAM-produced titanium mesh[J]. Int J Implant Dent, 2017, 3(1): 36.

[12]

Cucchi A, Vignudelli E, Franceschi D, et al. Vertical and horizontal ridge augmentation using customized CAD/CAM titanium mesh with versus without resorbable membranes. A randomized clinical trial[J]. Clin Oral Implants Res, 2021, 32(12): 1411-1424.

[13]

Chiapasco M, Casentini P, Tommasato G, et al. Customized CAD/CAM titanium meshes for the guided bone regeneration of severe alveolar ridge defects: preliminary results of a retrospective clinical study in humans[J]. Clin Oral Implants Res, 2021, 32(4): 498-510.

[14]

Chrcanovic BR, Albrektsson T, Wennerberg A. Bone quality and quantity and dental implant failure: a systematic review and meta-analysis[J]. Int J Prosthodont, 2017, 30(3): 219-237.

[15]

Nicolielo LFP, van Dessel J, Jacobs R, et al. Relationship between trabecular bone architecture and early dental implant failure in the posterior region of the mandible[J]. Clin Oral Implants Res, 2020, 31(2): 153-161.

[16]

Li SH, Zhang TX, Zhou M, et al. A novel digital and visualized guided bone regeneration procedure and digital precise bone augmentation: a case series[J]. Clin Implant Dent Relat Res, 2021, 23(1): 19-30.

[17]

Pillai S, Upadhyay A, Khayambashi P, et al. Dental 3D-printing: transferring art from the laboratories to the clinics[J]. Polymers (Basel), 2021, 13(1): E157.

[18]

Fontana F, Maschera E, Rocchietta I, et al. Clinical classification of complications in guided bone regeneration procedures by means of a nonresorbable membrane[J]. Int J Periodontics Restorative Dent, 2011, 31(3): 265-273.

[19]

Simion M, Pistilli R, Vignudelli E, et al. Semi-occlusive CAD/CAM titanium mesh for guided bone regeneration: preliminary clinical and histological results[J]. Int J Oral Implantol (Berl), 2023, 16(4): 327-336.

[20]

Li L, Wang C, Li X, et al. Research on the dimensional accuracy of customized bone augmentation combined with 3D-printing individualized titanium mesh: a retrospective case series study[J]. Clin Implant Dent Relat Res, 2021, 23(1): 5-18.

[21]

Zhang G, Miao X, Lin H, et al. A tooth-supported titanium mesh bending and positioning module for alveolar bone augmentation and improving accuracy[J]. J Esthet Restor Dent, 2023, 35(4): 586-595.

[22]

Chen D, Zheng LL, Wang C, et al. Evaluation of surgical placement accuracy of customized CAD/CAM titanium mesh using screws-position-guided template: a retrospective comparative study[J]. Clin Implant Dent Relat Res, 2023, 25(3): 519-531.

[23]

许来俊, 袁鹤, 叶青, . 负载纳米羟磷灰石的结冷胶修复大鼠下颌骨缺损的效果评价[J]. 上海口腔医学, 2022, 31(5): 449-453.

[24]

Xu LJ, Yuan H, Ye Q, et al. Repair of mandibular defects with. hydrogel loaded with nano-hydroxyapatite in rats[J]. Shanghai J Stomatol, 2022, 31(5): 449-453.

[25]

杜文瑜, 杨静文, 姜婷. 甲磺酸去铁胺促进大鼠颅骨临界骨缺损血管化骨再生的早期连续观察[J]. 北京大学学报(医学版), 2021, 53(6): 1171-1177.

[26]

Du WY, Yang JW, Jiang T. Early constant observation of the. effect of deferoxamine mesylate on improvement of vascularized bone regeneration in SD rat skull critical size defect model[J]. J Peking Uni (Health Sci), 2021, 53(6): 1171-1177.

[27]

Cucchi A, Sartori M, Parrilli A, et al. Histological and histomorphometric analysis of bone tissue after guided bone regeneration with non-resorbable membranes vs resorbable membranes and titanium mesh[J]. Clin Implant Dent Relat Res, 2019, 21(4): 693-701.

[28]

Cucchi A, Bettini S, Fiorino A, et al. Histological and histomorphometric analysis of bone tissue using customized titanium meshes with or without resorbable membranes: a randomized clinical trial[J]. Clin Oral Implants Res, 2024, 35(1): 114-130.

[29]

MacBeth N, Trullenque-Eriksson A, Donos N, et al. Hard and soft tissue changes following alveolar ridge preservation: a systematic review[J]. Clin Oral Implants Res, 2017, 28(8): 982-1004.

[30]

Dellavia C, Canciani E, Pellegrini G, et al. Histological assessment of mandibular bone tissue after guided bone regeneration with customized computer-aided design/computer-assisted manufacture titanium mesh in humans: a cohort study[J]. Clin Implant Dent Relat Res, 2021, 23(4): 600-611.

[31]

Aludden H, Mordenfeld A, Dahlin C, et al. Histological and histomorphometrical outcome after lateral guided bone regeneration augmentation of the mandible with different ratios of deproteinized bovine bone mineral and autogenous bone. A preclinical in vivo study[J]. Clin Oral Implants Res, 2020, 31(10): 1025-1036.

[32]

Gallo P, Díaz-Báez D, Perdomo S, et al. Comparative analysis of two biomaterials mixed with autogenous bone graft for vertical ridge augmentation: a histomorphometric study in humans[J]. Clin Implant Dent Relat Res, 2022, 24(5): 709-719.

[33]

Corinaldesi G, Pieri F, Marchetti C, et al. Histologic and histomorphometric evaluation of alveolar ridge augmentation using bone grafts and titanium micromesh in humans[J]. J Periodontol, 2007, 78(8): 1477-1484.

[34]

Zazou N, Diab N, Bahaa S, et al. Clinical comparison of different flap advancement techniques to periosteal releasing incision in guided bone regeneration: a randomized controlled trial[J]. Clin Implant Dent Relat Res, 2021, 23(1): 107-116.

[35]

Bertran Faus A, Cordero Bayo J, Velasco-Ortega E, et al. Customized titanium mesh for guided bone regeneration with autologous bone and xenograft[J]. Materials (Basel), 2022, 15(18): 6271.

[36]

Galindo-Moreno P, Moreno-Riestra I, Avila G, et al. Effect of anorganic bovine bone to autogenous cortical bone ratio upon bone remodeling patterns following maxillary sinus augmentation[J]. Clin Oral Implants Res, 2011, 22(8): 857-864.

[37]

Leblebicioglu B, Tatakis DN. Complications following alveolar ridge augmentation procedures[J]. Periodontol 2000, 2023, 93(1): 221-235.

[38]

Poli PP, Beretta M, Maiorana C, et al. Therapeutic strategies in the management of nonresorbable membrane and titanium mesh exposures following alveolar bone augmentation: a systematic scoping review[J]. Int J Oral Maxillofac Implants, 2022, 37(2): 250-269.

[39]

Lim G, Lin GH, Monje A, et al. Wound healing complications following guided bone regeneration for ridge augmentation: a systematic review and meta-analysis[J]. Int J Oral Maxillofac Implants, 2018, 33(1): 41-50.

[40]

Lizio G, Mazzone N, Corinaldesi G, et al. Reconstruction of extended and morphologically varied alveolar ridge defects with the titanium mesh technique: clinical and dental implants outcomes[J]. Int J Periodontics Restorative Dent, 2016, 36(5): 689-697.

[41]

Ciocca L, Lizio G, Baldissara P, et al. Prosthetically CAD-CAM-guided bone augmentation of atrophic jaws using customized titanium mesh: preliminary results of an open prospective study[J]. J Oral Implantol, 2018, 44(2): 131-137.

[42]

Zhou L, Su Y, Wang J, et al. Effect of exposure rates with customized versus conventional titanium mesh on guided bone regeneration: systematic review and meta-analysis[J]. J Oral Implantol, 2022, 48(4): 339-346.

[43]

Cucchi A, Vignudelli E, Napolitano A, et al. Evaluation of complication rates and vertical bone gain after guided bone regeneration with non-resorbable membranes versus titanium meshes and resorbable membranes. A randomized clinical trial[J]. Clin Implant Dent Relat Res, 2017, 19(5): 821-832.

[44]

Nan X, Wang C, Li LZ, et al. Application of three-dimensional printing individualized titanium mesh in alveolar bone defects with different Terheyden classifications: a retrospective case series study[J]. Clin Oral Implants Res, 2023, 34(6): 639-650.

[45]

Machtei EE. The effect of membrane exposure on the outcome of regenerative procedures in humans: a meta-analysis[J]. J Periodontol, 2001, 72(4): 512-516.

[46]

Atef M, Tarek A, Shaheen M, et al. Horizontal ridge augmentation using native collagen membrane vs titanium mesh in atrophic maxillary ridges: randomized clinical trial[J]. Clin Implant Dent Relat Res, 2020, 22(2): 156-166.

[47]

Hofferber CE, Beck JC, Liacouras PC, et al. Volumetric changes in edentulous alveolar ridge sites utilizing guided bone regeneration and a custom titanium ridge augmentation matrix (CTRAM): a case series study[J]. Int J Implant Dent, 2020, 6(1): 83.

[48]

Hartmann A, Seiler M. Minimizing risk of customized titanium mesh exposures-a retrospective analysis[J]. BMC Oral Health, 2020, 20(1): 36.

[49]

Rakhmatia YD, Ayukawa Y, Furuhashi A, et al. Microcomputed tomographic and histomorphometric analyses of novel titanium mesh membranes for guided bone regeneration: a study in rat calvarial defects[J]. Int J Oral Maxillofac Implants, 2014, 29(4): 826-835.

[50]

Lee WZ, Ong MMA, Yeo ABK. Gingival profiles in a select Asian cohort: a pilot study[J]. J Invest Clin Dent, 2018, 9(1). DOI:10.1111/jicd.12269 .

[51]

Hartmann A, Hildebrandt H, Schmohl JU, et al. Evaluation of risk parameters in bone regeneration using a customized titanium mesh: results of a clinical study[J]. Implant Dent, 2019, 28(6): 543-550.

[52]

Frost NA, Mealey BL, Jones AA, et al. Periodontal biotype: gingival thickness as it relates to probe visibility and buccal plate thickness[J]. J Periodontol, 2015, 86(10): 1141-1149.

[53]

Wang CX, Rong QG, Zhu N, et al. Finite element analysis of stress in oral mucosa and titanium mesh interface[J]. BMC Oral Health, 2023, 23(1): 25.

[54]

Lin GH, Chan HL, Wang HL. The significance of keratinized mucosa on implant health: a systematic review[J]. J Periodontol, 2013, 84(12): 1755-1767.

[55]

Miyamoto I, Funaki K, Yamauchi K, et al. Alveolar ridge reconstruction with titanium mesh and autogenous particulate bone graft: computed tomography-based evaluations of augmented bone quality and quantity[J]. Clin Implant Dent Relat Res, 2012, 14(2): 304-311.

[56]

Bahaa S, Diab N, Zazou N, et al. Evaluation of bone gain in horizontal ridge augmentation using titanium mesh in combination with different flap advancement techniques: a randomized clinical trial[J]. Int J Oral Ma-xillofac Surg, 2023, 52(3): 379-387.

[57]

Torres J, Tamimi F, Alkhraisat MH, et al. Platelet-rich plasma may prevent titanium-mesh exposure in alveolar ridge augmentation with anorganic bovine bone[J]. J Clin Periodontol, 2010, 37(10): 943-951.

[58]

Kaner D, Zhao H, Arnold W, et al. Pre-augmentation soft tissue expansion improves scaffold-based vertical bone regeneration-a randomized study in dogs[J]. Clin Oral Implants Res, 2017, 28(6): 640-647.

[59]

Kablan F, Laster Z. The use of free fat tissue transfer from the buccal fat pad to obtain and maintain primary closure and to improve soft tissue thickness at bone-augmented sites: technique presentation and report of case series[J]. Int J Oral Maxillofac Implants, 2014, 29(2): e220-e231.

基金资助

AI Summary AI Mindmap
PDF (3359KB)

168

访问

0

被引

详细

导航
相关文章

AI思维导图

/