深度时空混合图卷积的城市交通预测模型

郭海锋, 许宏伟, 周子盛

小型微型计算机系统 ›› 2025, Vol. 46 ›› Issue (01) : 97 -103.

PDF
小型微型计算机系统 ›› 2025, Vol. 46 ›› Issue (01) : 97 -103. DOI: 10.20009/j.cnki.21-1106/TP.2023-0401

深度时空混合图卷积的城市交通预测模型

    郭海锋, 许宏伟, 周子盛
作者信息 +

Author information +
文章历史 +
PDF

摘要

由于交通网络复杂的时空相关性和交通数据的非线性,给交通预测带来了很大的挑战.现有的方法主要关注路网的时空特征,分别对时间相关性和空间相关性进行建模来模拟时空依赖关系.随着城市道路网络的进一步扩大,导致模型对路网空间特征的挖掘能力不足.此外,交通运行状态受到外部环境因素的干扰,交通流在路段传递效应的影响下会出现较大波动.为解决上述问题,提出深度时空混合图卷积模型,利用图卷积网络和图注意力网络的残差连接分别汇聚路网全局和局部信息,扩展图卷积的感受野范围,从而增强路网空间特征的提取能力.受Transformer在长序列预测上的启发,同时为减少计算复杂度,通过引入Informer模型来处理路网数据潜在的时间依赖性,实现对交通流参数的长期预测能力,并对城市天气和POI(医院,学校,商场)等外部因素进行编码来增强路网信息的属性.为验证所提出模型的性能,在真实数据集上开展实验,对模型进行准确性和可行性分析.实验结果表明,深度时空混合图卷积模型预测精度最高达到75.1%,较Transformer和Informer分别提升了2.5%和2.3%,在不同预测范围下都超过了其他基线模型,具有长期的交通预测能力.

关键词

交通预测 / 时空依赖 / 道路网络 / 图神经网络 / 长期预测

Key words

引用本文

引用格式 ▾
深度时空混合图卷积的城市交通预测模型[J]. 小型微型计算机系统, 2025, 46(01): 97-103 DOI:10.20009/j.cnki.21-1106/TP.2023-0401

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

57

访问

0

被引

详细

导航
相关文章

AI思维导图

/