深层油气相态多样性成因与次生地球化学作用强度评价:以塔里木盆地海相油气为例
朱光有 , 李婧菲 , 张志遥
地球科学 ›› 2025, Vol. 50 ›› Issue (06) : 2163 -2178.
深层油气相态多样性成因与次生地球化学作用强度评价:以塔里木盆地海相油气为例
Origin of Deep Oil and Gas Phase State Diversity and Evaluation of Secondary Geochemical Intensity:A Case Study of Marine Oil and Gas in Tarim Basin
,
塔里木盆地海相油气的地球化学性质与相态类型复杂多样,从一张油藏剖面上可以看到稠油、黑油、凝析油、天然气等共存.综合运用多种地球化学分析方法,获取了塔里木盆地深层海相油气的相态类型、次生作用过程等信息,通过对不同相态类型油气地球化学特征的对比研究,论证了海相油气遭受生物降解、气侵分馏、硫酸盐热化学还原反应(thermochemical sulfate reduction,TSR)、热裂解等次生地球化学作用的改造机制与过程;建立了基于硫代金刚烷、乙基降金刚烷等次生地球化学作用的产物对次生改造强度定量的评价参数公式,应用于油气性质与相态的定性预测,对于深层油气相态钻前预测具有一定的指导意义.
The geochemical properties and phase types of marine oil and gas in Tarim basin are complex and diverse. Heavy oil, normal oil, condensate and natural gas coexist from a reservoir profile. By comprehensively applying various geochemical analysis methods, the information of phase types, components and stable isotopes of deep-seated Marine oil and gas in Tarim basin is obtained, and the geochemical characteristics of different phase types of oil and gas are compared, and demonstrate a variety of secondary geochemical mechanisms and processes such as biodegradation, gas invasion and fractionation, thermochemical sulfate reduction (TSR), and thermal cracking of marine oil and gas; And further the quantitative evaluation parameters formulae for the strength of secondary transformation based on the products of secondary geochemistry such as thiadiamondoids and ethanodiamondoids were established respectively, can be effectively used in the qualitative prediction of the spatial distribution of oil and gas properties and phase behavior, the diversity of deep oil and gas phase formation mechanism and distribution of prediction before drilling and has certain theory and guiding significance.
生物降解 / 气侵分馏 / TSR / 热裂解 / 超深层油藏 / 塔里木盆地 / 石油地质.
biodegradation / gas invasion fractionation / TSR(sulfate thermochemical reduction) / thermal cracking / ultra-deep oil reservoir / Tarim basin / petroleum geology
| [1] |
Brooks,J.,Welte,D.,1984.Advances in Petroleum Geochemistry:Vol.1.Academic Press,London. |
| [2] |
Claypool,G.,Mancini,E.,1989.Geochemical Relationships of Petroleum in Mesozoic Reservoirs to Carbonate Source Rocks of Jurassic Smackover Formation,South West Alabama.American Association of Petroleum Geologists Bulletin,73:904-924. |
| [3] |
Connan,J.1984.Biodegradation of Crude Oils in Reservoirs.In:Brooks,J.,Welte,D.H.,eds.,Advances in Petroleum Geochemistry.Academic Press,London,298-335. |
| [4] |
Dahl,J.E.,Moldowan,J.M.,Peters,K.E.,et al.,1999.Diamondoid Hydrocarbons as Indicators of Natural Oil Cracking.Nature,399:54-57.https://doi.org/10.1038/19953 |
| [5] |
Dzou,L.I.P.,Hughes,W.B.,1993.Geochemistry of Oils and Condensates,K Field,Offshore Taiwan:A Case Study in Migration Fractionation.Organic Geochemistry,20(4):437-462.https://doi.org/10.1016/0146⁃6380(93)90092⁃p |
| [6] |
Grice,K.,Alexander,R.,Kagi,R.I.,2000.Diamondoid Hydrocarbon Ratios as Indicators of Biodegradation in Australian Crude Oils.Organic Geochemistry,31(1):67-73.https://doi.org/10.1016/S0146⁃6380(99)00137⁃0 |
| [7] |
Hanin,S.,Adam,P.,Kowalewski,I.,et al.,2002.Bridgehead Alkylated 2⁃Thia⁃Adamantanes:Novel Markers for Sulfurisation Processes Occurring under High Thermal Stress in Deep Petroleum Reservoirs.Chemical Communications,(16):1750-1751.https://doi.org/10.1039/b203551k |
| [8] |
Hill,R.J.,Tang,Y.C.,Kaplan,I.R.,2003.Insights into Oil Cracking Based on Laboratory Experiments.Organic Geochemistry,34(12):1651-1672.https://doi.org/10.1016/S0146⁃6380(03)00173⁃6 |
| [9] |
Huang,H.P.,Zhang,S.C.,Su,A.G.,2001.Geochemical Processes in Petroleum Migration and Accumulation.Experimental Petroleum Geology,23(3):278-284 (in Chinese with English abstract). |
| [10] |
Jones,D.M.,Head,I.M.,Gray,N.D.,et al.,2007.Crude⁃Oil Biodegradation via Methanogenesis in Subsurface Petroleum Reservoirs.Nature,451:176-180.https://doi.org/10.1038/nature06484 |
| [11] |
Kissin,Y.V.,1987.Catagenesis and Composition of Petroleum:Origin of n⁃Alkanes and Isoalkanes in Petroleum Crudes.Geochimica et Cosmochimica Acta,51(9):2445-2457.https://doi.org/10.1016/0016⁃7037(87)90296⁃1 |
| [12] |
Larter,S.,Wilhelms,A.,Head,I.,et al.,2003.The Controls on the Composition of Biodegraded Oils in the Deep Subsurface:Part 1:biodegradation Rates in Petroleum Reservoirs.Organic Geochemistry,34(4):601-613.https://doi.org/10.1016/s0146⁃6380(02)00240⁃1 |
| [13] |
Li,S.M.,Shi,Q.,Pang,X.Q.,et al.,2012.Origin of the Unusually High Dibenzothiophene Oils in Tazhong⁃4 Oilfield of Tarim Basin and Its Implication in Deep Petroleum Exploration.Organic Geochemistry,48:56-80.https://doi.org/10.1016/j.orggeochem.2012.04.008 |
| [14] |
Li,X.,Zhu,G.Y.,Zhang,Z.Y.,2024.Genesis of Ultra⁃Deep Dolostone and Controlling Factors of Large⁃Scale Reservoir: A Case Study of the Sinian Dengying Formation and the Cambrian Longwangmiao Formation in the Sichuan Basin.Science China: Earth Sciences,67(7): 2352-2382.https://doi.org/10.1007/s11430⁃023⁃1301⁃x |
| [15] |
Lin,L.H.,Michael,G.E.,Kovachev,G.,et al.,1989.Biodegradation of TarSand Bitumens from the Ardmore and Anadarko Basins,Carter County,Oklahoma.Organic Geochemistry,14(5):511-523.https://doi.org/10.1016/0146⁃6380(89)90031⁃4 |
| [16] |
Losh,S.,Cathles,L.,Meulbroek,P.,2002.Gas Washing of Oil along a Regional Transect,Offshore Louisiana.Organic Geochemistry,33(6):655-663.https://doi.org/10.1016/S0146⁃6380(02)00025⁃6 |
| [17] |
Ma,A.L.,Jin,Z.J.,Li,H.L.,et al.,2020.Secondary Alteration and Preservation of Ultra⁃Deep Ordovician Oil Reservoirs of North Shuntuoguole Area of Tarim Basin,NW China.Earth Science,45(5):1737-1753 (in Chinese with English abstract). |
| [18] |
Miao,Q.Y.,Xu,C.G.,Hao,F.,et al.,2024.Hydrocarbon Charging and Accumulation Process of the Large Bozhong19⁃6 Condensate Gas Reservoirs in the Southwestern Bozhong Sub⁃Basin,Bohai Bay Basin,China.Journal of Earth Science,35(2): 613-630.https://doi.org/10.1007/s12583⁃021⁃1457⁃4 |
| [19] |
Seifert,W.K.,Moldowan,M.J.,1978.Applications of Steranes,Terpanes and Monoaromatics to the Maturation,Migration and Source of Crude Oils.Geochimica et Cosmochimica Acta,42(1):77-95.https://doi.org/10.1016/0016⁃7037(78)90219⁃3 |
| [20] |
Seifert,W.K.,Michael Moldowan,J.,1979.The Effect of Biodegradation on Steranes and Terpanes in Crude Oils.Geochimica et Cosmochimica Acta,43(1):111-126.https://doi.org/10.1016/0016⁃7037(79)90051⁃6 |
| [21] |
Seifert,W.K.,Michael Moldowan,J.,Demaison,G.J.,1984.Source Correlation of Biodegraded Oils.Organic Geochemistry,6:633-643.https://doi.org/10.1016/0146⁃6380(84)90085⁃8 |
| [22] |
Shang,P.,Chen,H.H.,Hu,S.Z.,et al.,2020.Geochemical Characteristics of Crude Oil and Hydrocarbon Accumulation in the Ordovician of Yuqixi Area,Tarim Basin.Earth Science,45(3):1013-1026 (in Chinese with English abstract). |
| [23] |
Sun,C.H.,Zhu,G.Y.,Zheng,D.M.,et al.,2016.Characteristics and Controlling Factors of Fracture⁃Cavity Carbonate Reservoirs in the Halahatang Area,Tarim Basin.Bulletin of Mineralogy,Petrology and Geochemistry,35(5):1028-1036 (in Chinese with English abstract). |
| [24] |
Thompson,K.F.M.,1988.Gas⁃Condensate Migration and Oil Fractionation in Deltaic Systems.Marine and Petroleum Geology,5(3):237-246.https://doi.org/10.1016/0264⁃8172(88)90004⁃9 |
| [25] |
Wang,Y.P.,Zhang,S.C.,Wang,F.Y.,et al.,2006.Thermal Cracking History by Laboratory Kinetic Simulation of Paleozoic Oil in Eastern Tarim Basin,NW China,Implications for the Occurrence of Residual Oil Reservoirs.Organic Geochemistry,37(12):1803-1815.https://doi.org/10.1016/j.orggeochem.2006.07.010 |
| [26] |
Wei,Z.B.,Mankiewicz,P.,Walters,C.,et al.,2011.Natural Occurrence of Higher Thiadiamondoids and Diamondoidthiols in a Deep Petroleum Reservoir in the Mobile Bay Gas Field.Organic Geochemistry,42(2):121-133.https://doi.org/10.1016/j.orggeochem.2010.12.002 |
| [27] |
Wei,Z.B.,Moldowan,J.M.,Zhang,S.C.,et al.,2007.Diamondoid Hydrocarbons as a Molecular Proxy for Thermal Maturity and Oil cracking:Geochemical Models from Hydrous Pyrolysis.Organic Geochemistry,38(2):227-249.https://doi.org/10.1016/j.orggeochem.2006.09.011 |
| [28] |
Williams,J.A.,Bjorøy,M.,Dolcater,D.L.,et al.,1986.Biodegradation in South Texas Eocene Oils—Effects on Aromatics and Biomarkers.Organic Geochemistry,10(1-3):451-461.https://doi.org/10.1016/0146⁃6380(86)90045⁃8 |
| [29] |
Yan,L.,Yang,M.,Zhang,J.L.,et al.,2020.Distribution of Cambrian Source Rocks and Evaluation and Optimization of Favorable Zones in East Tarim Basin.Natural Gas Geoscience,31(5):667-674 (in Chinese with English abstract). |
| [30] |
Yang,C.P.,Geng,A.S.,Liao,Z.W.,et al.,2009.Quantitative Evaluation of Gas Invasion in Tazhong Area of Tarim Basin.Science in China (Series D),39(1): 51-60 (in Chinese). |
| [31] |
Zhang,D.J.,Huang,D.F.,Li,J.C.,1988.Biodegraded Sequence of Karamay Oils and Semi⁃Quantitative Estimation of Their Biodegraded Degrees in Junggar Basin,China.Organic Geochemistry,13(1-3):295-302.https://doi.org/10.1016/0146⁃6380(88)90048⁃4 |
| [32] |
Zhang,S.C.,Liang,D.G.,Zhang,B.M.,et al.,2004.Formation of Marine Oil and Gas in Tarim Basin.In:Jia,C.Z.,ed.,Tarim Basin Petroleum Geology and Exploration Series 7.Petroleum Industry Publishing House,Beijing,299-344 (in Chinese). |
| [33] |
Zhang,S.C.,Zhu,G.Y.,He,K.,2011.The Effects of Thermochemical Sulfate Reduction on Occurrence of Oil⁃Cracking Gas and Reformation of Deep Carbonate Reservoir and the Interaction Mechanisms.Acta Petrologica Sinica,27(3):809-826 (in Chinese with English abstract). |
| [34] |
Zhang,Y.,Cao,Z.C.,Chen,H.H.,et al.,2023.Difference of Hydrocarbon Charging Events and Their Contribution Percentages to Ordovician Reservoirs among Strike⁃Slip Fault Belts in Shunbei Area,Tarim Basin.Earth Science,48(6): 2168-2188 (in Chinese with English abstract). |
| [35] |
Zhang,Z.,Yang,X.Z.,Hao,F.,et al.,2024.Fluid Inclusion Characteristics and Hydrocarbon Accumulation Process in Lungu Area,Tarim Basin.Earth Science,49(7): 2407-2419 (in Chinese with English abstract). |
| [36] |
Zhang,Z.,Zhang,Y.,Zhu,G.,et al.,2024a.Multiphase Pools Caused by Gas Invasion in Deep Ordovician Carbonates from the Tazhong Area,Tarim Basin,China.AAPG Bulletin,108(5): 817-848..https://doi.org/10.1306/12212318282 |
| [37] |
Zhang,Z.,Zhu,G.,Chen,W.,et al.,2024b.Cryogenia⁃Cambrian Tectono⁃Sedimentary Evolution,Paleoclimate and Environment Effects,and Formation of Petroleum Resources in the Tarim Block.Earth⁃Science Reviews,248:104632.https://doi.org/10.1016/j.earscirev.2023.104632 |
| [38] |
Zhang,Z.Y.,Zhu,G.Y.,Zhang,Y.J.,et al.,2018.The Origin and Accumulation of Multi⁃Phase Reservoirs in the East Tabei Uplift,Tarim Basin,China.Marine and Petroleum Geology,98:533-553.https://doi.org/10.1016/j.marpetgeo.2018.08.036 |
| [39] |
Zhao,J.Z.,Li,Q.M.,2003.Formation and Distribution of Oil and Gas Reservoirs in Tarim Basin.In:Jia,C.Z.,ed.,Tarim Basin petroleum Geology and exploration Series 8.Petroleum Industry Publishing House,Beijing,191-219 (in Chinese). |
| [40] |
Zhao,M.J.,Zhang,S.C.,Liao,Z.Q.,2001.The Cracking Gas from Crude Oil and Its Significance in Gas Exploration.Petroleum Exploration and Development,28(4):47-49 (in Chinese with English abstract). |
| [41] |
Zhou,X.X.,Lü,X.X.,Zhu,G.Y.,et al.,2019.Origin and Formation of Deep and Superdeep Strata Gas from Gucheng⁃Shunnan Block of the Tarim Basin,NW China.Journal of Petroleum Science and Engineering,177:361-373.https://doi.org/10.1016/j.petrol.2019.02.059 |
| [42] |
Zhu,G.Y.,Hou,J.K.,Ren,R.,et al.,2025.Tectonic⁃Sedimentary Responses to Major Geological Events,Source Rock Formation Mechanisms,and Resource Potential at Depths Greater than 10 000 m in the Cratonic Basins of China.APG Bulletin,109(4): 497-544.https://doi.org/10.1306/03182523116 |
| [43] |
Zhu,G.Y.,Jiang,H.,Huang,S.P.,et al.,2025.New Progress of Marine Hydrocarbon Accumulation Theory and Prediction of Super Large Oil and Gas Areas in Deep Strata Buried at a Depth of about 10 000 Meters in China.Acta Petrolei Sinica,46(4): 816-842 (in Chinese with English abstract). |
| [44] |
Zhu,G.Y.,Li,T.T.,Zhang,Z.Y.,et al.,2022.Nitrogen Isotope Evidence for Oxygenated Upper Ocean during the Cryogenian Interglacial Period.Chemical Geology,604: 120929.https://doi.org/10.1016/j.chemgeo.2022.120929 |
| [45] |
Zhu,G.Y.,Wang,P.J.,Li,T.T.,et al.,2021a.Nitrogen Geochemistry and Abnormal Mercury Enrichment of Shales from the Lowermost Cambrian Niutitang Formation in South China: Implications for the Marine Redox Conditions and Hydrothermal Activity.Global and Planetary Change,199: 103449.https://doi.org/10.1016/j.gloplacha.2021.103449 |
| [46] |
Zhu,G.Y.,Li,T.T.,Zhao,K.,et al.,2021b.Mo Isotope Records from Lower Cambrian Black Shales,Northwestern Tarim Basin (China): Implications for the Early Cambrian Ocean.GSA Bulletin,134(1-2): 3-14.https://doi.org/10.1130/b35726.1 |
| [47] |
Zhu,G.Y.,Zhang,Z.Y.,Jiang,H.,et al.,2023a.Evolution of the Cryogenian Cratonic Basins in China,Paleo⁃Oceanic Environment and Hydrocarbon Generation Mechanism of Ancient Source Rocks,and Exploration Potential in 1 000 m⁃Deep Strata.Earth⁃Science Reviews,244: 104506.https://doi.org/10.1016/j.earscirev.2023.104506 |
| [48] |
Zhu,G.Y.,Li,X.,Li,T.T.,et al.,2023b.Genesis Mechanism and Mg Isotope Difference between the Sinian and Cambrian Dolomites in Tarim Basin.Science China Earth Sciences,66(2): 334-357.https://doi.org/10.1007/s11430⁃021⁃1010⁃6 |
| [49] |
Zhu,G.Y.,Li,X.,Zhao,B.,et al.,2024.Genesis and Reservoir Preservation Mechanism of 10 000 m Ultradeep Dolomite in Chinese Craton Basin.Deep Underground Science and Engineering,: dug2.12112.https://doi.org/10.1002/dug2.12112 |
| [50] |
Zhu,G.Y.,Zhang,S.C.,Su,J.,et al.,2012.The Occurrence of Ultra⁃Deep Heavy Oils in the Tabei Uplift of the Tarim Basin,NW China.Organic Geochemistry,52:88-102.https://doi.org/10.1016/j.orggeochem.2012.08.012 |
| [51] |
Zhu,G.Y.,Zhang,Z.Y.,Zhou,X.X.,et al.,2019a.The Complexity,Secondary Geochemical Process,Genetic Mechanism and Distribution Prediction of Deep Marine Oil and Gas in the Tarim Basin,China.Earth⁃Science Reviews,198:102930.https://doi.org/10.1016/j.earscirev.2019.102930 |
| [52] |
Zhu,G.Y.,Zhang,Z.Y.,Milkov,A.V.,et al.,2019b.Diamondoids as Tracers of Late Gas Charge in Oil Reservoirs:Example from the Tazhong Area,Tarim Basin,China.Fuel,253:998-1017.https://doi.org/10.1016/j.fuel.2019.05.030 |
| [53] |
Zhu,G.Y.,Milkov,A.V.,Zhang,Z.Y.,et al.,2019c.Formation and Preservation of a Giant Petroleum Accumulation in Superdeep Carbonate Reservoirs in the Southern Halahatang Oil Field Area,Tarim Basin,China.AAPG Bulletin,103(7):1703-1743.https://doi.org/10.1306/11211817132 |
中国石油天然气股份有限公司科学研究与技术开发项目(2019B⁃04)
中国石油天然气股份有限公司科学研究与技术开发项目(2018A⁃0102)
/
| 〈 |
|
〉 |