川西稻城岩体北部花岗岩年代学、地球化学和成岩构造环境

程顺波 ,  王晓地 ,  崔森 ,  赵武强 ,  杨文强 ,  刘浩 ,  刘君豪 ,  胥明

地球科学 ›› 2024, Vol. 49 ›› Issue (06) : 1966 -1982.

PDF (7119KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (06) : 1966 -1982. DOI: 10.3799/dqkx.2022.057

川西稻城岩体北部花岗岩年代学、地球化学和成岩构造环境

作者信息 +

Zircon U-Pb Chronology, Geochemistry, and Their Tectonic Setting of Granitic Rocks from Northern Daocheng Batholith in West Sichuan

Author information +
文章历史 +
PDF (7288K)

摘要

川西稻城岩体北部花岗岩成因和成岩构造环境争议较大.本次工作选择该岩基北部花岗岩为研究对象,进行了岩石学、锆石U-Pb年代学、地球化学和Hf同位素研究.LA-ICP-MS锆石U-Pb测年结果显示,岩体北部花岗岩形成时代213~212 Ma,略晚于南部.岩性以花岗闪长岩和二长花岗岩为主,前者含较多暗色微粒包体(mafic microgranular enclaves,MME).代表性样品地球化学上具有富钠、偏铝-弱过铝质、富大离子亲石元素的特征.ε Hft)值非常分散,介于-16.6~-2.4(均值-5.0),对应的t 2DM为2.04~1.25 Ga(均值1.4).结合区域地质证据分析,稻城岩体为I型花岗岩,其源区以中元古代康定群变质玄武岩为主,酸性端元含较多变质杂砂岩.花岗岩的形成与后造山环境下俯冲板片断离导致的软流圈上涌、中下地壳受烘烤部分熔融关系密切.

关键词

构造环境 / 花岗岩 / 古特提斯 / 三叠纪 / 稻城 / 川西 / 岩石学.

Key words

tectonic setting / granitoid / paleo-tethys / Triassic / Daocheng / West Sichuan / petrology

引用本文

引用格式 ▾
程顺波,王晓地,崔森,赵武强,杨文强,刘浩,刘君豪,胥明. 川西稻城岩体北部花岗岩年代学、地球化学和成岩构造环境[J]. 地球科学, 2024, 49(06): 1966-1982 DOI:10.3799/dqkx.2022.057

登录浏览全文

4963

注册一个新账户 忘记密码

“三江”构造带位于青藏高原东部,它完整地记录了冈瓦纳与潘吉亚大陆裂解-增生和欧亚大陆聚合的演化历史,是特提斯构造演化的典型缩影,为全球构造动力学研究的热点地区(邓军等,2011;Deng et al.,2014).义敦岛弧(图1a)是“三江”构造带的一部分,由东侧的甘孜-理塘洋于晚三叠世向西俯冲而形成.近年来,国内外学者在义敦岛弧构造体系、岩浆作用和成矿作用研究方面取得较多进展(侯增谦和莫宣学,1991;侯增谦等,2001;Reid et al.,2007He et al.,2013Wang et al.,2013Deng et al.,2014Peng et al.,2014Li et al.,2017Wu et al.,2017Gao et al.,2018Wang et al.,2018Jiang et al.,2020;朱弟成等,2021),但是仍然在区内晚三叠世侵入岩的成因和构造环境上存在较大争议.争议包括岛弧环境下下地壳部分熔融(侯增谦等,2001;Reid et al.,2007Leng et al.,2012He et al.,2013Wang et al.,2018;秦蒙等,2019)、俯冲物质交代的富集地幔部分熔融(Li et al.,2017)、同碰撞背景下幔源岩浆底侵导致中元古代下地壳部分熔融(王楠等,2016)、后造山环境下下地壳拆沉、软流圈上涌底侵引发的地壳部分熔融(Peng et al.,2014)、后造山环境下元古代康定群和变质沉积物混熔(Wu et al.,2017).针对这一问题,本文聚焦该侵入岩带中部的稻城岩体,对岩体北部花岗岩进行详细的岩石学、锆石U-Pb年代学、地球化学和Hf同位素研究,尝试探讨岩体成因和成岩构造意义,以期为义敦岛弧晚三叠世岩浆作用及构造背景研究提供参考.

1 区域和岩体地质

义敦岛弧位于三江造山带中北部,夹持于松潘-甘孜地体和羌塘地块之间,东以甘孜-理塘缝合带为界,西以金沙江缝合带为限,呈北西向绵延数千公里(图1a)(李文昌等,2013;Deng et al.,2014).以乡城-格咱断裂为界,义敦岛弧可分为中咱地块和东义敦岛弧两个次级构造单元.中咱地块由古生代碳酸盐岩台地和铁镁质熔岩组成,在早三叠世发生变形和变质(Reid et al.,2007).东义敦岛弧主要由三叠纪火山-沉积序列和晚三叠世花岗岩组成.三叠纪火山沉积序列通常称为义敦群,自下而上可分为列义组、曲嘎寺组、图姆沟组和拉纳山组(Wang et al.,2013),其中图姆沟组包含上千米的中酸性岛弧火山岩系(Leng et al.,2014).晚三叠世花岗岩带由北往南有阿吉森多、苏措玛、甲多措、措交玛、稻城(也称海子山)、冬措、马雄沟等岩体,岩性以花岗闪长岩和二长花岗岩为主,次为石英闪长岩(侯增谦等,2001;Wu et al.,2017).

稻城岩体出露于晚三叠世花岗岩带中南部,出露面积约2 800 km2,呈北北西向展布,侵入到三叠纪火山-沉积序列中(图1),围岩包括英安岩、流纹岩、火山碎屑岩等(侯增谦等,2001;王楠等,2016;张瑞刚等,2018).岩性主要包括二长花岗岩和花岗闪长岩,此外还含有少量钾长花岗岩.花岗闪长岩中普遍存在暗色微粒包体(mafic microgranular enclaves,MME),核部尤其发育.包体形态呈椭圆状,长条状、少数呈不规则状,粒径在(2~5) cm×(10~30) cm,定向性不明显(张瑞刚等,2018)(图2a2b).岩体南部形成时代为215~224 Ma(He et al.,2013Peng et al.,2014Wu et al.,2017).

2 样品采集与描述

本次研究共采集了花岗闪长岩、花岗闪长岩内包体(MME)及二长花岗岩等3种岩性样品.其中年龄和Hf同位素样品3个,地球化学和Nd同位素样品11个,采样位置见图1b.花岗闪长岩样品具似斑状结构、块状构造(图2a2b).斑晶为斜长石和石英,含量1%~8%.基质粒径2~7 mm,长英质矿物由石英、斜长石(An28)、正长石组成(图2c),代表性样品D302-1各矿物含量分别为20%~25%、48%~58%、8%~12%.局部长石高岭土化.暗色矿物为黑云母和角闪石.黑云母黑色薄片状到薄板状,含量3%~6%,局部绿泥石化.角闪石黑色短柱状,粒径1 cm×(3~5) cm,含量1%~12%.副矿物有磷灰石、锆石、褐帘石、不透明矿物等.MME具微细粒粒状结构,成分为花岗闪长质、英云闪长质.样品D011-4各矿物成分为斜长石(An38-40)45%~50%,石英20%~22%,黑云母15%~18%,角闪石3%~5%.见有捕获石英斑晶,石英斑晶周围发育黑云母反应边(图2d),长石、石英等矿物内部可见大量针状磷灰石(图2e).

二长花岗岩样品具似斑状结构、块状构造(图2f).斑晶为斜长石、正长石和石英,含量3%~12%,且石英含量略多于长石.基质粒径1~4 mm,以1~2 mm为主.长英质矿物由石英、斜长石、正长石组成(图2f),含量分别为25%~28%、38%~40%、33%~35%.暗色矿物为黑云母,一般黑色到棕黑色鳞片状,少数充填在长英质矿物颗粒之间,含量在2%~3%.副矿物有褐帘石(图2g)、锆石、磷灰石、不透明矿物等.

3 样品处理和测试方法

测年和Hf同位素花岗岩样品破碎和锆石挑选由河北省欣航测绘院岩矿实验测试中心完成.将环氧树脂和乙二醇胺按照1∶7混合均匀,然后灌注到已经排好的锆石靶上,放至恒温箱(60°)约12 h固结成型.磨蚀和抛光树脂靶,直至锆石核心部位暴露.阴极发光图像在北京锆石领航技术服务公司拍摄,并结合透射光和反射光图像观察锆石内部结构.其他测试均在中国地质调查局中南矿产资源监督检测中心完成.

锆石U-Pb同位素定年分析在LA-ICP-MS仪器上完成,激光剥蚀系统为Newwave UP213,ICP-MS型号为Finnigan Neptune,所用斑束直径为32 µm,以He为载气.采样方式为单点剥蚀,数据采集采用时间分辨动态模式接收.每个时间分辨分析数据包括20~30 s的空白信号和50 s的样品信号.样品分析前用锆石NIST610进行仪器调试,分析时以锆石GJ-1为外标.每测定10个样品点前后重复测定两个锆石GJ-1对样品进行校正,中间测量一个锆石标样Plesovice.207Pb/206Pb、206Pb/238U、207Pb/235U的测试精度(2σ)小于2%.对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMS DataCal (Liu et al.,2008, 2010),年龄谐和图制作和年龄权重平均计算采用软件Isoplot 3.0(Ludwig,2003).

主量元素Si和烧失量采用重量法;Al和Fe2+采用容量法;Fe3+、Ti和P采用分光光度法;K、Na、Ca、Mg和Mn采用原子吸收光谱法.微量元素和稀土元素测试在Thermo X series 2型电感耦合等离子质谱仪上完成,标样采用10 mg/L多元素混合内标(美国PerkinElmer 公司配制),相对偏差(relative standard deviation,RSD)均小于10%.

锆石Hf同位素分析在Neptune Plus型多接收MC-ICP-MS仪器上进行.准分子激光发生器产生的深紫外光束经匀化光路聚焦于锆石表面,能量密度为6.0 J/cm2,束斑直径为43 µm,频率为8 Hz,共剥蚀40 s,剥蚀气溶胶由氦气送入MC-ICP-MS完成测试.测试过程中每隔10颗样品锆石,交替测试2颗标准锆石(包括GJ-1、91500、Plešovice、Mud Tank、Penglai),以检验锆石Hf同位素比值数据质量.对分析数据的离线处理采用软件ICP MS DataCal(Liu et al.,2008, 2010)完成.采用的计算参数分别为:(176Lu/177Hf)CHUR=0.033 2,(176Hf/177Hf)CHUR=0.282 772;(176Lu/177Hf)DM =0.038 4,(176Hf/177Hf)DM=0.28 325(Blichert-Toft and Albarade,1997;Griffin et al.,2002).176Lu的衰变常数为1.867×10-11 a-1Söderlund et al.,2004).外标GJ-1的176Hf/177Hf测试值为0.282 007±14(N=5).

4 锆石U-Pb年龄

3个样品锆石颜色为无色到浅黄色,形态也比较相似,均表现为自形短柱状,长宽比为2~3,部分锆石被破碎呈碎片状.锆石中常见磷灰石包裹体.CL图像显示绝大多数被测锆石为具有韵律环带的岩浆锆石(Corfu,2003;吴元保和郑永飞,2004)(图3).少量为具有“老核新壳”的复合型锆石,核部已基本圆化,无环带或显示云雾状分带,边部具有比较明显的岩浆韵律环带.每个样品均选取了25颗锆石颗粒进行分析,分析点都位于锆石边部.各样品锆石的U-Th-Pb同位素分析结果见表1.

4.1 粗中粒花岗闪长岩(D303-1)

D303-1样品锆石Th含量为(95~486)×10-6,U含量为(280~866)×10-6,Th/U比值介于0.34~0.79,放射成因Pb含量为(10.16~34.11)×10-6.3、8、22号测点信号不稳定,表1中未列出.其余22个测点207Pb/235U、206Pb/238U比值非常一致,均位于谐和曲线附近.22个测点计算获得206Pb/238U年龄加权平均值为(213±1) Ma(95%置信度,MSWD=0.16)(图3a).

4.2 粗中粒二长花岗岩(D304-1)

D304-1样品锆石Th含量为(105~626)×10-6,U含量为(250~1 239)×10-6,Th/U比值介于0.30~0.65,放射成因Pb含量为(10.27~45.08)×10-6.1、8、12、18、21、25测点数据信号不稳定,表1中未列出.其余19个测点同位素比值非常一致,均位于谐和曲线附近.19个测点计算获得样品的206Pb/238U年龄加权平均值为(212±1) Ma(95%置信度,MSWD=0.10)(图3b).

4.3 中细粒二长花岗岩(D002-1)

D002-1样品锆石Th含量为(79.3~819.0)×10-6,U含量为(188~2 008)×10-6,Th/U比值介于0.41~0.80,放射成因Pb含量为(7.29~76.98)×10-6表1).4、13、14号测点信号不稳定,表1中未列出.其余22个测点同位素比值非常一致,均位于谐和曲线附近.22个测点计算获得样品的206Pb/238U年龄加权平均值为(212±1) Ma(95%置信度,MSWD=0.88)(图3c).

5 地球化学和Hf同位素

5.1 地球化学特征

研究区花岗闪长岩及内部MME、花岗岩的主量和微量元素分析结果见表2.在3种类型样品中,花岗闪长岩样品SiO2(65.10%~70.58%)含量相对较低,FeOT(4.22%~5.67%)、MgO(0.65%~2.04%)、CaO(2.46%~4.50%)、全碱(Alk)(5.50%~6.47%)和P2O5(0.070%~0.115%)含量相对较高.花岗闪长岩中MME样品SiO2(64.40%~66.80%)和全碱(5.29%~5.82%)含量最低;FeOT(6.32%~7.40%)和P2O5(0.154%~0.168%)含量最高;MgO(0.938%~1.66%)、CaO(3.09%~3.76%)含量也比较高.二长花岗岩样品SiO2(74.53%~76.26%)和全碱(6.63%~7.88%)含量最高,FeOT(2.09%~2.71%)、MgO(0.088%~0.338%)、CaO(0.896%~1.69%)和P2O5(0.012%~0.034%)含量最低.大部分花岗闪长岩和二长花岗岩样品表现出高钾钙碱性特征,MME样品表现出钙碱性特征(图4a).花岗闪长岩A/CNK值为0.91~1.02,MME为1.02~1.04,二长花岗岩为1.02~1.06,显示该岩体为偏铝质到弱过铝质(图4b).在元素比值方面,F/(F+M)值花岗闪长岩和MME样品相对略低,分别为0.74~0.87和0.82~0.87;二长花岗岩较高,为0.86~0.97.

相对于全球大陆地壳平均值,花岗闪长岩及包体样品均显著富集元素Rb、Th、U、Nb、Ta和Y,明显亏损Sr,贫Cr、Co、Ni,并具有相近的Ba含量;Rb/Sr值、Th/U值略高,Nb/Ta值和Zr/Hf值略低.除D305-1外,二长花岗岩样品均显著富集元素Rb、Th、Nb、Ta和Y,明显亏损Ba、Sr、U、Zr,贫Cr、Co、Ni;Rb/Sr值偏高,Nb/Ta值和Zr/Hf值略低,Th/U值上下波动较大.在原始地幔标准化微量元素蛛网图上(图5a),花岗闪长岩、MME和二长花岗岩样品特征非常一致,均表现出强烈富集元素Rb、K、Th、U,相对亏损元素Ba、Nb、Sr、P、Ti的特征.相对于花岗闪长岩及MME,二长花岗岩样品Ba、Sr、P、Ti亏损更加严重.

花岗闪长岩样品ΣREE含量在144.15~208.03 μg/g,MME样品ΣREE含量在96.31~136.01 μg/g.二长花岗岩样品ΣREE含量在104.91~178.16 μg/g,略低于花岗闪长岩.在稀土元素配分图解上(图5b),花岗闪长岩、MME和二长花

岗岩样品都具有比较类似的右倾配分曲线,花岗闪长岩样品(La/Yb)N值为4.13~12.76,MME样品(La/Yb)N值为1.70~4.97,二长花岗岩样品(La/Yb)N值为2.54~13.17,以花岗闪长岩样品最高.花岗闪长岩样品δEu值介于0.53~0.66,MME样品δEu值介于0.37~0.41,二长花岗岩样品δEu值介于0.14~0.54,以二长花岗岩最低.

5.2 Hf同位素特征

本次研究选取花岗闪长岩样品D303-1和二长花岗岩样品D002-1、D304-1各20个测点进行了原位Hf同位素分析,测点的ε Hft)值以及二阶段模式年龄一般按测点年龄来计算.结果显示,绝大部分分析点176Lu/177Hf≤0.002(表3),指示锆石形成后放射成因Hf积累十分有限(Kinny and Maas,2003).花岗闪长岩样品的176Hf/177Hf比值在0.282 388~0.282 577,计算的ε Hft)值分布在-2.4~-9.1 (图6),平均值为-4.7,Hf二阶段模式年龄(t Hf2DM)在1.25~1.62 Ga,平均值为1.38 Ga.二长花岗岩样品的176Hf/177Hf比值在0.282 171~0.282 564,ε Hft)值分布在-2.5~-16.6,平均值为-5.4,t Hf2DM在1.28~2.04 Ga,平均值为1.41 Ga.6 讨论

6.1 岩石成因

花岗岩主要分为I型、S型和 A型3种,不同类型花岗岩具有不同矿物学特征和地球化学指标,如I型含角闪石、S型含过铝矿物、A型含碱性矿物等(Chappell and White,1992Whalen et al.,1987).研究区稻城花岗岩岩石组合为花岗闪长岩和二长花岗岩,基性端元含有I型花岗岩的特征矿物角闪石(Wu et al.,2017;张瑞刚等,2018).所有样品均表现出富Na的特征,如花岗闪长岩样品Na含量3.02%~3.30%,二长花岗岩样品Na含量2.65%~3.25%;而且具有弱过铝质到偏铝质的特点.样品P2O5含量也较低,并随Rb含量增加而降低;Th含量随Rb含量增加而增加,呈现出I型花岗岩演化趋势(图7).最初I型花岗岩被认为是由下地壳变质幔源火成岩部分熔融而来,S型花岗岩由中上地壳变质沉积岩熔融而来(Chappell and White,1992).但是

两类花岗岩同位素相互过渡特征显示其源区成分并不单一,于是许多学者提出花岗岩是由地壳内不同比例幔源火成岩和沉积岩混熔融形成的连续谱系(Castro et al.,1991Leake,1990;程顺波等,2013).

对于义敦地体晚三叠世侵入岩带的源区,不同学者提出了不同的看法(侯增谦等,2001;He et al.,2013;Peng et al.,2014;Wu et al.,2017).早期学者注意到花岗岩锶同位素呈现I、S过渡特征,I Sr值在0.708~0.711,于是提出它们或者来自壳-幔混合源区,或者由结晶的幔源岩浆与壳源岩浆大规模混合而成(侯增谦等,2001).其他学者基于侵入岩广泛的Hf同位素组成(-9.8~3.4),尤其是正εHft)值和中元古代二阶段Hf模式年龄,提出花岗岩母岩浆由亏损地幔源区岩浆和正常地壳源区岩浆混合形成的(He et al.,2013).尽管在稻城花岗闪长岩内发现了MME,但是MME成分和斜长石An牌号不连续现象反映的是浅部岩浆房内中酸性岩浆之间的混合作用(张瑞刚等,2018),无法作为壳幔岩浆混合的证据.而且幔源岩浆和壳源岩浆混合形成的花岗岩一般具有A型花岗岩属性,所以壳幔岩浆混合成因值得商榷.

后续研究也记录了整个侵入岩带同位素过渡特征.除阿吉森多岩体以外,其他花岗岩I Sr值为0.706~0.710,ε Ndt)为-3.2~-9.5(Wu et al.,2017).岩带ε Hft)值更是更加分散,介于-22.2~3.3,而且单个花岗岩样品也呈现出分散的Hf同位素特征,既包含幔源新生地壳组分信息,又包含成熟地壳组分信息(Peng et al.,2014Wu et al.,2017;本文).所以学者们更倾向从源区混合角度去解释这些特征.多人研究显示,岩带花岗岩样品在锶钕同位素图解中落入元古代康定群和三叠纪沉积物之间,在ε Hft)-t图解中位于康定群演化区下部及下方区域(图6),指示新元古代康定群为岩带花岗岩源区的基性端元,成熟度更高的变质沉积岩为其酸性端元(Peng et al.,2014;Wu et al.,2017).在主量元素判别图解中,整个岩带花岗岩样品落入变质玄武岩(或角闪岩)和变质杂砂岩区域,指示岩带花岗岩源区由不同比例的变质玄武岩和变质杂砂岩混合而成(图8).与区域花岗岩一致,稻城花岗岩样品在ε Hft)-t图解(图6)中紧邻康定群分布、在主量元素判别图(图8)中主要落入变质玄武岩(或角闪岩)区域以及其与变质杂砂岩相交区域,显示源区主要为康定群变质玄武岩,酸性端元含有较多变质杂砂岩.还有学者提出同时期略早的新生岛弧地壳可以作为花岗岩的主要源区(Wang et al.,2013),但是更老的Nd和Hf t 2DM排除了这种可能(Wu et al.,2017).

6.2 成岩构造环境

对于义敦岛弧晚三叠世侵入岩带的成岩构造环境,目前仍然存在争议(侯增谦等,2001,2004;Roger,2010Peng et al.,2014;Wu et al.,2017;朱弟成等,2021).早期研究根据侵入岩与晚三叠世弧火山岩在空间上伴生、时间上重叠、成分上相似将晚三叠世侵入岩划入义敦岛弧岩浆岩范畴(侯增谦等,2001,2004).整个岩带是在甘孜-理塘洋壳西向俯冲环境下形成的,北部昌台地区甘孜-理塘洋壳向西俯冲的速度较快、角度较陡;南部香格里拉地区洋壳俯冲速度较慢、角度较缓(侯增谦等,2004).稍后的学者广泛引用这一观点解释昌台地区侵入岩(He et al.,2013;秦蒙等,2019)、香格里拉地区晚三叠世斑岩成因及铜多金属矿床成矿模式(Wang et al.,2011Leng et al.,2012Li et al.,2017Gao et al.,2018Wang et al.,2018).相反,Roger et al.(2010)提出这些中-晚三叠世火成岩是金沙江洋东向俯冲的产物.最近的研究尝试用后造山模型来解释晚三叠世侵入岩的成因(Peng et al.,2014;Wu et al.,2017).如造山带垮塌模型强调富集岩石圈地幔及部分下地壳拆沉的重要性,正是由于它们的拆沉引发软流圈上涌底侵到下地壳,并烘烤之上的地壳形成部分熔融(Peng et al.,2014).其证据包括香格里拉地区的埃达克质斑岩体地球化学和同位素特征具有下地壳属性(Peng et al.,2014)、甘孜-理塘缝合带以东松潘-甘孜褶皱带发育同时期的A型花岗岩和高钾埃达克岩组合(Zhang et al.,2006;时章亮等,2009;Yuan et al.,2010).尤其是后者,显示该时期为后造山(伸展)环境(Barbarin,1999Wang et al.,2006).俯冲板片断离模型强调地质事件的连续性(Wu et al.,2017).该模型提出甘孜-理塘洋盆关闭后,俯冲板片回撤、断离诱发软流圈上涌,从而形成整个侵入岩带.

造成俯冲模式和后造山模式分歧的关键在于甘孜-理塘缝合带缺乏定年载体,无法准确确定甘孜-理塘洋的闭合时间.早期研究将侵入岩带的最晚形成年龄(208~206 Ma)作为划分俯冲阶段和碰撞造山阶段的时间分界点(侯增谦等,2001),晚期研究坚持将它们定位到后造山阶段(Peng et al.,2014;Wu et al.,2017).最近有学者发现了侵位到理塘缝合带内部的花岗岩岩株,形成时代约217 Ma,这说明甘孜-理塘洋至少在岩浆活动峰期之前已经闭合,晚三叠世岩浆活动主要形成于后造山背景(朱弟成等,2021).稻城岩体北部花岗岩侵位时代为213~212 Ma,明显晚于217 Ma,指示其形成于后造山环境.南部花岗岩侵位时代为224~215 Ma(Wu et al.,2017),不能明确晚于甘孜-理塘洋闭合时间.但是根据区域上中上三叠统卷入南北向造山褶皱系统而侵入岩带没有卷入这一事实判断,南部花岗岩也形成于后造山环境.考虑到整个侵入岩带呈南北向延绵上千公里,时间上与义敦岛弧火山喷发作用间隔不长,岩性以I型花岗岩为主,用俯冲板片断离机制解释软流圈上涌作用更为合理,即甘孜-理塘俯冲板片断离导致软流圈上涌底侵到下地壳底部,之上的地壳受烘烤部分熔融形成岩浆并上升、就位形成稻城岩体.

7 结论

(1)稻城岩体北部花岗岩形成时代213~212 Ma,具富钠、偏铝-弱过铝性质,εHft)值为分散的低负值.(2)稻城岩体北部花岗岩成因类型为I型,岩石源区以中元古代康定群变质玄武岩为主,酸性端元含较多变质杂砂岩.花岗岩形成与后造山伸展环境下板片断离机制诱导的软流圈上涌、中下地壳受烘烤部分熔融关系密切.

参考文献

[1]

Altherr,R.,Holl,A.,Hegner,E.,et al.,2000.High-Potassium,Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany).Lithos,50(1-3):51-73.https://doi.org/10.1016/s0024-4937(99)00052-3

[2]

Barbarin,B.,1999.A Review of the Relationships between Granitoid Types,Their Origins and Their Geodynamic Environments.Lithos,46(3):605-626.https://doi.org/10.1016/s0024-4937(98)00085-1

[3]

Blichert-Toft,J.,Albarède,F.,1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters,148(1-2):243-258.https://doi.org/10.1016/s0012-821x(97)00040-x

[4]

Castro,A.,Moreno-Ventas,I.,de la Rosa,J.D.,1991.H-Type (Hybrid) Granitoids:A Proposed Revision of the Granite-Type Classification and Nomenclature.Earth-Science Reviews,31(3-4):237-253.https://doi.org/10.1016/0012-8252(91)90020-g

[5]

Chappell,B.W.,White,A.J.R.,1992.I- and S-Type Granites in the Lachlan Fold Belt.Earth and Environmental Science Transactions of the Royal Society of Edinburgh,83(1-2):1-26.https://doi.org/10.1017/s0263593300007720

[6]

Cheng,S. B., Fu,J. M., Ma,L.Y.,et al., 2013. Geochemical Characteristics, Petrogenesis and Ore Potential Evaluation of Caledonian Granitoids in Nanling Range, South China. Geology and Mineral Resources of South China,29(1):1-11 (in Chinese with English abstract).

[7]

Corfu,F.,John,M.H.,Hoskin,P.W.O.,et al.,2003.Atlas of Zircon Textures.In:Hanachar,J.M.,Hoskin,P.W.O.,eds..Zircon.Reviews in Mineralogy and Geochemistry,53(1):469-500.

[8]

Deng,J.,Wang,Q.F.,Li,G.J.,et al.,2014.Tethys Tectonic Evolution and Its Bearing on the Distribution of Important Mineral Deposits in the Sanjiang Region,SW China.Gondwana Research,26(2):419-437.https://doi.org/10.1016/j.gr.2013.08.002

[9]

Deng,J.,Yang,L.Q.,Wang,C.M.,2011.Research Advances of Superimposed Orogenesis and Metallogenesis in the Sanjiang Tethys.Acta Petrologica Sinica,27(9):2501-2509 (in Chinese with English abstract).

[10]

Gao,X.,Yang,L.Q.,Orovan,E.A.,2018.The Lithospheric Architecture of Two Subterranes in the Eastern Yidun Terrane,East Tethys:Insights from Hf-Nd Isotopic Mapping.Gondwana Research,62:127-143.https://doi.org/10.1016/j.gr.2018.02.010

[11]

Griffin,W.L.,Wang,X.,Jackson,S.E.,et al.,2002.Zircon Chemistry and Magma Mixing,SE China:In-Situ Analysis of Hf Isotopes,Tonglu and Pingtan Igneous Complexes.Lithos,61(3-4):237-269.https://doi.org/10.1016/s0024-4937(02)00082-8

[12]

He,D.F.,Zhu,W.G.,Zhong,H.,et al.,2013.Zircon U-Pb Geochronology and Elemental and Sr-Nd-Hf Isotopic Geochemistry of the Daocheng Granitic Pluton from the Yidun Arc,SW China.Journal of Asian Earth Sciences,67:1-17.https://doi.org/10.1016/j.jseaes.2013.02.002

[13]

Hou,Z.Q.,Mo,X.X.,1991.The Evolution of Yidun Island-Arc and Implications in the Exploration of Kuroko-Type Volcanogenic Massive Sulphide Deposits in Sanjiang Area,China.Earth Science,16(2):153-164 (in Chinese with English abstract).

[14]

Hou,Z.Q.,Qu,X.M.,Zhou,J.R.,et al.,2001.Collision-Orogenic Processes of the Yidun Arc in the Sanjiang Region:Record of Granites.Acta Geologica Sinica,75(4):484-497 (in Chinese with English abstract).

[15]

Hou,Z.Q.,Yang,Y.Q.,Qu,X.M.,et al.,2004.Tectonic Evolution and Mineralization Systems of the Yidun Arc Orogen in Sanjiang Region,China.Acta Geologica Sinica,78(1):109-120 (in Chinese with English abstract).

[16]

Kinny,P.D.,Maas,R.,2003.Lu-Hf and Sm-Nd Isotope Systems in Zircon.Reviews in Mineralogy and Geochemistry,53(1):327-341.https://doi.org/10.2113/0530327

[17]

Jiang,L.L.,Xue,C.D.,Li,W.C.,et al.,2020.Geological and Geochemical Constraints on the Genesis of the Bengge Gold Deposit in the Yidun Terrane,SE Tibet.Journal of Asian Earth Sciences,195:104338.https://doi.org/10.1016/j.jseaes.2020.104338

[18]

Leake,B.E.,1990.Granite Magmas:Their Sources,Initiation and Consequences of Emplacement.Journal of the Geological Society,147(4):579-589.https://doi.org/10.1144/gsjgs.147.4.0579

[19]

Leng,C.B.,Huang,Q.Y.,Zhang,X.C.,et al.,2014.Petrogenesis of the Late Triassic Volcanic Rocks in the Southern Yidun Arc, SW China: Constraints from the Geochronology, Geochemistry, and Sr-Nd-Pb-Hf isotopes. Lithos, 190-191, 363-382. http://doi.org/10.1016/j.lithos.2013.12.018

[20]

Leng,C.B.,Zhang,X.C.,Hu,R.Z.,et al.,2012.Zircon U-Pb and Molybdenite Re-Os Geochronology and Sr-Nd-Pb-Hf Isotopic Constraints on the Genesis of the Xuejiping Porphyry Copper Deposit in Zhongdian,Northwest Yunnan,China.Journal of Asian Earth Sciences,60:31-48.https://doi.org/10.1016/j.jseaes.2012.07.019

[21]

Li,W.C.,Yu,H.J.,Gao,X.,et al.,2017.Review of Mesozoic Multiple Magmatism and Porphyry Cu-Mo (W) Mineralization in the Yidun Arc,Eastern Tibet Plateau.Ore Geology Reviews,90:795-812.https://doi.org/10.1016/j.oregeorev.2017.03.009

[22]

Li, W.C., Yu, H.J., Yin, G.H., 2013. Porphyry Metallogenic System of Geza Arc in the Sanjiang Region, Southwestern China. Acta Petrologica Sinica, 29(4): 1129-1144 (in Chinese with English abstract).

[23]

Liu,Y.S.,Hu,Z.C.,Gao,S.,et al.,2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology,257(1/2):34-43.https://doi.org/10.1016/j.chemgeo.2008.08.004

[24]

Liu,Y.S.,Gao,S.,Hu,Z.C.,et al.,2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating,Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology,51(1-2):537-571.https://doi.org/10.1093/petrology/egp082

[25]

Ludwig,K.R.,2003.ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center,Berkeley,California,39.

[26]

Peng,T.P.,Zhao,G.C.,Fan,W.M.,et al.,2014.Zircon Geochronology and Hf Isotopes of Mesozoic Intrusive Rocks from the Yidun Terrane,Eastern Tibetan Plateau:Petrogenesis and Their Bearings with Cu Mineralization.Journal of Asian Earth Sciences,80:18-33.https://doi.org/10.1016/j.jseaes.2013.10.028

[27]

Qin,M.,Yan,S.T.,Wen,L.,et al.,2019.The Tectonic Evolution of the Garze-Litang Ophiolite Mélange Zone in the Late Triassic:Constraints from Geochronology and Geochemistry of the Yongjie Batholith in the Garze-Litang Area.Geological Bulletin of China,38(10):1615-1625 (in Chinese with English abstract).

[28]

Reid,A.,Wilson,C.J.L.,Shun,L.,et al.,2007.Mesozoic Plutons of the Yidun Arc,SW China:U-Pb Geochronology and Hf Isotopic Signature.Ore Geology Reviews,31(1-4):88-106.https://doi.org/10.1016/j.oregeorev.2004.11.003

[29]

Roger,F.,Jolivet,M.,Malavieille,J.,2010.The Tectonic Evolution of the Songpan-Garzê (North Tibet) and Adjacent Areas from Proterozoic to Present:A Synthesis.Journal of Asian Earth Sciences,39(4):254-269.https://doi.org/10.1016/j.jseaes.2010.03.008

[30]

Shi,Z.L.,Zhang,H.F.,Cai,H.M.,2009.Petrogenesis of Strongly Peraluminous Granites in Markan Area,Songpan Fold Belt and Its Tectonic Implication.Earth Science,34(4):569-584 (in Chinese with English abstract).

[31]

Söderlund,U.,Patchett,P.J.,Vervoort,J.D.,et al.,2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters,219(3-4):311-324.https://doi.org/10.1016/s0012-821x(04)00012-3

[32]

Wang,B.Q.,Zhou,M.F.,Chen,W.T.,et al.,2013.Petrogenesis and Tectonic Implications of the Triassic Volcanic Rocks in the Northern Yidun Terrane,Eastern Tibet.Lithos,175:285-301.https://doi.org/10.1016/j.lithos.2013.05.013

[33]

Wang,B.Q.,Zhou,M.F.,Li,J.W.,et al.,2011.Late Triassic Porphyritic Intrusions and Associated Volcanic Rocks from the Shangri-La Region,Yidun Terrane,Eastern Tibetan Plateau:Adakitic Magmatism and Porphyry Copper Mineralization.Lithos,127(1-2):24-38.https://doi.org/10.1016/j.lithos.2011.07.028

[34]

Wang,N.,Wu,C.L.,Qin,H.P.,et al.,2016.Zircon U-Pb Geochronology and Hf Isotopic Characteristics of the Daocheng Granite and Haizishan Granite in the Yidun Arc,Western Sichuan,and Their Geological Significance.Acta Geologica Sinica,90(11):3227-3245 (in Chinese with English abstract).

[35]

Wang,P.,Dong,G.C.,Zhao,G.C.,et al.,2018.Petrogenesis of the Pulang Porphyry Complex,Southwestern China:Implications for Porphyry Copper Metallogenesis and Subduction of the Paleo-Tethys Oceanic Lithosphere.Lithos,304:280-297.https://doi.org/10.1016/j.lithos.2018.02.009

[36]

Wang,Q.,Xu,J.F.,Jian,P.,et al.,2006.Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting,Dexing,South China:Implications for the Genesis of Porphyry Copper Mineralization.Journal of Petrology,47(1):119-144.https://doi.org/10.1093/petrology/egi070

[37]

Weislogel,A.L.,2008.Tectonostratigraphic and Geochronologic Constraints on Evolution of the Northeast Paleotethys from the Songpan-Ganzi Complex,Central China.Tectonophysics,451(1-4):331-345.https://doi.org/10.1016/j.tecto.2007.11.053

[38]

Whalen,J.B.,Currie,K.L.,Chappell,B.W.,1987.A-Type Granites:Geochemical Characteristics,Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology,95(4):407-419.https://doi.org/10.1007/bf00402202

[39]

Wu,T.,Xiao,L.,Wilde,S.A.,et al.,2017.A Mixed Source for the Late Triassic Garzê-Daocheng Granitic Belt and Its Implications for the Tectonic Evolution of the Yidun Arc Belt,Eastern Tibetan Plateau.Lithos,288:214-230.https://doi.org/10.1016/j.lithos.2017.07.002

[40]

Wu,Y.B., Zheng,Y.F.,2004. Zircon Mineralogy and Its Restriction on Interpretion of U-Pb Age. Chinese Science Bulletin, 49(16):1589-1604 (in Chinese).

[41]

Yuan,C.,Zhou,M.F.,Sun,M.,et al.,2010.Triassic Granitoids in the Eastern Songpan-Ganzi Fold Belt,SW China:Magmatic Response to Geodynamics of the Deep Lithosphere.Earth and Planetary Science Letters,290(3-4):481-492.https://doi.org/10.1016/j.epsl.2010.01.005

[42]

Zhang,R.G.,He,W.Y.,Gao,X.,et al.,2018.Magma Mixing of the Daocheng Batholith of Western Sichuan:Mineralogical Evidences.Earth Science Frontiers,25(6):226-239 (in Chinese with English abstract).

[43]

Zhang,H.F.,Zhang,L.,Harris,N.,et al.,2006.U-Pb Zircon Ages,Geochemical and Isotopic Compositions of Granitoids in Songpan-Garze Fold Belt,Eastern Tibetan Plateau:Constraints on Petrogenesis and Tectonic Evolution of the Basement.Contributions to Mineralogy and Petrology,152(1):75-88.https://doi.org/10.1007/s00410-006-0095-2

[44]

Zhao,J.H.,Zhou,M.F.,Yan,D.P.,et al.,2008.Zircon Lu-Hf Isotopic Constraints on Neoproterozoic Subduction-Related Crustal Growth along the Western Margin of the Yangtze Block, South China. Precambrian Research,163:189-209. http://doi.org/10.1016/j.precamres.2007.11.003

[45]

Zhu,D.C.,Wang,Q.,Zhan,Q.Y.,et al.,2021.Late Triassic Tectono-Magmatism of Northern Sanjiang and Associated Several Scientific Problems.Sedimentary Geology and Tethyan Geology,41(2):232-245 (in Chinese with English abstract).

基金资助

中国地质调查局项目(DD20190811)

AI Summary AI Mindmap
PDF (7119KB)

193

访问

0

被引

详细

导航
相关文章

AI思维导图

/