广西乐业地区吴家坪期牙形石的发现及其意义

谢雨荷 ,  覃斌贤 ,  江海水 ,  陈发垚 ,  颜佳新

地球科学 ›› 2024, Vol. 49 ›› Issue (04) : 1524 -1540.

PDF (10849KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (04) : 1524 -1540. DOI: 10.3799/dqkx.2022.062

广西乐业地区吴家坪期牙形石的发现及其意义

作者信息 +

Discovery and Significance of Wuchiapingian Conodonts from Leye of Guangxi

Author information +
文章历史 +
PDF (11109K)

摘要

吴家坪期作为二叠纪晚期两次灭绝事件(瓜德鲁普世末灭绝事件和二叠纪末灭绝事件)之间的一次快速的生态复苏时期,是地质历史时期一个重要的阶段.该时期扬子台地中部及滇黔桂地区碳酸盐岩台地仍有广泛分布;其中乐业碳酸盐台地是南盘江盆地内一个典型的孤立碳酸盐岩台地,在瓜德鲁普统茅口组顶部不整合面之上发育连续的吴家坪期海相碳酸盐岩沉积.此前该地二叠纪地层划分对比仍依据传统的 化石生物地层分带,与牙形石生物地层相比,精细程度尚不足.对乐业台地内部的刷把村剖面和六为剖面合山组底部牙形石进行了研究,在这两个剖面共鉴定出牙形石2属8种(含一个新种),包括Clarkina asymmetricaC. aff.asymmetricaC. daxianensisC. dukouensisC. leveniHindeodus julfensisH. typicalisHindeodus praechangxingensis sp. nov..其中在刷把村剖面识别出C. asymmetricaC. leveni两个牙形石带,六为剖面识别出C. asymmetrica一个牙形石带.根据牙形石关键分子的首现,乐业台地在经历了瓜德鲁普世-乐平世之交全球大海退后,至少到C. asymmetrica带才开始海侵并重新开始碳酸盐岩沉积,可为该区碳酸盐岩台地-盆地演化和区域地层对比研究提供重要依据.

关键词

牙形石 / 合山组 / 吴家坪期 / 乐业台地 / 古生物学 / 地层学

Key words

conodont / Heshan Formation / Wuchiapingian / Leye platform / paleontology / stratigraphy

引用本文

引用格式 ▾
谢雨荷,覃斌贤,江海水,陈发垚,颜佳新. 广西乐业地区吴家坪期牙形石的发现及其意义[J]. 地球科学, 2024, 49(04): 1524-1540 DOI:10.3799/dqkx.2022.062

登录浏览全文

4963

注册一个新账户 忘记密码

0 前言

最初的研究认为二叠纪末期生物灭绝事件可分为双幕式(Stanley and Yang, 1994).其中,第1幕生物灭绝事件发生在瓜德鲁普世末期,由于峨眉山大火成岩省的喷发以及全球性海退和缺氧事件,使得珊瑚等生物大量灭绝,碳酸盐岩生产力受到了巨大打击,在华南多地茅口组之上发育沉积间断(黄俊亚等, 2019; Liu et al., 2023).此次事件后,吴家坪期早期发生了一次大规模的快速海侵,碳酸盐岩台地在华南多地重新开始发育.所以,吴家坪期早期海相碳酸盐岩地层记录了碳酸盐岩台地重建和生物复苏的重要过程(颜佳新等, 2019).第2幕事件则发生在长兴期末期,由于西伯利亚大火成岩省的喷发、泛大陆聚合引起频繁的海平面变化以及海洋环境与大陆气候的严重恶化,灭绝规模进一步扩大,以腕足、有孔虫等活动范围较窄的海洋无脊椎动物为首的大量生物受到了前所未有的打击,生态系统发生了不可逆转的创伤 (殷鸿福和宋海军, 2013;宋海军和童金南, 2016).吴家坪期处于这两幕灭绝事件之间,是生态系统一次快速恢复的重要过渡阶段,研究该时期的生物及环境变化具有重要的地质意义.

牙形石因其地理分布广、演化速率快、数量多以及易获得等特点,近年来越发被用于精细确定地层时代(如:安显银等, 2020; 李俊等, 2020; 吴奎等,2022).作为建立二叠纪高分辨率生物地层格架的首要标志性化石(Henderson et al., 2020),牙形石Clarkina postbitteri postbitteriHindeodus parvus的首现,分别标志着乐平统的底界与顶界,其全球界线层型剖面和点(GSSP)分别在广西来宾蓬莱滩剖面(Jin et al., 2006)和浙江煤山剖面(Yin et al., 2001)得到确立.然而,受瓜德鲁普世晚期全球大海退的影响(Hallam and Wignall, 1999),全球绝大多数地区瓜德鲁普统-乐平统之间的地层为不整合或假整合接触,缺少连续的瓜德鲁普统-乐平统海相沉积序列 (金玉玕等, 1995).受东吴运动或者峨眉山大火成岩省岩浆活动影响,滇黔桂地区很多剖面在该界线处发育铝土质沉积,包括乐业地区.重要牙形石C. postbitteri postbitteri仅出现在极少数深水斜坡相剖面,如蓬莱滩剖面和铁桥剖面,而其他绝大多数地区吴家坪阶从牙形石C. dukouensis带才开始出现(Yuan et al., 2017).

另一方面,华南地区是建立全球吴家坪期年代地层格架的重要地区(Jin et al., 2006).吴家坪期牙形石在广西(Mei et al., 1998Sun and Xia, 2006Sun et al., 2017)、四川 (Mei et al., 1994a; 房强等, 2012; Yuan et al., 2019)、重庆(杨宝忠等, 2008)、湖北(王国庆和夏文臣, 2004; Zhang et al., 2007Zhong et al., 2020; 郝少波等,2021)、湖南(曹长群等, 2013)、浙江(Yuan et al., 2014)和贵州(Bagherpour et al., 2018)等地均有报道,取得了丰硕的成果.乐业碳酸盐岩台地位于南盘江盆地的北部,二叠纪地层发育良好,出露广泛,主要由碳酸盐岩组成,陆源碎屑含量极低(吴浩若, 2003;史晓颖等, 2006),传统上,桂西地区吴家坪期生物地层主要依据 化石(张孝林和周铁明, 1994;周铁明, 1998),与同时期精细的牙形石生物地层划分相比(Shen and Mei, 2010),尚存不足.本次在该台地内的刷把村剖面和六为剖面的合山组中采获了吴家坪期早期的牙形石化石,从而使得大家更进一步了解该地区碳酸盐岩台地的演化及区域地层划分与对比.

1 地质背景

乐业台地是位于南盘江盆地北部一个典型的晚古生代碳酸盐岩孤立台地,以浅水碳酸盐岩沉积相为主,发育有较完整的石炭系-二叠系.在乐业台地上,早二叠世晚期至晚二叠世地层自下而上依次为:栖霞组、茅口组以及合山组(王新强, 2007; 王新强和史晓颖, 2008).受东吴运动和全球海平面下降的影响,乐业台地在瓜德鲁普期末遭受剥蚀,在茅口组灰岩上部发育一层铝土岩风化壳;而后在吴家坪期早期的海侵事件中,台地又被迅速淹没,在该铝土岩之上发育深水相的深色含硅质碳酸盐岩沉积并逐渐向浅水相的浅色厚层状灰岩沉积过渡,同时生物碎屑丰度和分异度也逐渐恢复,反映了乐业台地在吴家坪期逐步重建扩张的过程 (颜佳新等, 2019).

2 剖面位置及描述

2.1 六为剖面

六为剖面(24°49′16″N,106°31′12″E)位于广西百色市乐业县城西北约6 km的六为村附近,处于乐业县城至花坪乡的公路上(图1),瓜德鲁普统茅口组和乐平统合山组出露良好(图2).茅口组岩性为灰色、浅灰色中-厚层块状泥粒岩,含 类化石.合山组的主体岩性为灰-灰黑色薄-厚层状粒泥岩夹硅质团块和条带,在合山组中上部含丰富的珊瑚、双壳、腕足等化石.茅口组与合山组为平行不整合接触关系,不整合面上可见3~8 cm厚的风化壳,层面呈波状起伏.具体描述如下.

乐平统合山组

未见顶

7层 灰黑色薄层状硅质岩与灰黑色中层状粒泥岩互层.

厚1.4 m;6层 下部为灰色泥质灰岩,水平层理发育,含丰富的双壳类 化石,上部为灰黑色厚层状粒泥岩.厚1.2 m;

2.2 刷把村剖面

刷把村剖面(24°50′23″N,106°28′10″E)位于沿乐业县城至花坪乡公路向西北约5 km的刷把村附近(图1),瓜德鲁普统茅口组和乐平统合山组出露良好(图3),二者呈平行不整合接触关系(图3).其中茅口组由中-厚层泥粒岩旋回组成,生物碎屑含量丰富,其上为砖红色铝土岩风化壳.合山组为深色薄-中粒泥岩和泥灰岩组成的旋回,夹硅质团块或条带,局部发育大量生物碎屑,其上部为硅质岩,风化严重,未见顶.具体描述如下:

--引用第三方内容--

乐平统合山组

未见顶

14层 薄层硅质岩,风化严重,大于5 m;

13层 底部为一薄层硅质岩,上部为黑色-灰色泥粒岩,含硅质团块,生物碎屑丰富.可见腕足类、腹足类、双壳类等化石,厚3.6 m,产牙形石Clarkina asymmetricaC. daxianensisC. leveniHindeodus julfensisH. typicalis,、Hindeodus praechangxingensis sp. nov.;

12层 由11层中层状灰黑色泥粒岩组成,生物碎屑丰富,见腕足类、腹足类、介形虫等化石,厚2.7 m,产牙形石Hindeodus praechangxingensis sp. nov.;

11层 由一个向上变浅旋回构成.下部为4层中层状灰色粒泥岩,含腹足化石,上部为3层灰黑色厚层状泥粒岩,整个旋回中都富含硅质结核,厚2.9 m,产出牙形石Clarkina asymmetricaC. daxianensis

10层 由4个下部为深色薄层状泥灰岩,上部为深色中层状粒泥岩的旋回组成,局部生物碎屑丰富,包括腹足类、腕足类化石.其中2~3层之间夹1 cm厚泥灰岩,起伏不平,并含有单体珊瑚.共厚2.55 m,产牙形石Clarkina asymmetrica

9层 由两个向上变浅旋回组成.第1旋回下部为黑色碳质泥灰岩,风化严重处呈土状,厚5 cm, 上部为3层灰黑色灰泥岩,富含立方体状黄铁矿,使风化面呈铁锈色.第2旋回底部为黑色泥灰岩,风化后形似页岩,厚6 cm, 上部为灰色薄层灰泥岩,厚4 cm, 再向上为灰色厚层灰泥岩,富含黄铁矿,风化后呈铁锈色.共厚1.95 m;

8层 由6个下部为污手含碳质黑-棕色薄层钙质泥岩,上

部为灰-灰黑色中-薄层状灰泥岩的旋回组成,其中 第4旋回下部为5 cm灰白色泥岩,共厚2.26 m;7层 铝土岩.下部1 m富铁,呈砖红色,上部为浅灰色-灰

白色,局部为灰黑色,豆粒状.顶部50 cm 为浅灰色.共 厚4 m.

----平行不整合----

瓜德鲁普统茅口组

6层 由1个向上变浅旋回组成.旋回下部为2个灰黑色中层状粒泥岩,上部为灰色巨厚层状泥粒岩,生物碎屑丰富,含 、双壳类、海百合茎等.厚7.7 m.

未见底

3 材料与方法

本次研究在刷把村剖面和六为剖面共采集111件牙形石样品,其中刷把村剖面采样47件,六为剖面采样64件,每件样品重5.0~6.5 kg.首先将采集的牙形石样品破碎成1~2 cm3大小的碎块,采用浓度为10%的冰醋酸溶液浸泡,每隔2~3 d换酸一次.反应后的残渣经孔径为20目和160目的不锈钢筛筛选后,置于室温自然晾干,将晾干后的样渣采用LST重液分选 (苑金玲等, 2015),然后在双目体视镜下挑选牙形石.本次研究中,牙形石均仅产于这两条剖面合山组下部地层,其中在刷把村剖面合山组下部16件样品中获得牙形石320枚,六为剖面合山组下部12件样品中获得牙形石303枚.挑选保存完整的牙形石送至中国地质大学(武汉)生物地质与环境地质国家重点实验室进行扫描电镜拍照(图4~6).

4 牙形石带划分及讨论

本次研究中,共鉴定出牙形石2属8种(含1新种,不含未定种),包括Clarkina asymmetricaC. aff. asymmetricaC. daxianensisC. dukouensisC. leveniHindeodus julfensisH. typicalisHindeodus praechangxingensis sp. nov.,牙形石分子在样品中的分布详见表1.其中,在刷把村剖面可识别出牙形石Clarkina asymmetrica带和Clarkina leveni带,六为剖面可识别出牙形石Clarkina asymmetrica带(图7),具体阐述如下:

4.1  Clarkina asymmetrica

底界:以Clarkina asymmetrica的首现为标志;顶界:以Clarkina leveni的首现为标志.

该带见于六为剖面LWC-4-1样号(含)至LWC-5-5样号(含)之间的地层.刷把村剖面SBC-10-4样号以下地层虽未见牙形石,但考虑到六为剖面与该剖面距离非常近,只有5 km左右,因此依据六为剖面的牙形石产出情况,笔者推断刷把村底部泥灰岩也属该带.共生分子包括:C. dukouensisC. daxianensisC. aff. asymmetricaH. julfensisH. praechangxingensis sp.nov.和H. typicalis.

Clarkina asymmetrica最早由Mei et al. (1994a)报道于四川渡口和南江剖面的吴家坪组,并以其为带分子建立了C. asymmetrica带.在中国,C. asymmetrica带见于湖北恩施天桥剖面 (王国庆和夏文臣, 2004)和猫儿山剖面 (Zhang et al., 2007Zhong et al., 2020),广西蓬莱滩和铁桥剖面 (Mei et al., 1998),四川广元上寺剖面 (Yuan et al., 2019).在国外,C. asymmetrica带可见于伊朗Kuh-e-Ali Bashi地区 (Shen and Mei, 2010),Abadeh地区和Julfa地区以及巴基斯坦盐岭地区 (Mei and Henderson, 2001).C. asymmetrica带是吴家坪阶的第3个牙形石带 (Henderson, 2018).C. daxianensis最早报道于四川渡口和南江剖面,首现位置高于C. asymmetrica,分布时限从C. asymmetrica带至C. leveni带 (Mei et al., 1994a).Mei et al. (1998)研究广西蓬莱滩剖面吴家坪期牙形石认为C. daxianensis是由C. dukouensis演化而来,并推测可能存在“C. dukouensis-C. daxianensis-C. liangshanensis-C. inflecta”的演化谱系.然而在伊朗Kuh-e-Ali Bashi地区,C. daxianensis的出现要早于华南地区,其出现的层位可能在C. dukouensis带内 (Sweet and Mei, 1999).C. dukouensis最早由Mei et al. (1994a)报道于四川渡口和南江剖面,并建立了C. dukouensis带,该带广泛分布于我国华南地区 (Mei et al., 1998; Sun and Xia, 2006; Zhang et al., 2007Sun et al., 2017Yuan et al., 2019)以及秦岭地区 (程成等, 2017).在国外,C. dukouensis带见于伊朗北部地区和巴基斯坦盐岭地区 (Mei and Henderson, 2001; 沈树忠等, 2003; Shen and Mei, 2010).吴家坪早期牙形石演化谱系主要依据C. postbitteri postbitteri-C. dukouensis-C. asymmetrica建立的.C. dukouensis带是吴家坪阶的第2个牙形石带,但是由于受到瓜德鲁普统-乐平统之交大海退的影响,在华南的大部分地区,C. dukouensis带通常是吴家坪阶的第1个牙形石带 (Yuan et al., 2017).

4.2  Clarkina leveni

底界:以C. leveni分子的首现为标志;顶界:以C. guangyuanensis的首现为标志.

此带见于刷把村剖面SBC-13-6样号及以上地层,以带分子首现为底,未见顶.共生分子有C. daxianensisH. praechangxingensis sp. nov..

Clarkina leveni带最早由Kozur (1975)建于外高加索地区的Archura,该带还报道于伊朗中部的Abadeh剖面(Shen and Mei, 2010).在中国,该带由Mei et al.(1994a)报道于四川省宣汉县渡口和南江县桥亭的吴家坪期地层中,以特征分子C. leveni分子的首现为标志,以C. guangyuanensis的首现标志结束,延限相对较短.Mei et al.(1998)对铁桥剖面的报道认为该剖面缺少C. leveni带,或仅位于C. asymmetrica带顶部.而王成源等(1998)认为在蓬莱滩剖面以及铁桥剖面都不能单独划分出C. asymmetrica带,即在C. dukouensis带之上应为C. leveni带.而后,金玉玕等(2007a, 2007b)以及房强等(2012)分别在广西蓬莱滩、四川上寺两地牙形石生物地层的报道中,都认为这两条剖面缺少C. leveni带.Zhang et al. (2007)在研究湖北恩施猫儿山剖面时,并未在该剖面识别出C. leveni带,而Zhong et al. (2020)重新研究猫儿山剖面,在该剖面建立了C. leveni带.

本次研究中,牙形石样品均产自合山组,未在茅口组发现牙形石.新种Hindeodus praechangxingensis sp. nov.在刷把村剖面和六为剖面都有发现,从SBC-12-2样品和LWC-4-3样品层开始出现.两条剖面都伴随有大量特征分子C. asymmetrica,在出产牙形石的最低层位发现C. dukouensisC. asymmetrica分子共生,暂无法识别出C. dukouensis带.结合这两条剖面的牙形石的产出特征,可以判断出:在经历瓜德鲁普世后期全球大海退后,乐业碳酸盐岩台地至少到C. asymmetrica带才开始发生海侵而接受碳酸盐岩沉积.

5 重要属种描述

脊索动物门PhylumChordata Bateson, 1886

脊椎动物亚门SubphylumVertebrata Cuvier, 1812

牙形动物纲Class Conodonta Pander, 1856

锯片刺目Order Prioniodinida Sweet, 1988

舟刺科Family Gondolellidae (Lindströem, 1970)

克拉克刺属Genus Clarkina Kozur, 1989

不对称克拉克刺 Clarkina asymmetrica Mei et Wardlaw, 1994

图4. 1-6,图5. 14-22)

1994aClarkina asymmetrica Mei et Wardlaw) Mei et al., pl. 1, figs. 12, 15, 16.

1998 Clarkina asymmetrica Mei et Wardlaw; Mei et al., pl. 5, fig. 10; pl. 9, figs. 8-15; pl. 10, fig. 13.

2004 Clarkina asymmetrica Mei et Wardlaw; 王国庆和夏文臣,图3L.

2007 Clarkina asymmetrica Mei et Wardlaw; Zhang et al., pl. 2, figs. 12, 13, 17, 30; pl. 3, figs. 1, 13.

2010 Clarkina asymmetrica Mei et Wardlaw; Shen and Mei, figs. 3.8a-3.16b.

2017 Clarkina asymmetrica Mei et Wardlaw; Yuan et al., figs. 5.1-5.16, 5.13-5.16.

2018 Clarkina asymmetrica Mei et Wardlaw; Yuan et al., figs. 3.14-3.22.

2020 Clarkina asymmetrica Mei et Wardlaw; Zhong et al., figs. 3.3-3.5.

描述: 舟型分子,齿台中等宽度或宽,部分个体侧视微微弯曲呈弓形,后部方正或宽圆,微斜,内侧微收,可能会伴有一个小凹陷.最宽处位于齿台中部,齿台边缘在前部1/3或1/4处急剧收缩,且内边缘比外边缘更早收缩,使齿台口视时呈不对称感.主齿位于后缘,直立,比末端细齿稍大,大部分个体主齿与末端细齿存在一个很小的间隔,部分个体间隔明显.齿脊上细齿从后向前逐渐增大,但幅度不明显.中部细齿相对于后部细齿更加融合,且后部3~4个细齿融合程度最低.齿台边缘轻微上卷,且外侧翻卷程度略高于内侧,近脊沟宽且浅,部分个体在主齿后具一个窄的后边缘.

讨论: 该种以不对称收缩的齿台前部,方正或宽圆的齿台末端,相对宽的齿台轮廓,较小的主齿,与主齿间隔较小的末端细齿,更加融合的中部细齿以及主齿后存在很窄的后边缘而区别于C. dukouensis.需要指出的是,笔者在乐业地区收集的部分C. asymmetrica标本与其正模相比齿台略微偏短,主齿略小.

不对称克拉克刺亲近种Clarkina aff. asymmetrica

图5. 8-13)

2013 Clarkina guangyuanensis Dai et Zhang; 曹长群等,图4.1-4.2.

2013 Clarkina asymmetrica Mei et Wardlaw; 曹长群等,图4.4-4.5.

描述:齿台中等宽度,后部方正,最宽处位于中部,齿台边缘在前部1/3或1/4处不对称收缩.主齿小,直立,位于后边缘,与末端细齿几乎等大.齿脊上细齿向前增大,但增幅不明显,细齿分离较为明显.齿台边缘稍向上卷,近脊沟宽且浅,部分个体在主齿后发育一个很窄的后边缘.

讨论:该种与C. asymmetrica具相似的齿台轮廓,但齿台略短,齿脊上的细齿融合程度更低,分离较为明显.图5. 8-11的标本体长偏短,有些与C. leveni类似,但其齿台长度占体长的比例略高,又与C. asymmetrica较为相似,不排除有局部环境条件造成此差异,因此暂定为Clarkina aff. asymmetrica图5. 12-13的标本齿台轮廓为椭圆形或水滴形,与C. leveniC. asymmetrica差别也较大.

达县克拉克刺 Clarkina daxianensis Mei et Wardlaw, 1994

图 4. 7-17, 图 5. 23)

1994a. Clarkina daxianensis Mei et Wardlaw; Mei et al., pl. 2, figs. 18-21;

1998. Clarkin adaxianensis Mei et Wardlaw; Mei et al., pl. 9, fig. 16;

描述:舟型分子,齿台中等宽度或宽,后部宽圆,齿台边缘在前部1/3或1/4处收缩,大部分个体齿台微微弯曲呈弓形.主齿小且直立,位于末端,与末端第一个细齿几乎等大或稍大于末端细齿.齿脊细齿由后部向前增大,但后部细齿融合程度低,中部细齿几乎完全融合.在部分个体中,主齿与后部细齿融合成很高的脊.齿台边缘稍上卷,在齿台前部与后部近脊沟明显,在细齿愈合的中部近脊沟很浅,部分个体主齿后发育很窄的后边缘.

讨论:该种与C. asymmetrica具有相似的齿台外形,但该种细齿更加融合,主齿与末端细齿无间隔,近脊沟在前部和后部明显,中部近脊沟很浅.

渡口克拉克刺 Clarkina dukouensis Mei et Wardlaw, 1994

图 5.2-7 )

1994a Clarkina dukouensis Mei et Wardlaw; Mei et al., pl. 1, figs. 18, 19.

1994b Clarkina dukouensis Mei et Wardlaw; Mei et al., pl. 1, figs. 12; pl. 2, figs. 1~6, 12, 13.

1998. Clarkina dukouensis Mei et Wardlaw; Mei et al., pl. 5, figs. 8, 9; pl. 8, figs. 10-19; pl. 10, figs. 1~4.

2004 Clarkina dukouensis Mei et Wardlaw; 王国庆和夏文臣,图3H.

2007 Clarkina dukouensis Mei et Wardlaw; Zhang et al., pl. 2, fig. 9.

2010 Clarkina dukouensis Mei et Wardlaw; Shen and Mei, figs. 3.1a-3.7b.

2012 Clarkina dukouensis Mei et Wardlaw; 房强等,图3.13.

2012 Clarkina dukouensis Mei et Wardlaw; 房强, pl. 1, fig 9.

2017 Clarkina dukouensi sMei et Wardlaw; Yuan et al., figs. 4.18-4.31.

2017 Clarkina postbitter ipostbitteri Mei et Wardlaw; 程成等,图5.6.

2018 Clarkina dukouensis Mei et Wardlaw; Yuan et al., figs. 4.26-4.31.

2020 Clarkina dukouensis Mei et Wardlaw; Zhong et al., figs. 3.1-3.2.

描述:舟型分子,齿台长,后部呈钝圆状,由后向前变宽直至近中部最宽,在前部1/3或1/4处急剧收缩.主齿直立,部分个体主齿稍后倾,位于末端.主齿比齿脊上的细齿都大,少数个体主齿与末端细齿融合,但大部分个体主齿与末端细齿之间有明显的间隔.除了最前端的2~3个细齿外,齿脊上细齿由后向前逐渐增大,并且相互分离.齿台边缘微上卷,部分个体后部齿台边缘近于平行,近脊沟中等发育且光滑.

讨论:C. dukouensis是由C. postbitteri postbitteri演化而来的 (Mei et al., 1994b),C. dukouensis具有相对较宽的齿台,齿台后端呈钝圆,齿脊上的细齿间距较窄,主齿位于齿台末端,无后边缘而与C. postbitteri postbitteri相区别.

利文克拉克刺 Clarkina leveni(Kozur, Mostler et Pjtakova, 1975

图 4. 18-20)

1994a Clarkina leveni(Kozur, Mostler et Pjtakova), Mei et al., pl.1, figs. 13, 17.

1994b Clarkina leveni(Kozur, Mostler et Pjtakova), Mei et al., pl.3, figs. 12, 13.

1998 Clarkinaleveni(Kozur, Mostler et Pjtakova), Mei et al., pl. 5, figs. 56.

2004 Clarkina leveni(Kozur, Mostler et Pjtakova),王国庆, pl.2, figs.7, 8.

2010 Clarkina leveni(Kozur, Mostler et Pjtakova), Shen and Mei, fig. 4.1-4.10.

2017 Clarkina leveni(Kozur, Mostler et Pjtakova), Yuan and Shen et al., fig5. 17-5.30.

描述:舟型分子,齿台后方宽阔,近方形,个别个体齿台较厚;齿台从前1/2或1/3处开始剧烈收缩,且通常外侧收缩较快,使得齿台轻微不对称.细齿愈合程度高,连成一条脊,向前方增大;主齿不明显,仅比最后端细齿略高.齿台边缘高度上翻,其中外侧上翻程度通常高于内侧;齿沟深且光滑,在前端收缩处发育.

讨论:该种形态上与C. asymmetrica较为相似,主要以较厚的齿台,高度上翻的外边缘、后3个细齿少愈合以及收缩处靠近齿台中部而区别于C. asymmetrica.C. leveni的正模齿台较短,约占体长的1/2,C. asymmetrica正模齿台长度接近占体长的3/4.本文的标本齿台长度略超1/2,与C. leveni正模虽有一点差别,但形态上更接近Clarkinaleveni,而与C. asymmetrica稍远.

奥泽克刺目Order Ozarkodinida Dzik, 1976

近颚齿刺科Family Anchignathodontidae Clark, 1972

欣德刺属Hindeodus Rexroad and Furnish, 1964

朱尔法欣德刺 Hindeodus julfensisSweet, 1973

图 6. 25)

1987 Hindeodus julfensis (Sweet); Nestell and Wardlaw, figs. 4.1, 4.2, 4.5-4.7, 4.9-4.11.

1990 Hindeodus julfensis (Sweet); 丁梅华和黄清华,图版6,图1.

2001 Hindeodus julfensis (Sweet); Zhuravlev, fig. 2.3.

2012 Hindeodus julfensis (Sweet); Metcalfe, figs. 5.3, 5.7,,5.24; figs. 6.4.

描述:齿片形分子,齿体长度约为宽度的两倍,轻微弯曲.主齿侧视呈三角形,直立,少数个体主齿稍向后倾斜.齿脊上细齿由前向后高度逐渐降低,在后部1/3处又增高,部分个体的细齿增大,形成一个向上凸起的光滑的峰,使得中部细齿最低,向后细齿降低较平缓,在侧视上形成弧形,基腔最宽出位于齿体中部.

讨论:该种因在齿体后部1/3处细齿增高,向后高度降低较平缓,形成一个向上凸起的峰而易区别于其他Hindeodus种.

典型欣德刺 Hindeodus typicalis Sweet, 1970

图 6. 1-13)

1970 Anchignathodus typicalis n. sp. Sweet; Sweet, pl. 1, figs 13, 22.

1987 Hindeodus julfensis (Sweet); Nestell and Wardlaw, figs. 4.3, 4.4, 4.12.

2004 Hindeodus typicalis (Sweet);王国庆, pl.4,figs.10-12.

2007 Hindeodus typicalis (Sweet); Jiang et al., pl. 4, figs. 6-11; pl. 5, figs. 20, 26, 27.

2008 Hindeodus typicalis (Sweet); 江海水,pl.3, figs.8-9.

2012 Hindeodus typicalis (Sweet); Yang and Lai et al., fig4.2-4.3.

2014 Hindeodus typicalis (Sweet); Wu et al., pl. 2, fig.7.

描述:齿片型分子,基腔膨大或不膨大.齿体长,微弯曲,长度约是宽度的2.0~2.5倍.主齿中等大小,直立,齿脊上细齿紧密排列,顶部分离,细齿高度向后逐渐降低,最后一细齿通常极小,发育较弱.

讨论:H. typicalisH. minutusEllison, 1941)很相似,区别在于H. minutus的齿体长度是宽度的3倍,H. typicalis齿脊上的细齿高度向后逐渐降低,H. minutus主齿后的6~8个细齿几乎等高,在后部1/3处急剧降低直至末端.H. typicalisH. julfensis的区别是后者细齿在后部1/3处增高形成凸起的峰.一些体型较大的H. typicalis分子,齿脊后部几个细齿有隆起,可能为成年(或老年)标本的一种形态适应,属于个体发育阶段的差异.

前长兴欣德刺(新种) Hindeodus praechangxingensis sp. nov. Xie Y. H. & Jiang H. S.

图6. 14-24)

1994 Hindeodus julfensis (Sweet);梅仕龙等,图版Ⅱ,图16.

特征:齿片形分子,侧视近梯形,基腔膨大,轻微或严重不对称,一般内侧膨胀程度较小.主齿明显,直立;主齿前有2~4个极小的迅速降低的细齿;主齿后有3~8个细齿,细齿近乎等大,高度逐渐降低;后部部分细齿愈合,形成部分光滑齿脊,侧视形成一驼峰,约占3~4个细齿宽度,驼峰后边缘略向后倾斜;驼峰后的齿脊急剧降低,上具2~3个直立细小的齿.

语源学:以其产出时代位于Hindeodus changxingensis之前命名.

正模:图6. 15;副模:图6. 23.

材料:16个标本.

讨论:该种在外形上与H. julfensis以及H. changxingensis很相似,与H. changxingensis的区别主要在于该种膨大的基腔约占体长的2/3,其基腔开始膨大处一般对应于主齿后第二与第三细齿间,而H. changxingensis的基腔约占体长的3/4,其基腔开始膨大处一般对应于主齿后第一与第二细齿间,基腔明显大于该种.该种可以具明显的驼峰,驼峰高度明显高于齿脊上其他细齿,而H. julfensis虽然齿脊后部有一融合光滑的齿脊,但其高度与齿脊上其他细齿相一致,且其之后的齿脊缓慢降低,而非急剧降低.有研究认为H.julfensis可能是H. changxingensis的先驱种(Jiang et al., 2011).然而本文图6. 14-24的标本与H.julfensis的正模存在较大差距,与H. changxingensis更为相似,其与这两个种之间的演化关系有待更多研究.

6 结论

本次研究对广西乐业孤立碳酸盐岩台地的刷把村剖面和六为剖面乐平统合山组底部牙形石产出情况进行分析,共鉴定出2属8种,其中包括新种Hindeodus praechangxingensis sp. nov..刷把村剖面可以识别出Clarkina asymmetrica带和Clarkinaleveni带;六为剖面仅识别出Clarkina asymmetrica带.新种在两个剖面皆可识别,自SBC-12-2样号以及LWC-4-3样号层位开始出现.根据2条剖面牙形石分子的首现,证明在经历瓜德鲁普统-乐平统之交的大海退后,乐业碳酸盐岩台地至少到C. asymmetrica带已开始海侵,逐渐开始碳酸盐岩沉积.

参考文献

[1]

An, X. Y., Zhang, Y. J., Zhu, T. X., et al., 2020. Stable Carbon Isotope Perturbations Recorded in Triassic Tulong Group-Qulonggongba Formation of South Tibet. Earth Science, 45(8): 2964-2977 (in Chinese with English abstract).

[2]

Bagherpour, B., Bucher, H., Yuan, D.X., et al., 2018. Early Wuchiapingian (Lopingian, Late Permian) Drowning Event in the South China Block Suggests a Late Eruptive Phase of Emeishan Large Igneous Province. Global and Planetary Change, 169: 119-132. https://doi.org/10.1016/j.gloplacha.2018.07.013

[3]

Cao, C.Q., Zhang, M.Y., Zheng, Q.F., et al., 2013. The Permian Capitanian Stratigraphy at Therencunping Section, Sangzhil County of Hunan Andits Environmental Implications. Journal of Stratigraphy, 37(4):485-498 (in Chinese with English abstract).

[4]

Cheng, C., Li, S.Y., Cao, T.L., 2017. Conodont Biostratigraphy of Permian Section in Xikou, Zhen’an, Shaanxi Province, South Qinling. Acta Micropalaeontologica Sinica, 34(1): 16-32 (in Chinese with English abstract).

[5]

Ellison, S., 1941. Revision of the Pennsylvanian Conodonts. Journal of Paleontology, 15: 107-143.

[6]

Fang, Q., Jing, X.C., Deng, S.H., et al., 2012. Roadian-Wuchiapingian Conodont Biostratigraphy at the Shangsi Section, Northern Sichuan. Journal of Stratigraphy, 36(4): 692-699 (in Chinese with English abstract).

[7]

Hallam, A., Wignall, P.B., 1999. Mass Extinctions and Sea-Level Changes. Earth-Science Reviews, 48(4): 217-250. https://doi.org/10.1016/S0012-8252(99)00055-0

[8]

Hao, S.B., Chen, Y., Huang, P., et al., 2021. Lopingian Conodont Biostratigraphy and the Age of the Dalong Formation at the Wujiachong Section, Eastern Hubei Province. Earth Science (in Chinese with English abstract).

[9]

Henderson, C. M., 2018. Permian Conodont Biostratigraphy. Geological Society, London, Special Publications, 450(1): 119-142. https://doi.org/10.1144/SP450.9

[10]

Henderson, C.M., Shen, S.Z., Gradstein, F.M., et al., 2020. The Permian Period. Geologic Time Scale 2020. Elsevier: 875-902. https://doi.org/10.1016/B978-0-12-824360-2.00024-3

[11]

Huang, J. Y., Zhang, W., Ba, Y., et al., 2019. Sedimentary Microfacies and Sedimentary Responses to the Biotic Extinction Events within the Penglaitan Section at the Guadalupian-Lepingian(Permian) Boundary in Laibin, Guangxi. Sedimentary Geology and Tethyan Geology, 39(3): 11-20 (in Chinese with English abstract).

[12]

Jiang, H. S., Aldridge, R., Lai, X., et al., 2011. Phylogeny of the Conodont Genera Hindeodus and Isarcicella across the Permian-Triassic Boundary. Lethaia, 44: 374-382.

[13]

Jin, Y. G., Shen, S.Z., Henderson, C.M, et al., 2006. The Global Stratotype Section and Point (GSSP) for the Boundary between the Capitanian and Wuchiapingian Stage (Permian). Episodes, 29(4):253-262.

[14]

Jin, Y.G., Shen, S.Z., Henderson, C.M., et al., 2007a. The Global Strata Type Section and Point (GSSP) for the Boundary between the Guadalupian and Lopingianseries(Permian). Journal of Stratigraphy, 31(1): 1-13 (in Chinese with English abstract).

[15]

Jin, Y. G., Wang, Y., Henderson, C.M., et al., 2007b. The Global Boundary Stratotype Section and Point (GSSP) for the Base of Changhsingian Stage (Upper Permian). Episodes, 31(2): 101-109 (in Chinese with English abstract).

[16]

Jin, Y. G., Zhang, J., Shang, Q., 1995. Pre-Lopingian Catastrophic Event of Marine Faunas. Acta Palaeontologica Sinica, 34(4): 410-427 (in Chinese with English abstract).

[17]

Kozur, H.W., 1975. Beitrage zur Conodontenfauna des Perm: Geologische Palaontologische Mitteilungen Innsbruck. Google Scholar, 5: 1-44.

[18]

Li, J., Liu, H., Huang, J. Y., et al., 2020. Discovery of Norian Conodonts from Mujiucuo Formation in Konglong Area of Ngamring County in Tibet and Its Geological Significance. Earth Science, 45(8): 2957-2963 (in Chinese with English abstract).

[19]

Lindstroem, M., 1970. A Suprageneric Taxonomy of the Conodonts. Lethaia, Google Scholar, 3: 427-445.

[20]

Liu, Z. C., Zhou, Q., Liu, K., et al., 2023. Sedimentary Features and Paleogeographic Evolution of the Middle Permian Trough Basin in Zunyi, Guizhou, South China. Journal of Earth Science, 34(6): 1803-1815. https://doi.org/10.1007/s12583-021-1406-2

[21]

Mei, S.L., Jin, Y.G., Wardlaw, B.R., 1994a. Succession of Wuchiapingian Conodonts from Northeastern Sichuan and Its Worldwide Correlation. Acta Micorpalaeontologic Science, 11(2): 121-139.

[22]

Mei, S.L., Jin, Y.G., Wardlaw, B.R., 1994b. Zonation of Conodonts from the Maokouan-Wuchiapingian Boundary Strata, South China. Palaeoworld, 4: 225-233.

[23]

Mei, S.L., Zhang, K.X., Wardlaw, B.R., 1998. A Refined Succession of Changhsingian and Griesbachian Neogondolellid Conodonts from the Meishan Section, Candidate of the Global Stratotype Section and Point of the Permian-Triassic Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 143(4): 213-226. https://doi.org/10.1016/S0031-0182(98)00112-6

[24]

Shen, S.Z., Mei, S.L., 2010. Lopingian (Late Permian) High-Resolution Conodont Biostratigraphy in Iran with Comparison to South China Zonation. Geological Journal, 45(2-3): 135-161. https://doi.org/10.1002/gj.1231

[25]

Shen, S. Z., Mei, S. L., Wang, X.D., 2003. Latest Biostratigraphical Advances of the Permian System in the Salt Range, Pakistan. Acta Palaeontologica Sinica, 42(2): 168-173 (in Chinese with English abstract).

[26]

Shi, X.Y., Hou, Y.A., Shuai, K.Y., 2006. Late Paleozoic Deep-Water Stratigraphic Succession in Central Youjiang Basin: Constraints on Basin Evolution. Earth Science Frontiers, 13(6):153-170 (in Chinese with English abstract).

[27]

Song, H.J., Tong, J.N., 2016. Mass Extinction and Survival during the Permian-Triassic Crisis. Earth Science, 41(6): 901-918 (in Chinese with English abstract).

[28]

Stanley, S. M., Yang, X., 1994. A Double Mass Extinction at the End of the Paleozoic Era. Science, 266(5189): 1340-1344. https://doi.org/10.1126/science.266.5189.1340

[29]

Sun, Y.D., Liu, X.T., Yan, J.X., et al., 2017. Permian (Artinskian to Wuchapingian) Conodont Biostratigraphy in the Tieqiao Section, Laibin Area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 465: 42-63. https://doi.org/10.1016/j.palaeo.2016.10.013

[30]

Sun, D.Y., Xia, W.C., 2006. Identification of the Guadalupian-Lopingian Boundary in the Permian in a Bedded Chert Sequence, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 236(3-4): 272-289. https://doi.org/10.1016/j.palaeo.2005.11.010

[31]

Sweet, W. C., 1970. Uppermost Permian and Lower Triassic Conodonts of the Salt Range and Trans-Indus Ranges, West Pakistan. In: Kummel, B., Teichert, C., eds., Stratigraphic Boundary Problems: Permian and Triassic of West Pakistan, Vol. 4. The University Press of Kansas, Kansas, 207-273.

[32]

Sweet, W.C., Mei, S. L., 1999. The Permian Lopingian and Basal Triassic Sequence in Northwest Iran. Permophiles, 33: 14-18.

[33]

Wang, C. Y., Wu, J. J., Zhu, T., 1998. Permian Conodonts from the Penglaitan Section, Laipin County, Guangxi and the Base of the Wuchiapingian Stage (Lopingian Series). Acta Micropalaeontologica Sinica, 15(3): 225-235 (in Chinese with English abstract).

[34]

Wang, G.Q., Xia, W.C., 2004. Upper Permian Conodonts Zonation and Its Implication in Western Hubei Province. Geological Science and Technology Information, 23(4): 30-34 (in Chinese with English abstract).

[35]

Wang, X.Q., 2007. Study on Sedimentary Facies and Sequence Stratigraphy of Leye Isolated Carbonate Platform in Northwest Guangxi (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).

[36]

Wang, X.Q., Shi, X.Y., 2008. Sedimentary Characteristics and Evolution of the Late Paleozoic Leye Isolated Carbonate Platform in Northwest Guangxi. Journal of Palaeogeography, 10(4): 329-340 (in Chinese with English abstract).

[37]

Wu, H.R., 2003. Discussion on Tectonic Palaeogeography of Nanpanjiang Sea in the Late Palaeozoic and Triassic. Journal of Palaeogeography, 5(1): 63-76 (in Chinese with English abstract).

[38]

Wu, K., Tong, J.N., Li, H.J., et al., 2022. Advance in the Study of Global Conodont during the Palaeozoic-Mesozoic Upheavals. Earth Science, 47(3): 1012-1037 (in Chinese with English abstract).

[39]

Yan, J. X., Meng, Q., Wang, X., et al., 2019. Carbonate Factory and Carbonate Platform: Progress and Prospects. Journal of Palaeogeography, 21(2): 232-253 (in Chinese with English abstract).

[40]

Yang, B. Z., Zhang, N., Xia, W. C., 2008. Conodont Fauna and Sedimentary Environment of Wuchiapingian of Upper Permian in Shizhu Area, Chongqing. Geological Science and Technology Information, 27(4): 27-32 (in Chinese with English abstract).

[41]

Yin, H. F., Song, H. J., 2013. Mass Extinction and Pangea Integration during the Paleozoic-Mesozoic Transition. Scientia Sinica (Terrae), 43(10): 1539-1552 (in Chinese).

[42]

Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 24(2): 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004

[43]

Yuan, D. X., Shen, S., Henderson, C., et al., 2014. Revised Conodont-Based Integrated High-Resolution Timescale for the Changhsingian Stage and End-Permian Extinction Interval at the Meishan Sections, South China. Lithos, 204: 220-245. doi: https://doi.org/10.1016/j.lithos.2014.03.026

[44]

Yuan, D. X., Shen, S. Z., Henderson, C. M., 2017. Revised Wuchiapingian Conodont Taxonomy and Succession of South China. Journal of Paleontology, 91(6): 1199-1219. https://doi.org/10.1017/jpa.2017.71

[45]

Yuan, D. X., Shen, S.Z., Henderson, C.M., et al., 2019. Integrative Timescale for the Lopingian (Late Permian): A Review and Update from Shangsi, South China. Earth-Science Reviews, 188: 190-209. https://doi.org/10.1016/j.earscirev.2018.11.002

[46]

Yuan, J. L., Jiang, H. S., Wang, D. C., 2015. LST: A New Inorganic Heavy Liquid Used in Conodont Separation. Geological Science and Technology Information, 34(5): 225-230 (in Chinese with English abstract).

[47]

Zhang, L.L., Zhang, N., Xia, W.C., 2007. Conodont Succession in the Guadalupian-Lopingian Boundary Interval (Upper Permian) of the Maoershan Section, Hubei Province, China. Micropaleontology, 53(6): 433-446. https://doi.org/10.2113/GSMICROPAL.53.6.433

[48]

Zhang, X. L., Zhou, T.M., 1994. On the Microfssils of the Pekmian Bioherm and the Sedimentary Environment in the Longlin Area, Guangxi Province. Experimental Petroleum Geology, 16(1): 60-66 (in Chinese with English abstract).

[49]

Zhong, Y. T., Mundil, R., Chen, J., et al., 2020. Geochemical, Biostratigraphic, and High-Resolution Geochronological Constraints on the Waning Stage of Emeishan Large Igneous Province. Geological Society of America Bulletin, 132: 1969-1986. https://doi.org/10.1130/b35464.1

[50]

Zhou, T.M., 1998. Middle-Late Permian Foraminifera Fauna in Xiangbo Area at Longlin of Guangxi. Guangxi Geology, 11(2): 7-12, 16(in Chinese with English abstract).

基金资助

国家自然科学基金项目(41872117;41972033;41830320)

AI Summary AI Mindmap
PDF (10849KB)

198

访问

0

被引

详细

导航
相关文章

AI思维导图

/