东昆仑黑石山铜多金属矿床闪长岩锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素

李治华 ,  李碧乐 ,  李鹏 ,  孙亚明 ,  史雨凡

地球科学 ›› 2023, Vol. 48 ›› Issue (12) : 4465 -4480.

PDF (7849KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (12) : 4465 -4480. DOI: 10.3799/dqkx.2022.067

东昆仑黑石山铜多金属矿床闪长岩锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素

作者信息 +

Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes of Diorite in Heishishan Copper Polymetallic Deposit, East Kunlun

Author information +
文章历史 +
PDF (8037K)

摘要

黑石山铜铅锌矿床位于东昆仑造山带中段的五龙沟地区,矿区内中三叠世的侵入岩十分发育,与矿体近平行产出的闪长岩为限定东昆仑地区古特提斯洋闭合时间提供了很好的研究对象.对黑石山闪长岩进行了LA-ICP-MS锆石U-Pb定年、全岩地球化学和Sr-Nd-Hf同位素分析.定年显示,黑石山闪长岩形成于241.6±1.0 Ma.样品的SiO2含量为52.23%~56.19%,全碱含量为K2O+Na2O=3.99%~6.26%,Na2O=2.79%~3.63%,K2O=1.06%~2.71%,样品富铝、钙、铁,MgO=2.55%~4.84%,TiO2=1.11%~1.43%;样品富集大离子亲石元素如Rb、Ba、K,明显亏损Nb、Ta、Ti、P等高场强元素,富集轻稀土元素,亏损重稀土元素,大多具有较为明显的Eu负异常,δEu为0.39~0.59.锆石ε Hft)值为-4.1~+0.7;全岩(87Sr/86Sr)t为0.708 860~0.708 960,ε Ndt)为-4.5~-4.3.综合研究认为,黑石山闪长岩为壳幔混合成因,结合区域构造演化历史,认为其形成于俯冲构造背景,指示东昆仑地区古特提斯洋闭合晚于241.6 Ma.

关键词

东昆仑 / 闪长岩 / 锆石U-Pb定年 / Sr-Nd-Hf同位素 / 壳幔混合 / 矿床 / 年代学

Key words

East Kunlun / diorite / zircon U-Pb dating / Sr-Nd-Hf isotope / crust-mantle mixing / ore deposit / geochronology

引用本文

引用格式 ▾
李治华,李碧乐,李鹏,孙亚明,史雨凡. 东昆仑黑石山铜多金属矿床闪长岩锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素[J]. 地球科学, 2023, 48(12): 4465-4480 DOI:10.3799/dqkx.2022.067

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

东昆仑造山带位于青藏高原北部,在加里东期和印支期经历了复杂的演化过程(Dong et al.,2018),形成了很多重要的矿产资源,如与原特提斯洋演化有关的中国第二大的镍矿床夏日哈木Ni矿(王冠等,2014),三叠纪形成了五龙沟金矿田(张宇婷,2018)、沟里金矿田(李碧乐等,2012)和数量众多的斑岩型-矽卡岩型Cu-Fe多金属矿床(刘建楠等,2012杨延乾,2013Ding et al.,2014俞军真等,2020),是中国重要的三叠纪成矿带(毛景文等,2012).

前人对东昆仑造山带石炭纪-晚三叠世的演化过程进行了很多研究,认为东昆仑地区古特提斯洋在石炭纪打开(杨经绥等,2004),俯冲最早开始于晚二叠世(孔会磊等,2021),并形成了很多富集地幔部分熔融的中基性岩石(熊富浩等,2011 ;Xiong et al.,2013, 2019王巍等,2021),同时也形成了分布非常广泛的花岗岩(莫宣学等,2007马昌前等,2015陈国超等,2018李瑞保等,2018陈兵等,2021).然而,关于东昆仑地区古特提斯洋最终关闭的时限众说纷纭,Huang et al.(2014)认为古特提斯洋在二叠纪晚期关闭,Ding et al.(2014)认为古特提斯洋在215 Ma关闭,而最广为人接受的是古特提斯洋在中三叠世(243~237 Ma)关闭(莫宣学等,2007Xiong et al.,2013姚磊,2015 ;Xia et al.,2015, 2017),仍存在较长的时间跨度,需要进一步研究.

黑石山铜铅锌金属矿床地处东昆中带中段,位于五龙沟矿集区的东北部,矿区内分布有很多中三叠世形成的侵入岩(Ding et al.,2014夏锐,2017国显正等,2018),为限定古特提斯洋闭合时间提供了很好的研究对象.我们对黑石山铜铅锌矿床进行了详细的野外调查,重新厘定了与成矿有关的花岗岩,获得其年龄为241.7 Ma(Li et al.,2023),采集了矿区内与矿体平行产出的闪长岩,本文对闪长岩进行锆石U-Pb定年、全岩地球化学和Sr-Nd-Hf同位素研究,本研究的目的是:(1)确定黑石山闪长岩的形成时代、岩石成因和岩浆源区;(2)明确成岩构造背景.

1 区域地质

东昆仑造山带位于青藏高原北部,东西长1 200 km(图1),北部为柴达木盆地,南部为巴颜喀拉地体,西部以阿尔金走滑断裂为界,东部以温泉断裂为界(莫宣学等,2007).依据东昆北、东昆中和东昆南3条近东西向的断裂(图1b1c)将其划分为加里东弧后裂陷带、东昆中基底隆起及花岗岩带和东昆南复合拼贴带(张宇婷,2018).

东昆北带主要以前寒武系变质基底和弧后沉积的奥陶系-志留系祁漫塔格群为主,伴随着大量加里东期钙碱性-高钾钙碱性花岗岩侵入(莫宣学等,2007).东昆中带为一大型花岗岩-基底隆升带,古-中元古界金水口群和中元古界浅变质的冰沟群广泛分布(张宇婷,2018),出露大面积的加里东期-印支期花岗质侵入体.东昆南带为一大型俯冲增生杂岩带,古元古界苦海群、中新元古界万宝沟群和奥陶系纳赤台群以及三叠系广泛分布(莫宣学等,2007).

2 矿区地质

黑石山铜多金属矿床位于东昆中隆起带中段的五龙沟矿集区(图1c),是东昆仑造山带中段少有的经济矽卡岩矿床,矿床规模可达中型,矿石品位较富,铜平均品位可达1.04%;矿区地层为古元古界金水口群(图2),由(混合岩化)黑云母斜长片麻岩、黑云母斜长角闪片岩、斜长角闪片岩和大理岩组成;矿区构造主要为北西向断裂和北东向断裂(图2),北西向断裂与矿体近平行,倾向北东,倾角为50°~67°;北东向断裂穿切了矽卡岩和闪长岩,倾向北西,倾角为69°~73°(姜芷筠,2021).

黑石山铜铅锌矿床主要由3个矿带组成,从南向北依次为Ⅴ、Ⅶ、Ⅱ号矿带(图2),规模依次减小,矿体分布在花岗岩体与金水口群大理岩的外接触带,各矽卡岩带由数条矽卡岩组成,成群密集平行展布,在剖面上呈现叠瓦状单斜排列(图3g),倾向北东,多在30°~45°,倾角大部在55°~75°,矿体产在矽卡岩带内(姜芷筠,2021).

矿区内的侵入岩为花岗岩类和闪长岩(图2),花岗岩类包含了不成矿的花岗闪长岩、成矿花岗岩和含暗色微粒包体石英二长岩-正长岩,年龄分别为243.1 Ma、241.7 Ma和239.8 Ma(Li et al.,2023李治华等,2023).花岗闪长岩主要呈岩基、岩株状产出,岩石蚀变程度低,主要由石英、斜长石、正长石、角闪石和黑云母组成;与成矿有关的花岗岩,主要呈岩株、岩脉状产出,偶见似斑状结构,岩石普遍发生蚀变,以石英、斜长石、正长石、角闪石和黑云母为主;含暗色微粒包体石英二长岩-正长岩呈岩株状侵位到花岗闪长岩中,包体由角闪石和斜长石组成,可见堆晶结构,为同源岩浆包体(李治华等,2023),宿主岩石由正长石、斜长石、角闪石和黑云母以及少量石英组成.闪长岩与发生内矽卡岩化的与成矿有关的花岗岩为侵入接触,可见明显的烘烤边和冷凝边(图3a3b),闪长岩一侧为冷凝边,表现为矿物粒度明显变细,成矿花岗岩一侧为烘烤边,表现为褪色;这一现象表明闪长岩略晚于成矿花岗岩形成,与测年结果一致.闪长岩呈岩株状、脉状产出,与矿体和花岗岩类的接触关系见图(图3g).

闪长岩:风化面为灰褐色,新鲜面为灰黑色,中细粒结构,块状构造、弱片麻状构造(图3d),主要矿物组合为斜长石、正长石、普通角闪石,少量黑云母(图3d~3f),副矿物有磷灰石、榍石.斜长石呈板状,发育卡钠联合双晶和环带结构(图3e3f),表面发育弱的绢云母化蚀变,0.25~4.75 mm,含量约50%;正长石,发育卡氏双晶,黏土化,0.30~4.50 mm,含量约10%;普通角闪石,长柱状,发育两组斜交解理,0.30~3.00 mm,含量约39%;黑云母,小于0.25 mm,含量约1%.

3 分析方法

锆石的分选在廊坊市宇恒矿岩技术服务有限公司完成,锆石制靶和CL图像采集在北京锆年领航科技有限公司完成.

锆石U-Pb 测年在吉林大学东北亚矿产资源评价国土资源部重点实验室利用LA-ICP-MS分析完成.具体实验测试过程参见Yuan et al.(2004).激光剥蚀系统为COMPEx Pro型193 nm ArF准分子激光器,与激光器联用的是Agilent 7900型ICP-MS仪器;仪器最佳化采用NIST610,采用91500 标准锆石外部校正法进行锆石原位U-Pb分析;采用直径为32 μm、频率为7 Hz的激光束斑进行样品分析;用GLITTER 软件进行数据处理;采用Isoplot程序计算其年龄.分析结果见表1.

全岩主微量和稀土元素测试在北京燕都中实测试技术有限公司完成,主量元素测试先将粉末样品称量后加Li2B4O7 (1∶8)助熔剂混合,利用融样机加热至1 150 ℃,使其在铂金坩埚中熔融成均一玻璃片体,再使用XRF(Zetium,PANalytical)测试,测试结果误差小于1%.微量元素测试先将200目粉末样品称量并置放入聚四氟乙烯溶样罐并加入HF+HNO3,在干燥箱中将的高压消解罐保持在190 ℃温度72 h,后取出经过赶酸并将溶液定容为稀溶液上机测试.使用ICP-MS(M90,analytikjena)完成,所测数据根据监控标样GSR-2显示误差小于5%,部分挥发性元素及极低含量元素的分析误差小于10%,分析结果见表2.

锆石原位Lu-Hf同位素测试在中国地质科学院地质研究所大陆构造与动力学实验室完成,采用配有193 nm激光的Neptune多接收电感耦合等离子质谱仪进行测定,测试步骤与校准方法见参考文献(Wu et al.,2006),分析过程中标准锆石GJ-1的176Hf/177Hf测试加权平均值为0.282 285±13(n=35),分析结果见表3.

样品的Sr-Nd同位素分析在武汉上谱分析科技有限责任公司完成.称取粉末样品50~200 mg置于Teflon溶样弹中,依次加入高纯HNO3和HF,烘箱加热,蒸干,加入HNO3蒸干,加HCl蒸干,待上柱分离.用离心机将样品离心后,取上清液上柱,柱子填充AG50 W树脂,用2.5 M HCl淋洗去除基体元素.最终用2.5 M HCl将Sr从柱上洗脱并收集,蒸干后等待上机测试.树脂残留物质通过4.0 M HCl淋洗可获得REE溶液,经过介质转换后,直接上柱分离.柱子填充LN树脂,用0.18 M HCl淋洗去除基体元素,最终用0.3 M HCl将Nd从柱上洗脱并收集,蒸干后等待上机测试.Sr-Nd同位素分析采用德国Thermo Fisher Scientific 公司的MC-ICP-MS(Neptune Plus).

4 分析结果

4.1 锆石U-Pb年代学

黑石山闪长岩中的锆石表面干净无杂质,晶形多呈自形长柱状,晶棱平直,内部裂隙较少,颗粒较大,粒度在170~387 μm,多数锆石的长度约为227 μm;阴极发光(CL)图像(图4a)下,锆石具有清晰的岩浆振荡环带.对黑石山闪长岩进行锆石LA-ICP-MS U-Pb定年,测试点的Th和U的含量分别为32×10-6~360×10-6和86×10-6~439×10-6,Th/U比值为0.37~1.01,均大于0.10,锆石的形态、结构以及Th/U比值均表明该组锆石为岩浆成因的锆石(Wu and Zheng,2004).本次实验一共对闪长岩内的30颗锆石进行了分析,剔除了谐和度较差的7个测试点,剩下的23个测试点的206Pb/238U加权平均年龄为241.6±1.0 Ma(MSWD=1.0)(图4b4c),应代表黑石山闪长岩的结晶年龄,属于中三叠世.

4.2 全岩地球化学

黑石山闪长岩的主微量元素含量见表2,样品SiO2含量变化范围为52.23%~56.19%,全碱含量为K2O+Na2O=3.99%~6.26%,多数样品的钠含量高于钾含量(Na2O=2.79%~3.63%,K2O=1.06%~2.71%,Na2O/K2O=1.31~2.78).在SiO2-Na2O+K2O图解(图5a)中有4个样品落入闪长岩区域,3个样品落入辉长闪长岩区域,在SiO2-K2O图解(图5b)中有4个样品落入高钾钙碱性系列区域,2个样品落入钙碱性系列区域,1个样品点落入钾玄岩系列区域.岩石富铝、钙、铁(Al2O3=15.80%~18.86%,CaO=6.93%~8.82%,TFe2O3=8.28%~11.59%),MgO=2.55%~4.84%,Mg#=37.87~46.56,TiO2=1.11%~1.43%.

黑石山闪长岩富集轻稀土元素(LREEs),亏损重稀土元素(HREEs),稀土元素总量(ΣREE)为209.08×10-6~243.35×10-6,黑石山闪长岩的轻重稀土分馏较弱,LREE/HREE =3.69~6.27,(La/Yb)N值为3.07~7.43.样品大多具有较为明显的Eu负异常(图6a),δEu为0.39~0.59,平均值为0.47,表明岩石可能经历了斜长石的分离结晶,或者有斜长石在源区残留.在微量元素原始地幔标准化蛛网图(图6b)中,样品富集大离子亲石元素(LILEs)如Rb、Ba、K,明显亏损Nb、Ta、Ti、P等高场强元素(HFSEs).

4.3 锆石Hf同位素

黑石山闪长岩锆石Hf同位素数据见表3.黑石山闪长岩中锆石的176Hf/177Hf比值为0.282 512~0.282 646,ε Hft)值为-4.1~+0.7,平均值为-0.9,测试点大多投在球粒陨石演化线附近(图7a),锆石Hf同位素单阶段模式年龄(t DM1)为858~1 062 Ma,二阶段模式年龄(t DM2)为1 033~1 280 Ma.

4.4 全岩Sr-Nd同位素

黑石山闪长岩的Rb、Sr、Sm和Nd含量见表487Rb/86Sr和87Sr/86Sr分别为0.106 2~0.191 6和0.709 914~0.710 869;147Sm/144Nd和143Nd/144Nd分别为0.129 8~0.149 5和0.512 313~0.512 333;分别计算得到(87Sr/86Sr)t、(143Nd/144Nd)tε Ndt)为0.708 860~0.708 960,0.512 097~0.512 108和-4.5~-4.3.

5 讨论

5.1 岩石成因及源区

大量研究表明,闪长岩主要有以下3种形成机制:(1)幔源岩浆结晶分异作用(Tatsumi,1982Grove et al.,2003);(2)受俯冲物质交代的地幔楔橄榄岩发生部分熔融(Rogers and Hawkesworth,1989Kelemen,1995);(3)玄武质地壳部分熔融(Jung et al.,2002).在Zr/Nb-Zr图解(图8a)中,黑石山闪长岩样品呈现出部分熔融而非分离结晶作用的趋势,表明样品并非幔源玄武质岩浆发生分离结晶作用而形成;此外,幔源岩浆发生结晶分异作用形成的闪长岩具有Cr、Ni含量高、Mg#值(>60)和低TiO2(<0.5%)的特征(Tatsumi,1982Grove et al.,2003),而黑石山闪长岩低的Cr含量(3.61×10-6~10.60×10-6)、Ni含量(6.17×10-6~9.82×10-6)和低Mg#(37.87~46.56,平均值为41.51),高的TiO2(1.11%~1.43%),也与幔源岩浆分离结晶的特征不相符.受俯冲熔体交代的地幔楔橄榄岩发生部分熔融而成的熔体具有高MgO(>8%)和低TiO2(<0.5%)的特征,受俯冲流体交代的地幔楔部分熔融产物具有高Sr(>1 000×10-6)、Ba(>1 000×10-6)和K/Rb比值(>1 000)的特征(Kelemen,1995),而黑石山闪长岩均与上述特征不相符,表明并非俯冲组分交代的地幔楔部分熔融的产物.

实验岩石学研究显示,由玄武质下地壳部分熔融形成的熔体一般具有低的Cr和Ni值、MgO含量(<3%)和Mg#值(<40)的特征,只有地幔物质参与成岩时,才能导致熔体的Mg#值大于40(Rapp and Waston,1995).黑石山闪长岩低Cr含量(3.61×10-6~10.60×10-6)、Ni含量(6.17×10-6~9.82×10-6)和低Mg#(37.87~46.56,平均值为41.51),低的MgO(2.55%~4.84%,平均值为3.69%),基本与玄武质下地壳部分熔融形成的熔体特征是一致的,但样品的MgO值和Mg#要略更高(图8c,d),反映在成岩过程中有幔源物质参与.样品的微量元素比值也支持这一观点,闪长岩样品的Nd/Th比值(11.79~23.81,平均为16.62)大于壳源岩石Nd/Th比值(~3),小于幔源值(>15)(Bea et al.,2001),Rb/Sr比值(0.11~0.24,平均0.15),低于地壳值(0.40),高于上地幔值(0.03)(Taylor and McLennan,1995).这些比值都反映有幔源物质参与了成岩过程.此外,样品在MgO-TFeO图解(图8b)中呈现岩浆混合趋势.笔者统计了东昆仑地区富集地幔成因的中基性岩石和黑石山矿区花岗岩类的Sr-Nd同位素数据(图7b),从图中可见“下地壳成因”“壳幔混合成因”和“富集地幔成因”3个区域,Sr-Nd同位素依次变得富集.前人研究表明黑石山花岗闪长岩为壳源成因(Ding et al.,2014国显正等,2018),与含暗色微粒包体石英二长岩-正长岩的Sr-Nd同位素值接近,一起构成壳源成因区域(图7b).黑石山与成矿有关的花岗岩具有SiO2平均为69.64%,而Mg#多大于50的特征,反映明显的壳幔混合成因(Li et al.,2023),在图7b中落入富集地幔成因区,反映该地区的侵入岩的源区如果有幔源物质加入,其Sr-Nd同位素会变得富集.本文的黑石山闪长岩的Sr-Nd同位素非常靠近富集地幔成因区域,表明有幔源物质参与成岩过程.闪长岩样品锆石ε Hft)值为-4.1~+0.7,大多投在球粒陨石演化线附近(图7a),与东昆仑很多三叠纪侵入岩锆石Hf同位素的特征是一致的,研究者们普遍将这类岩石的成因解释为壳幔混合(莫宣学,2007Xia et al.,2015陈国超等,2018).综上所述,我们认为黑石山闪长岩为壳幔混合成因,以地壳物质为主,有部分地幔物质参与.

5.2 构造背景

东昆仑地区古特提斯洋在石炭纪打开(杨经绥等,2004),于晚二叠世开始俯冲(孔会磊等,2021),形成了许多来自富集地幔部分熔融的中基性岩石(熊富浩等,2011;Xiong et al.,2013,2019;王巍等,2021),与分布非常广泛的花岗岩(莫宣学等,2007陈国超等,2018李瑞保等,2018)和火山岩(Li et al.,2015),同时也伴随着强烈的壳幔混合作用的发生,表现为大量含暗色微粒包体的中酸性岩石的出现(刘成东等,2004莫宣学等,2007Xia et al.,2015;陈国超等,2018;陈兵等,2021).到了中三叠世,东昆仑地区的岩浆活动仍然非常强烈(刘成东等,2004李碧乐等,2012Xiong et al.,2013Li et al.,2015马昌前等,2015Xia et al.,2015国显正等,2018),表明该地区在中三叠世更可能处于俯冲环境,而并未处于同碰撞环境.东昆仑地区出露早、中三叠世地层从早到晚依次为:下三叠统洪水川组、中三叠统闹仓坚沟组和希里可特组(李瑞保等,2012).吴芳等(2010)获得闹仓坚沟组流纹质凝灰岩的锆石U-Pb年龄为243.5 Ma,表面年龄为239~249 Ma,表明其形成于中三叠世早期;希里可特组在东昆仑地区零星出露,平行不整合于闹仓坚沟组之上,且具有海陆交互相沉积的特征,反映大洋在中三叠世晚期关闭(李瑞保等,2012).从斑岩型-矽卡岩型矿床的形成角度来看,东昆仑有两个斑岩型-矽卡岩型矿床的形成时期,即中三叠世和晚三叠世(姚磊,2015),应分别对应古特提斯洋俯冲阶段和后碰撞伸展阶段,因为已有的研究表明俯冲环境和后碰撞环境是形成斑岩型-矽卡岩型矿床的最有利构造环境(Richards,2003Hou et al.,2015).本文的黑石山闪长岩(241.6 Ma)与黑石山矽卡岩型铜矿有关的花岗岩(241.7 Ma;Li et al.,2023)近同时形成,应与位于紧邻其东南部的斑岩型矿床埃坑得勒斯特(花岗斑岩,248 Ma;杨延乾,2013)和下得波利(花岗斑岩,244 Ma;刘建楠等,2012)铜钼矿床同属古特提斯洋向北俯冲的构造环境,未处于同碰撞背景.黑石山闪长岩在构造判别图解(图9)中均落入活动大陆边缘(安第斯型)区域,也支持了这一观点,表明东昆仑地区古特提斯洋在241.6 Ma仍在向北俯冲.

6 结论

(1)黑石山闪长岩的LA-ICP-MS锆石U-Pb年龄为241.6±1.0 Ma,属中三叠世.

(2)黑石山闪长岩贫硅,略富碱,富铝、钙、铁,Mg#=37.87~46.56,富集大离子亲石元素Rb、Ba、K,明显亏损高场强元素Nb、Ta、Ti、P;锆石ε Hft)值为-4.1~+0.7,全岩(87Sr/86Sr)t为0.708 860~0.708 960,ε Ndt)为-4.5~-4.3.综合研究认为,黑石山闪长岩为壳幔混合成因,以地壳物质为主,有部分地幔物质参与.

(3)黑石山闪长岩具有弧岩浆岩的地球化学特征,形成于俯冲构造背景,说明东昆仑地区古特提斯洋闭合晚于241.6 Ma.

参考文献

[1]

Bea,F.,Arzamastsev,A.,Montero,P.,et al.,2001.Anomalous Alkaline Rocks of Soustov,Kola: Evidence of Mantle-Derived Metasomatic Fluids Affecting Crustal Materials.Contributions to Mineralogy and Petrology,140(5): 554-566.https://doi.org/10.1007/s004100000211

[2]

Chen,B.,Xiong,F.H.,Ma,C.Q.,et al.,2021.Coupling Relation between Magma Mixing and Igneous Petrological Diversity: An Example of Bairiqili Felsic Pluton in East Kunlun Orogen.Earth Science,46(6): 2057-2072 (in Chinese with English abstract).

[3]

Chen,G.C.,Pei,X.Z.,Li,R.B.,et al.,2018.Triassic Magma Mixing and Mingling at the the Eastern Section of Eastern Kunlun:A Case Study from Xiangjiananshan Granitic Batholith.Acta Petrologica Sinica,34(8): 2441-2480 (in Chinese with English abstract).

[4]

Defant,M.J.,Drummond,M.S.,1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature,347: 662-665.https://doi.org/10.1038/347662a0

[5]

Ding,Q.F.,Jiang,S.Y.,Sun,F.Y.,2014.Zircon U-Pb Geochronology,Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen,NW China: Petrogenesis and Tectonic Implications.Lithos,205: 266-283.https://doi.org/10.1016/j.lithos.2014.07.015

[6]

Dong,Y.P.,He,D.F.,Sun,S.S.,et al.,2018.Subduction and Accretionary Tectonics of the East Kunlun Orogen,Western Segment of the Central China Orogenic System.Earth-Science Reviews,186: 231-261.https://doi.org/10.1016/j.earscirev.2017.12.006

[7]

Grove,T.L.,Elkins-Tanton,L.T.,Parman,S.W.,et al.,2003.Fractional Crystallization and Mantle-Melting Controls on Calc-Alkaline Differentiation Trends.Contributions to Mineralogy and Petrology,145(5): 515-533.https://doi.org/10.1007/s00410-003-0448-z

[8]

Guo,X.Z.,Li,Y.Z.,Jia,Q.Z.,et al.,2018.Geochronology and Geochemistry of the Wulonggou Orefield Related Granites in Late Permian-Triassic East Kunlun: Implication for Metallogenic Tectonic.Acta Petrologica Sinica,34(8): 2359-2379 (in Chinese with English abstract).

[9]

Hou,Z.Q.,Duan,L.F.,Lu,Y.J.,et al.,2015.Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen.Economic Geology,110(6): 1541-1575.https://doi.org/10.2113/econgeo.110.6.1541

[10]

Huang,H.,Niu,Y.L.,Nowell,G.,et al.,2014.Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt,Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism.Chemical Geology,370: 1-18.https://doi.org/10.1016/j.chemgeo.2014.01.010

[11]

Jiang,Z.J.,2021.Geological Characteristics and Ore Genesis of the Heishishan Cu-Pb-Zn Deposit in Wulonggou Area,East Kunlun (Dissertation).Jilin University,Changchun(in Chinese with English abstract).

[12]

Jung,S.,Hoernes,S.,Mezger,K.,2002.Synorogenic Melting of Mafic Lower Crust: Constraints from Geochronology,Petrology and Sr,Nd,Pb and O Isotope Geochemistry of Quartz Diorites (Damara Orogen,Namibia).Contributions to Mineralogy and Petrology,143(5): 551-566.https://doi.org/10.1007/s00410-002-0366-5

[13]

Kelemen,P.B.,1995.Genesis of High Mg# Andesites and the Continental Crust.Contributions to Mineralogy and Petrology,120(1): 1-19.https://doi.org/10.1007/bf00311004

[14]

Kong,H.L.,Li,Y.Z.,Li,J.C.,et al.,2021.Petrogenesis of Xiwanggou Olivine Gabbro in East Kunlun Mountains: Constraints from Geochemistry,Zircon U-Pb Dating and Hf Isotopes.Geology in China,48(1):173-188 (in Chinese with English abstract).

[15]

Li,B.L.,Sun,F.Y.,Yu,X.F.,et al.,2012.U-Pb Dating and Geochemistry of Diorite in the Eastern Section from Eastern Kunlun Middle Uplifted Basement and Granitic Belt.Acta Petrologica Sinica,28(4): 1163-1172 (in Chinese with English abstract).

[16]

Li,R.B.,Pei,X.Z.,Li,Z.C.,et al.,2012.Geological Characteristics of Late Palaeozoic-Mesozoic Unconformities and Their Response to Some Significant Tectonic Events in Eastern Part of Eastern Kunlun.Earth Science Frontiers,19(5): 244-254 (in Chinese with English abstract).

[17]

Li,R.B.,Pei,X.Z.,Li,Z.C.,et al.,2018.Paleo-Tethys Ocean Subduction in Eastern Section of East Kunlun Orogen: Evidence from the Geochronology and Geochemistry of the Wutuo Pluton.Acta Petrologica Sinica,34(11): 3399-3421 (in Chinese with English abstract).

[18]

Li,X.W.,Huang,X.F.,Luo,M.F.,et al.,2015.Petrogenesis and Geodynamic Implications of the Mid-Triassic Lavas from East Kunlun,Northern Tibetan Plateau.Journal of Asian Earth Sciences,105: 32-47.https://doi.org/10.1016/j.jseaes.2015.03.009

[19]

Li,Z.H., Li, B.L., Li,P., et al., 2023.Petrogenesis and Magma Fertility of the Heishishan Skarn Deposit, East Kunlun, NW China: Insights from Geochronology, Mineralogy, Geochemistry, and Sr-Nd-Hf Isotopes. Ore Geology Reviews, 157: 105436. https://doi.org/10.1016/j.oregeorev.2023.105436

[20]

Li,Z.H.,Li,B.L., Wang,B., et al., 2023.Genesis and Geological Significance of Sulfide Bearing Mafic Enclaves and Host Syenite in Heishishan, East Kunlun: Evidence from Geochronology, Mineralogy, Geochemistry and Sr-Nd-Hf Isotopes. Acta Petrologica Sinica, 39(3): 742-762 (in Chinese with English abstract).

[21]

Liu,C.D.,Mo,X.X.,Luo,Z.H.,et al.,2004.Mixing Events between the Crust- and Mantle-Derived Magmas in Eastern Kunlun: Evidence from Zircon SHRIMP Ⅱ Chronology.Chinese Science Bulletin,49(6):596-602 (in Chinese).

[22]

Liu,J.N.,Feng,C.Y.,Qi,F.,et al.,2012.SIMS Zircon U-Pb Dating and Fluid Inclusion Studies of Xiadeboli Cu-Mo Ore District in Dulan County,Qinghai Province,China.Acta Petrologica Sinica,28(2):679-690 (in Chinese with English abstract).

[23]

Ma,C.Q.,Xiong,F.H.,Yin,S.,et al.,2015.Intensity and Cyclicity of Orogenic Magmatism:an Example from a Paleo-Tethyan Granitoid Batholith,Eastern Kunlun,Northern Qinghai-Tibetan Plateau.Acta Petrologica Sinica,31(12):3555-3568 (in Chinese with English abstract).

[24]

Mao,J.W.,Zhou,Z.H.,Feng,C.Y.,et al.,2012.A Preliminary Study of the Triassic Large-Scale Mineralization in China and Its Geodynamic Setting.Geology in China,39(6):1437-1471 (in Chinese with English abstract).

[25]

Middlemost,E.A.K.,1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews,37(3-4):215-224.https://doi.org/10.1016/0012-8252(94)90029-9

[26]

Mo,X.X.,Luo,Z.H.,Deng,J.F.,et al.,2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities,13(3):403-414 (in Chinese with English abstract).

[27]

Pearce,J.A.,Peate,D.W.,1995.Tectonic Implocations of the Composition of Volcanic Arc Magmas.Annual Review of Earth & Planetary Sciences,23:251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343

[28]

Pearce,T.H.,Gorman,B.E.,Birkett,T.C.,1977.The Relationship between Major Element Chemistry and Tectonic Environment of Basic and Intermediate Volcanic Rocks. Earth and Planetary Science Letters,36(1):121-132.https://doi.org/10.1016/0012-821x(77)90193-5

[29]

Peccerillo,A.,Taylor,S.R.,1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area,Northern Turkey.Contributions to Mineralogy and Petrology,58(1):63-81.https://doi.org/10.1007/bf00384745

[30]

Rapp,R.P.,Shimizu,N.,Norman,M.D.,et al.,1999.Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8 GPa.Chemical Geology,160(4):335-356.https://doi.org/10.1016/s0009-2541(99)00106-0

[31]

Rapp,R.P.,Watson,E.B.,1995.Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology,36(4):891-931.https://doi.org/10.1093/petrology/36.4.891

[32]

Richards,J.P.,2003.Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation.Economic Geology,98(8):1515-1533.https://doi.org/10.2113/gsecongeo.98.8.1515

[33]

Rogers,G.,Hawkesworth,C.J.,1989.A Geochemical Traverse across the North Chilean Andes:Evidence for Crust Generation from the Mantle Wedge.Earth and Planetary Science Letters,91(3/4):271-285.https://doi.org/10.1016/0012-821x(89)90003-4

[34]

Sun,S.S.,McDonough,W.F.,1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society,London,Special Publications,42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19

[35]

Tatsumi,Y.,1982.Origin of High-Magnesian Andesites in the Setouchi Volcanic Belt,Southwest Japan,II.Melting Phase Relations at High Pressures.Earth and Planetary Science Letters,60(2):305-317.https://doi.org/10.1016/0012-821x(82)90009-7

[36]

Taylor,S.R.,McLennan,S.M.,1995.The Geochemical Evolution of the Continental Crust.Review of Geophysics,33(2):241-265.https://doi.org/10.1029/95rg00262

[37]

Wang,G.,Sun,F.Y.,Li,B.L.,et al.,2014.Petrography,Zircon U-Pb Geochronology and Geochemistry of the Mafic-Ultramafic Intrusion in Xiarihamu Cu-Ni Deposit from East Kunlun,with Implications for Geodynamic Setting.Earth Science Frontiers,21(6):381-401 (in Chinese with English abstract).

[38]

Wang,Q.,Xu,J.F.,Jian,P.,et al.,2006.Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting,Dexing,South China:Implications for the Genesis of Porphyry Copper Mineralization.Journal of Petrology,47(1):119-144.https://doi.org/10.1093/petrology/egi070

[39]

Wang,W.,Xiong,F.H.,Ma,C.Q.,et al.,2021.Petrogenesis of Triassic Suolagou Sanukitoid-Like Diorite in East Kunlun Orogen and Its Implications for Paleo-Tethyan Orogeny.Earth Science,46(8):2887-2902 (in Chinese with English abstract).

[40]

Whitney,D.L.,Evans,B.W.,2010.Abbreviations for Names of Rock-Forming Minerals.American Mineralogist,95(1):185-187.https://doi.org/10.2138/am.2010.3371

[41]

Wu,F.Y.,Yang,Y.H.,Xie,L.W.,et al.,2006.Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology.Chemical Geology,234(1-2):105-126.https://doi.org/10.1016/j.chemgeo.2006.05.003

[42]

Wu,F.,Zhang,X.J.,Zhang,Y.Q.,et al.,2010.Zircon U-Pb Ages for Rhyolitic Tuffs of the Naocangjiangou Formation in the East Kulun Orogenic Belt and Their Implication.Journal of Geomechanics,16(1):44-50 (in Chinese with English abstract).

[43]

Wu,Y.B.,Zheng,Y.F.,2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin,49(15):1554-1569.https://doi.org/10.1007/bf03184122

[44]

Xia,R.,2017.Paleo-Tethys Orogenic Process and Metallogenesis of the East Kunlun (Dissertation).China University of Geosciences,Beijing(in Chinese with English abstract).

[45]

Xia,R.,Deng,J.,Qing,M.,et al.,2017.Petrogenesis of Ca.240 Ma Intermediate and Felsic Intrusions in the Nan’getan:Implications for Crust-Mantle Interaction and Geodynamic Process of the East Kunlun Orogen.Ore Geology Reviews,90:1099-1117.https://doi.org/10.1016/j.oregeorev.2017.04.002

[46]

Xia,R.,Wang,C.M.,Qing,M.,et al.,2015.Zircon U-Pb Dating,Geochemistry and Sr-Nd-Pb-Hf-O Isotopes for the Nan'getan Granodiorites and Mafic Microgranular Enclaves in the East Kunlun Orogen:Record of Closure of the Paleo-Tethys.Lithos,234-235:47-60.https://doi.org/10.1016/j.lithos.2015.07.018

[47]

Xiong,F.H.,Ma,C.Q.,Chen,B.,et al.,2019.Intermediate-Mafic Dikes in the East Kunlun Orogen,Northern Tibetan Plateau:A Window into Paleo-Arc Magma Feeding System.Lithos,340/341:152-165.https://doi.org/10.1016/j.lithos.2019.05.012

[48]

Xiong,F.H.,Ma,C.Q.,Jiang,H.A.,et al.,2013.Petrogenetic and Tectonic Significance of Permian Calc-Alkaline Lamprophyres,East Kunlun Orogenic Belt,Northern Qinghai-Tibet Plateau.International Geology Review,55(14):1817-1834.https://doi.org/10.1080/00206814.2013.804683

[49]

Xiong,F.H.,Ma,C.Q.,Zhang,J.Y.,et al.,2011.LA-ICP-MS Zircon U-Pb Dating,Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt.Acta Petrologica Sinica,27(11):3350-3364 (in Chinese with English abstract).

[50]

Yang,J.S.,Wang,X.B.,Shi,R.D.,et al.,2004.The Dur’ngoi Ophiolite in East Kunlun,Northern Qinghai-Tibet Plateau:A Fragment of Paleo-Tethyan Oceanic Crust.Geology in China,31(3):225-239 (in Chinese with English abstract).

[51]

Yang,Y.Q.,2013.Study on Geological Characteristics and Genesis of Aikengdelesite Molybdenum (Copper) Deposit,Eastern Kunlun,Qinghai Province (Dissertation).Jilin University,Changchun(in Chinese with English abstract).

[52]

Yao,L.,2015.Petrogenesis of the Triassic Granitoids and Skarn Mineralization in the Qimantag Area,Qinghai Province,and Their Geodynamic Setting (Dissertation).China University of Geosciences,Beijing(in Chinese with English abstract).

[53]

Yu,J.Z.,Zheng,Y.Y.,Xu,R.K.,et al.,2020.Zircon U-Pb Chronology,Geochemistry of Jiangjunmu Ore-Bearing Pluton,Eastern Part of East Kunlun and Their Geological Significance.Earth Science,45(4):1151-1167 (in Chinese with English abstract).

[54]

Yuan,H.L.,Gao,S.,Liu,X.M.,et al.,2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research,28(3):353-370.https://doi.org/10.1111/j.1751-908x.2004.tb00755.x

[55]

Zhang,Y.T.,2018.Research on Metallogenesis of Gold Deposits in the Wulonggou Ore Concentration Area,Central Segment of the Kunlun Mountains,Qinghai Province (Dissertation).Jilin University,Changchun(in Chinese with English abstract).

[56]

Zorpi,M.J.,Coulon,C.,Orsini,J.B.,1991.Hybridization between Felsic and Mafic Magmas in Calc-Alkaline Granitoids:A Case Study in Northern Sardinia,Italy.Chemical Geology,92(1-3):45-86.https://doi.org/10.1016/0009-2541(91)90049-w

[57]

陈兵,熊富浩,马昌前,等,2021.岩浆混合作用与火成岩多样性的耦合关系:以东昆仑造山带白日其利长英质岩体为例.地球科学,46(6):2057-2072.

[58]

陈国超,裴先治,李瑞保,等,2018.东昆仑东段三叠纪岩浆混合作用:以香加南山花岗岩基为例.岩石学报,34(8):2441-2480.

[59]

国显正,栗亚芝,贾群子,等,2018.东昆仑五龙沟金多金属矿集区晚二叠世-三叠纪岩浆岩年代学、地球化学及其构造意义.岩石学报,34(8):2359-2379.

[60]

姜芷筠,2021.东昆仑五龙沟地区黑石山Cu-Pb-Zn矿床地质特征及矿床成因(硕士学位论文).长春:吉林大学.

[61]

孔会磊,栗亚芝,李金超,等,2021.东昆仑希望沟橄榄辉长岩的岩石成因:地球化学、锆石U-Pb年龄与Hf同位素制约.中国地质,48(1):173-188.

[62]

李碧乐,孙丰月,于晓飞,等,2012.东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究.岩石学报,28(4):1163-1172.

[63]

李瑞保,裴先治,李佐臣,等,2012.东昆仑东段晚古生代—中生代若干不整合面特征及其对重大构造事件的响应.地学前缘,19(5):244-254.

[64]

李瑞保,裴先治,李佐臣,等,2018.东昆仑东段古特提斯洋俯冲作用:乌妥花岗岩体锆石U-Pb年代学和地球化学证据.岩石学报,34(11):3399-3421.

[65]

李治华,李碧乐,王斌,等,2023.东昆仑黑石山含硫化物暗色包体及宿主正长岩成因及地质意义:年代学、矿物学、地球化学和Sr-Nd-Hf同位素证据.岩石学报, 39(3): 742-762.

[66]

刘成东,莫宣学,罗照华,等,2004.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据.科学通报,49(6):596-602.

[67]

刘建楠,丰成友,亓锋,等,2012.青海都兰县下得波利铜钼矿区锆石U-Pb测年及流体包裹体研究.岩石学报,28(2):679-690.

[68]

马昌前,熊富浩,尹烁,等,2015.造山带岩浆作用的强度和旋回性:以东昆仑古特提斯花岗岩类岩基为例.岩石学报,31(12):3555-3568.

[69]

毛景文,周振华,丰成友,等,2012.初论中国三叠纪大规模成矿作用及其动力学背景.中国地质,39(6):1437-1471.

[70]

莫宣学,罗照华,邓晋福,等,2007.东昆仑造山带花岗岩及地壳生长.高校地质学报,13(3):403-414.

[71]

王冠,孙丰月,李碧乐,等,2014.东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义.地学前缘,21(6):381-401.

[72]

王巍,熊富浩,马昌前,等,2021.东昆仑造山带索拉沟地区三叠纪赞岐质闪长岩的成因机制及其对古特提斯造山作用的启示.地球科学,46(8):2887-2902.

[73]

吴芳,张绪教,张永清,等,2010.东昆仑闹仓坚沟组流纹质凝灰岩锆石U-Pb年龄及其地质意义.地质力学学报,16(1):44-50.

[74]

夏锐,2017.东昆仑古特提斯造山过程与金成矿作用(博士学位论文).北京:中国地质大学.

[75]

熊富浩,马昌前,张金阳,等,2011.东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学.岩石学报,27(11):3350-3364.

[76]

杨经绥,王希斌,史仁灯,等,2004.青藏高原北部东昆仑南缘德尔尼蛇绿岩:一个被肢解了的古特提斯洋壳.中国地质,31(3):225-239.

[77]

杨延乾,2013.青海东昆仑埃坑德勒斯特钼(铜)矿矿床地质特征及成因探讨(硕士学位论文).长春:吉林大学.

[78]

姚磊,2015.青海祁漫塔格地区三叠纪成岩成矿作用及地球动力学背景(博士学位论文).北京:中国地质大学.

[79]

俞军真,郑有业,许荣科,等,2020.东昆仑东段将军墓含矿岩体锆石U-Pb年代学、地球化学特征及其地质意义.地球科学,45(4):1151-1167.

[80]

张宇婷,2018.青海东昆仑中段五龙沟矿集区金矿成矿作用研究(博士学位论文).长春:吉林大学.

基金资助

青海省地质勘查专项基金项目(2023085029ky004)

山金西部地质矿产勘查有限公司科技创新项目(2022-1014)

AI Summary AI Mindmap
PDF (7849KB)

184

访问

0

被引

详细

导航
相关文章

AI思维导图

/