喀斯特洞穴细菌群落的生境特异性及其潜在功能:以广西桂林盘龙洞为例
曾智霖 , 程晓钰 , 王红梅 , 曹静 , 杨梓琪 , 刘晓燕 , 王昳衡 , 李璐 , 苏春田 , 黄奇波
地球科学 ›› 2023, Vol. 48 ›› Issue (12) : 4711 -4726.
喀斯特洞穴细菌群落的生境特异性及其潜在功能:以广西桂林盘龙洞为例
Niche Specificity and Potential Functions of Microbial Communities in Karst Caves as Exampled by Panlong Cave in Guilin City, Guangxi
,
,
开展岩溶洞穴不同生境微生物与环境因子间的研究,对阐明深部生物圈微生物的多样性、潜在功能及环境驱动机制具有重要意义.以广西桂林盘龙洞为例,通过对细菌16S rRNA高通量测序系统研究了洞穴7种小生境细菌群落的空间分布特征及其与环境因子之间的关系.研究发现温度是驱动盘龙洞细菌群落组成的重要因素,微生物群落组成及潜在生态功能均具有生境特异性,不同生境具有独有的细菌指示类群.滴水、干燥石笋表面生物膜、湿润石笋表面生物膜3个生境与洞穴氮循环密切相关,风化结皮、沉积物、岩壁3个生境与洞穴微生物固定二氧化碳关系紧密.此外,洞穴细菌通过密切的代谢交换形成协作的正相关关系,暗示着微生物在洞穴这一极端环境中的生存策略.
喀斯特洞穴 / 地下生物圈 / 碳固定 / 氮循环 / 共现网络 / 地质微生物
karst cave / subsurface biosphere / carbon fixation / nitrogen cycle / co-occurrence network / geomicrobiology
| [1] |
Barton,H.A.,Giarrizzo,J.G.,Suarez,P.,et al.,2014.Microbial Diversity in a Venezuelan Orthoquartzite Cave is Dominated by the Chloroflexi (Class Ktedonobacterales) and Thaumarchaeota Group I.1c.Frontiers in Microbiology,5:615.https://doi.org/10.3389/fmicb.2014.00615 |
| [2] |
Bastida,F.,Selevsek,N.,Torres,I.F.,et al.,2015.Soil Restoration with Organic Amendments:Linking Cellular Functionality and Ecosystem Processes.Scientific Reports,5:15550.https://doi.org/10.1038/srep15550 |
| [3] |
Bokulich,N.A.,Thorngate,J.H.,Richardson,P.M.,et al.,2014.Microbial Biogeography of Wine Grapes is Conditioned by Cultivar,Vintage,and Climate. Proceedings of the National Academy of Sciences of the United States of America,111(1):E139-E148.https://doi.org/10.1073/pnas.1317377110 |
| [4] |
Bradford, M. A., McCulley, R. L., Crowther, T. W., et al., 2019. Cross-Biome Patterns in Soil Microbial Respiration Predictable from Evolutionary Theory on Thermal Adaptation. Nature Ecology & Evolution, 3(2): 223-231. https://doi.org/10.1038/s41559-018-0771-4 |
| [5] |
Cai,Y.F.,Zhou,X.,Shi,L.M.,et al.,2020.Atmospheric Methane Oxidizers are Dominated by Upland Soil Cluster Alpha in 20 Forest Soils of China.Microbial Ecology,80(4):859-871.https://doi.org/10.1007/s00248-020-01570-1 |
| [6] |
Caporaso,J.G.,Kuczynski,J.,Stombaugh,J.,et al.,2010.QIIME Allows Analysis of High-Throughput Community Sequencing Data.Nature Methods,7(5):335-336.https://doi.org/10.1038/nmeth.f.303 |
| [7] |
Cheeptham,N.,Sadoway,T.,Rule,D.,et al.,2013.Cure from the Cave:Volcanic Cave Actinomycetes and Their Potential in Drug Discovery.International Journal of Speleology,42(1):35-47.https://doi.org/10.5038/1827-806x.42.1.5 |
| [8] |
Cheng, S.B., Liu, A.S., Cui, S., et al., 2021. Mineralization Process of Permian Karst Bauxite in Western Guangxi. Earth Science, 46(8): 2697-2710 (in Chinese with English abstract). |
| [9] |
Cheng,X.Y.,Liu,X.Y.,Wang,H.M.,et al.,2021a.USCγ Dominated Community Composition and Cooccurrence Network of Methanotrophs and Bacteria in Subterranean Karst Caves.Microbiology Spectrum,9(1):e0082021.https://doi.org/10.1128/spectrum.00820-21 |
| [10] |
Cheng,X.Y.,Yun,Y.,Wang,H.M.,et al.,2021b.Contrasting Bacterial Communities and Their Assembly Processes in Karst Soils under Different Land Use.Science of the Total Environment,751:142263.https://doi.org/10.1016/j.scitotenv.2020.142263 |
| [11] |
Claesson,M.,O’Sullivan,Ó.,Wang,Q.,et al.,2009.Comparative Analysis of Pyrosequencing and a Phylogenetic Microarray for Exploring Microbial Community Structures in the Human Distal Intestine.PloS One, 4(8):e6669 .https://doi.org/10.1371/journal.pone.0006669 |
| [12] |
Davis,M.C.,Messina,M.A.,Nicolosi,G.,et al.,2020.Surface Runoff Alters Cave Microbial Community Structure and Function.PLoS One,15(5):e0232742.https://doi.org/10.1371/journal.pone.0232742 |
| [13] |
Debora,R.,Tugba,O.,2016.Carbon Dioxide Sequestration through Microbially-Induced Calcium Carbonate Precipitation Using Ureolytic Aquatic Microorganisms.Abstracts of Papers of the American Chemical Society,251:672-680. |
| [14] |
Edgar,R.C.,2010.Search and Clustering Orders of Magnitude Faster than BLAST.Bioinformatics,26(19):2460-2461.https://doi.org/10.1093/bioinformatics/btq461 |
| [15] |
Edgar,R.C.,Haas,B.J.,Clemente,J.C.,et al.,2011.UCHIME Improves Sensitivity and Speed of Chimera Detection.Bioinformatics,27(16):2194-2200.https://doi.org/10.1093/bioinformatics/btr381 |
| [16] |
Fang,B.Z.,Salam,N.,Han,M.X.,et al.,2017.Insights on the Effects of Heat Pretreatment,pH,and Calcium Salts on Isolation of Rare Actinobacteria from Karstic Caves.Frontiers in Microbiology,8:1535.https://doi.org/10.3389/fmicb.2017.01535 |
| [17] |
Gulecal-Pektas,Y.,2016.Bacterial Diversity and Composition in Oylat Cave (Turkey) with Combined Sanger/Pyrosequencing Approach.Polish Journal of Microbiology,65:69-75.https://doi.org/10.5604/17331331.1197277 |
| [18] |
Han,Q.,Ma,Q.,Chen,Y.,et al.,2020.Variation in Rhizosphere Microbial Communities and Its Association with the Symbiotic Efficiency of Rhizobia in Soybean.The ISME Journal,14(8):1915-1928.https://doi.org/10.1038/s41396-020-0648-9 |
| [19] |
He,Z.L.,Gentry,T.J.,Schadt,C.W.,et al.,2007.GeoChip:A Comprehensive Microarray for Investigating Biogeochemical,Ecological and Environmental Processes.The ISME Journal,1(1):67-77.https://doi.org/10.1038/ismej.2007.2 |
| [20] |
Herbst,F.A.,Jehmlich,N.,von Bergen,M.,et al.,2018.Sulfur-34S and 36S Stable Isotope Labeling of Amino Acids for Quantification (SULAQ34/36) of Proteome Analyses.Microbial Proteomics.Humana Press,New York,163-174.https://doi.org/10.1007/978-1-4939-8695-8_12 |
| [21] |
Ivanova,A.A.,Zhelezova,A.D.,Chernov,T.I.,et al.,2020.Linking Ecology and Systematics of Acidobacteria:Distinct Habitat Preferences of the Acidobacteriia and Blastocatellia in Tundra Soils.PLos One,15(3):e0230157.https://doi.org/10.1371/journal.pone.0230157 |
| [22] |
Jones,D.S.,Lyon,E.,Macalady,J.,2008.Geomicrobiology of Biovermiculations from the Frasassi Cave System,Italy.Journal of Cave and Karst Studies,70:78-93. |
| [23] |
Knief,C.,2015.Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on PMOA as Molecular Marker.Frontiers in Microbiology,6:1346.https://doi.org/10.3389/fmicb.2015.01346 |
| [24] |
Knief,C.,Lipski,A.,Dunfield,P.F.,2003.Diversity and Activity of Methanotrophic Bacteria in Different Upland Soils.Applied and Environmental Microbiology,69(11):6703-6714.https://doi.org/10.1128/aem.69.11.6703-6714.2003 |
| [25] |
Kontro,M.,Lignell,U.,Hirvonen,M.R.,et al.,2005.pH Effects on 10 Streptomyces spp.Growth and Sporulation Depend on Nutrients.Letters in Applied Microbiology,41(1):32-38.https://doi.org/10.1111/j.1472-765x.2005.01727.x |
| [26] |
Kraft,B.,Tegetmeyer,H.E.,Sharma,R.,et al.,2014.The Environmental Controls That Govern the End Product of Bacterial Nitrate Respiration.Science,345(6197):676-679.https://doi.org/10.1126/science.1254070 |
| [27] |
Kranjc,A.,2011.The Origin and Evolution of the Term “Karst”.Procedia—Social and Behavioral Sciences,19:567-570.https://doi.org/10.1016/j.sbspro.2011.05.170 |
| [28] |
Kuypers,M.M.M.,Marchant,H.K.,Kartal,B.,et al.,2018.The Microbial Nitrogen-Cycling Network.Nature Reviews Microbiology,16(5):263-276.https://doi.org/10.1038/nrmicro.2018.9 |
| [29] |
Lavoie,K.H.,Winter,A.S.,Read,K.J.H.,et al.,2017.Comparison of Bacterial Communities from Lava Cave Microbial Mats to Overlying Surface Soils from Lava Beds National Monument,USA.PLoS One,12(2):e0169339.https://doi.org/10.1371/journal.pone.0169339 |
| [30] |
Lewin,G.R.,Carlos,C.,Chevrette,M.G.,et al.,2016.Evolution and Ecology of Actinobacteria and Their Bioenergy Applications.Annual Review of Microbiology,70:235-254.https://doi.org/10.1146/annurev-micro-102215-095748 |
| [31] |
Lian,B.,Xiao,L.L.,Sun,Q.B.,2017.Ecological Effects of the Microbial Weathering of Silicate Minerals.Acta Geologica Sinica (English Edition),91(Suppl.1):150-152.https://doi.org/10.1111/1755-6724.13231 |
| [32] |
Ma,L.Y.,Huang,X.P.,Wang,H.M.,et al.,2021.Microbial Interactions Drive Distinct Taxonomic and Potential Metabolic Responses to Habitats in Karst Cave Ecosystem.Microbiology Spectrum,9(2):e0115221.https://doi.org/10.1128/Spectrum.01152-21 |
| [33] |
Melillo,J.M.,Frey,S.D.,DeAngelis,K.M.,et al.,2017.Long-Term Pattern and Magnitude of Soil Carbon Feedback to the Climate System in a Warming World.Science,358(6359):101-105. |
| [34] |
Morris,B.E.L.,Henneberger,R.,Huber,H.,et al.,2013.Microbial Syntrophy:Interaction for the Common Good.FEMS Microbiology Reviews,37(3):384-406.https://doi.org/10.1111/1574-6976.12019 |
| [35] |
Mozafari,M.,Sajjadian,M.,Sorninia,Y.,et al.,2020.Hydrogeology and Geomorphology of Bisetun Aquifer (NW Iran):Interesting Example of Deep Endokarst.Carbonates and Evaporites,35(4):1-19.https://doi.org/10.1007/s13146-020-00636-y |
| [36] |
Nelson,M.B.,Martiny,A.C.,Martiny,J.B.H.,2016.Global Biogeography of Microbial Nitrogen-Cycling Traits in Soil.Proceedings of the National Academy of Sciences of the United States of America,113(29):8033-8040.https://doi.org/10.1073/pnas.1601070113 |
| [37] |
Ortiz,M.,Legatzki,A.,Neilson,J.W.,et al.,2014.Making a Living While Starving in the Dark:Metagenomic Insights into the Energy Dynamics of a Carbonate Cave.The ISME Journal,8(2):478-491.https://doi.org/10.1038/ismej.2013.159 |
| [38] |
Poisot,T.,Gravel,D.,2014.When is an Ecological Network Complex? Connectance Drives Degree Distribution and Emerging Network Properties.Peer Journal,2:e251.https://doi.org/10.7717/peerj.251 |
| [39] |
Porter,M.L.,Engel,A.S.,Kane,T.C.,et al.,2009.Productivity-Diversity Relationships from Chemolithoautotrophically Based Sulfidic Karst Systems.International Journal of Speleology,38:27-40.https://doi.org/10.5038/1827-806x.38.1.4 |
| [40] |
Pratscher,J.,Vollmers,J.,Wiegand,S.,et al.,2018.Unravelling the Identity,Metabolic Potential and Global Biogeography of the Atmospheric Methane-Oxidizing Upland Soil Cluster α.Environmental Microbiology,20(3):1016-1029.https://doi.org/10.1111/1462-2920.14036 |
| [41] |
Proctor,L.M.,1997.Nitrogen-Fixing,Photosynthetic,Anaerobic Bacteria Associated with Pelagic Copepods.Aquatic Microbial Ecology,12:105-113.https://doi.org/10.3354/ame012105 |
| [42] |
Pu,G.Z.,Lü,Y.N.,Dong,L.N.,et al.,2019.Profiling the Bacterial Diversity in a Typical Karst Tiankeng of China.Biomolecules,9(5):187.https://doi.org/10.3390/biom9050187 |
| [43] |
Puissant,J.,Jones,B.,Goodall,T.,et al.,2019.The pH Optimum of Soil Exoenzymes Adapt to Long Term Changes in Soil pH.Soil Biology and Biochemistry,138:107601.https://doi.org/10.1016/j.soilbio.2019.107601 |
| [44] |
Radita,R.,Suwanto,A.,Kurosawa,N.,et al.,2018.Firmicutes is the Predominant Bacteria in Tempeh.International Food Research Journal,25(6):2313-2320. |
| [45] |
Reitschuler,C.,Spötl,C.,Hofmann,K.,et al.,2016.Archaeal Distribution in Moonmilk Deposits from Alpine Caves and Their Ecophysiological Potential.Microbial Ecology,71(3):686-699.https://doi.org/10.1007/s00248-015-0727-z |
| [46] |
Riquelme,C.,Marshall Hathaway,J.J.,de L N Enes Dapkevicius,M.,et al.,2015.Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions.Frontiers in Microbiology,6:1342.https://doi.org/10.3389/fmicb.2015.01342 |
| [47] |
Sauro,F.,Mecchia,M.,Tringham,M.,et al.,2020.Speleogenesis of the World’s Longest Cave in Hybrid Arenites (Krem Puri,Meghalaya,India).Geomorphology,359:107160.https://doi.org/10.1016/j.geomorph.2020.107160 |
| [48] |
Smit,E.,Leeflang,P.,Gommans,S.,et al.,2001.Diversity and Seasonal Fluctuations of the Dominant Members of the Bacterial Soil Community in a Wheat Field as Determined by Cultivation and Molecular Methods.Applied and Environmental Microbiology,67(5):2284-2291.https://doi.org/10.1128/aem.67.5.2284-2291.2001 |
| [49] |
Sun,X.L.,Xu,Z.H.,Xie,J.Y.,et al.,2022.Bacillus velezensis Stimulates Resident Rhizosphere Pseudomonas stutzeri for Plant Health through Metabolic Interactions.The ISME Journal,16(3):774-787.https://doi.org/10.1038/s41396-021-01125-3 |
| [50] |
Tang,K.,Baskaran,V.,Nemati,M.,2009.Bacteria of the Sulphur Cycle:An Overview of Microbiology,Biokinetics and Their Role in Petroleum and Mining Industries.Biochemical Engineering Journal,44(1):73-94.https://doi.org/10.1016/j.bej.2008.12.011 |
| [51] |
Tetu,S.G.,Breakwell,K.,Elbourne,L.D.H.,et al.,2013.Life in the Dark:Metagenomic Evidence that a Microbial Slime Community is Driven by Inorganic Nitrogen Metabolism.The ISME Journal,7(6):1227-1236.https://doi.org/10.1038/ismej.2013.14 |
| [52] |
Veress,M.J.,2020.Karst Types and Their Karstification.Journal of Earth Science,31(3):621-634.https://doi.org/10.1007/s12583-020-1306-x |
| [53] |
Wang,Q.,Zhang,Z.H.,Du,R.,et al.,2019.Richness of Plant Communities Plays a Larger Role Than Climate in Determining Responses of Species Richness to Climate Change.Journal of Ecology,107:1944-1955.https://doi.org/10.1111/1365-2745.13148 |
| [54] |
Wang,W.F.,Ma,Y.T.,Ma,X.,et al.,2012.Diversity and Seasonal Dynamics of Airborne Bacteria in the Mogao Grottoes,Dunhuang,China.Aerobiologia,28(1):27-38.https://doi.org/10.1007/s10453-011-9208-0 |
| [55] |
Wang,X.Y.,He,T.H.,Gen,S.Y.,et al.,2020.Soil Properties and Agricultural Practices Shape Microbial Communities in Flooded and Rainfed Croplands.Applied Soil Ecology,147:103449.https://doi.org/10.1016/j.apsoil.2019.103449 |
| [56] |
Yang,S.H.,Ahn,H.,Kim,B.S.,et al.,2017.Comparison of Bacterial Communities in Leachate from Decomposing Bovine Carcasses.Asian-Australasian Journal of Animal Sciences,30(11):1660-1666.https://doi.org/10.5713/ ajas.17.0553 |
| [57] |
Yang,Y.,Li,T.,Wang,Y.Q.,et al.,2021.Linkage between Soil Ectoenzyme Stoichiometry Ratios and Microbial Diversity Following the Conversion of Cropland into Grassland.Agriculture,Ecosystems & Environment,314:107418.https://doi.org/10.1016/j.agee.2021.107418 |
| [58] |
Yun,Y.A.,Wang,H.M.,Man,B.Y.,et al.,2016.The Relationship between pH and Bacterial Communities in a Single Karst Ecosystem and Its Implication for Soil Acidification.Frontiers in Microbiology,7:1955.https://doi.org/10.3389/fmicb.2016.01955 |
| [59] |
Yun,Y.A.,Wang,W.Q.,Wang,H.M.,et al.,2018.Seasonal Variation of Bacterial Community and Their Functional Diversity in Drip Water from a Karst Cave.Chinese Science Bulletin,63(36):3932-3944.https://doi.org/10.1360/n972018-00627 |
| [60] |
Yun,Y.A.,Xiang,X.,Wang,H.M.,et al.,2016.Five-Year Monitoring of Bacterial Communities in Dripping Water from the Heshang Cave in Central China:Implication for Paleoclimate Reconstruction and Ecological Functions.Geomicrobiology Journal,33(7):1-11.https://doi.org/10.1080/01490451.2015.1062062 |
| [61] |
Zelezniak,A.,Andrejev,S.,Ponomarova,O.,et al.,2015.Metabolic Dependencies Drive Species Co-Occurrence in Diverse Microbial Communities.Proceedings of the National Academy of Sciences of the United States of America,112(20):6449-6454.https://doi.org/10.1073/pnas.1421834112 |
| [62] |
Zeng,L.L.,Tian,J.Q.,Chen,H.,et al.,2019.Changes in Methane Oxidation Ability and Methanotrophic Community Composition across Different Climatic Zones.Journal of Soils and Sediments,19(2):533-543.https://doi.org/10.1007/s11368-018-2069-1 |
| [63] |
Zhang,Y.,Yang,Q.S.,Ling,J.,et al.,2021.The Diversity of Alkane-Degrading Bacterial Communities in Seagrass Ecosystem of the South China Sea.Ecotoxicology,30:1799-1807.https://doi.org/10.1007/s10646-021-02450-1 |
| [64] |
Zhao,R.,Wang,H.M.,Cheng,X.Y.,et al.,2018.Upland Soil Cluster γ Dominates the Methanotroph Communities in the Karst Heshang Cave.FEMS Microbiology Ecology,94(12):fiy192.https://doi.org/10.1093/femsec/fiy192 |
| [65] |
Zhu,H.Z.,Zhang,Z.F.,Zhou,N.,et al.,2019.Diversity,Distribution and Co-Occurrence Patterns of Bacterial Communities in a Karst Cave System.Frontiers in Microbiology,10:1726.https://doi.org/10.3389/fmicb.2019.01726 |
| [66] |
Zhu,H.Z.,Zhang,Z.F.,Zhou,N.,et al.,2021.Bacteria and Metabolic Potential in Karst Caves Revealed by Intensive Bacterial Cultivation and Genome Assembly.Applied and Environmental Microbiology,87(6):e02440-e02420.https://doi.org/10.1128/aem.02440-20 |
| [67] |
程顺波,刘阿睢,崔森,等,2021.桂西二叠纪喀斯特型铝土矿地质成矿过程.地球科学,46(8):2697-2710. |
国家自然科学基金重点项目(91951208)
广西自然科学基金项目(2020GXNSFAA297025)
中国地质调查局地质调查项目(DD20190343)
/
| 〈 |
|
〉 |