全球和我国多年冻土分布范围和实际面积研究进展
Permafrost Region and Permafrost Area in Globe and China
,
全球变暖会导致多年冻土解冻融化,这不仅对多年冻土区的工程和基础设施产生重要影响,还会改变陆地和大气间能量、水分和碳循环而反馈于气候系统.多年冻土主要分布于地下,其实际分布资料很难获取,因而许多研究对多年冻土区及其实际面积描述不清,进而影响了多年冻土变化和碳循环等研究结果.近年来,随着遥感和模型的发展,多年冻土实际分布取得了一系列的进展.根据国内外的最新结果,对全球和我国多年冻土区及其实际面积进行了综合分析.结果表明,目前北半球多年冻土区面积约为2 100万km2,多年冻土实际面积约为1 400万km2.我国青藏高原多年冻土区面积约为150万km2,实际多年冻土约为105万km2,我国其他地区的多年冻土实际分布还需进一步的研究.
多年冻土 / 多年冻土区 / 气候变化 / 青藏高原 / 北极 / 环境地质
permafrost / permafrost region / climate change / Qinghai-Tibetan plateau / Arctic / environmental geology
| [1] |
Aalto,J.,Karjalainen,O.,Hjort,J.,et al.,2018.Statistical Forecasting of Current and Future Circum-Arctic Ground Temperatures and Active Layer Thickness.Geophysical Research Letters,45(10):4889-4898.https://doi.org/10.1029/2018gl078007 |
| [2] |
Arias,P.A.,Bellouin,N.,Coppola,E.,et al.,2021.2021:Technical Summary.In:Masson-Delmotte,V.,ed.,Climate Change 2021:The Physical Science Basis.Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press,Cambridge,UK. |
| [3] |
Biskaborn,B.K.,Smith,S.L.,Noetzli,J.,et al.,2019.Permafrost is Warming at a Global Scale.Nature Communications,10:264.https://doi.org/10.1038/s41467-018-08240-4 |
| [4] |
Burke,E.J.,Jones,C.D.,Koven,C.D.,2013.Estimating the Permafrost-Carbon Climate Response in the CMIP5 Climate Models Using a Simplified Approach.Journal of Climate,26(14):4897-4909.https://doi.org/10.1175/jcli-d-12-00550.1 |
| [5] |
Cao,B.,Zhang,T.J.,Wu,Q.B.,et al.,2019.Permafrost Zonation Index Map and Statistics over the Qinghai-Tibet Plateau Based on Field Evidence.Permafrost and Periglacial Processes,30(3):178-194.https://doi.org/10.1002/ppp.2006 |
| [6] |
Cheng,G.D.,1994.Progress of Glaciology and Geocrology in China in the Last 10 Years and Prospect.Acta Geographica Sinica,49(Suppl.1):589-600(in Chinese with English abstract). |
| [7] |
Dobinski,W.,2011.Permafrost.Earth Science Reviews,108(3-4):158-169.https://doi.org/10.1016/j.earscirev.2011.06.007 |
| [8] |
Frederick,J.M.,Buffett,B.A.,2014.Taliks in Relict Submarine Permafrost and Methane Hydrate Deposits:Pathways for Gas Escape under Present and Future Conditions.Journal of Geophysical Research:Earth Surface,119(2):106-122.https://doi.org/10.1002/2013jf002987 |
| [9] |
Frederick,J.M.,Buffett,B.A.,2015.Effects of Submarine Groundwater Discharge on the Present-Day Extent of Relict Submarine Permafrost and Gas Hydrate Stability on the Beaufort Sea Continental Shelf.Journal of Geophysical Research:Earth Surface,120(3):417-432.https://doi.org/10.1002/2014jf003349 |
| [10] |
Gruber,S.,2012.Derivation and Analysis of a High-Resolution Estimate of Global Permafrost Zonation.The Cryosphere,6(1):221-233.https://doi.org/10.5194/tc-6-221-2012 |
| [11] |
Günther,F.,Overduin,P.P.,Sandakov,A.V.,et al.,2013.Short- and Long-Term Thermo-Erosion of Ice-Rich Permafrost Coasts in the Laptev Sea Region.Biogeosciences,10(6):4297-4318.https://doi.org/10.5194/bg-10-4297-2013 |
| [12] |
Huang,F.,Xu,J.F.,Wang,B.D.,et al.,2020.Destiny of Neo-Tethyan Lithosphere during India-Asia Collision.Earth Science,45(8):2785-2804 (in Chinese with English abstract). |
| [13] |
IPCC,2019.IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.https://www.ipcc.ch/srocc/download/ |
| [14] |
Jin,H.J.,Yu,Q.H.,Lü,L.Z.,et al.,2007.Degradation of Permafrost in the Xing’anling Mountains,Northeastern China.Permafrost and Periglacial Processes,18(3):245-258.https://doi.org/10.1002/ppp.589 |
| [15] |
Koven,C.D.,Ringeval,B.,Friedlingstein,P.,et al.,2011.Permafrost Carbon-Climate Feedbacks Accelerate Global Warming.Proceedings of the National Academy of Sciences of the United States of America,108(36):14769-14774.https://doi.org/10.1073/pnas.1103910108 |
| [16] |
Lantuit,H.,Overduin,P.P.,Couture,N.,et al.,2012.The Arctic Coastal Dynamics Database:A New Classification Scheme and Statistics on Arctic Permafrost Coastlines.Estuaries & Coasts,35(2):383-400.https://doi.org/10.1007/s12237-010-9362-6 |
| [17] |
Li,X.B.,Ji,J.L.,Cao,Z.M.,et al.,2021.The Climatic Significance of the Color of the Paleo-Neogene Fluvial and Lacustrine Sediments in the Northern Qaidam Basin.Earth Science,46(9):3278-3289 (in Chinese with English abstract). |
| [18] |
Liu,S.,Wu,T.,Wang,X.,et al.,2020.Changes in the Global Cryosphere and Their Impacts:A Review and New Perspective.Sciences in Cold and Arid Regions,12(6):343-354.https://doi.org/10.3724/sp.j.1226.2020.00343 |
| [19] |
Luo,D.L.,Jin,H.J.,Lin,L.,et al.,2012.Degradation of Permafrost and Cold-Environments on the Interior and Eastern Qinghai Plateau.Journal of Glaciology and Geocryology,34(3):538-546 (in Chinese with English abstract). |
| [20] |
Ma,Q.,Jin,H.J.,2020.Impacts of Climate Warming on Soil Organic Carbon Pools in Permafrost Regions.Journal of Glaciology and Geocryology,42(1):91-10 (in Chinese with English abstract). |
| [21] |
Maslakov,A.,Kraev,G.,2016.Erodibility of Permafrost Exposures in the Coasts of Eastern Chukotka.Polar Science,10(3):374-381.https://doi.org/10.1016/j.polar.2016.04.009 |
| [22] |
Mu,C.C.,Abbott,B.W.,Zhao,Q.,et al.,2017.Permafrost Collapse Shifts Alpine Tundra to a Carbon Source But Reduces N2O and CH4 Release on the Northern Qinghai-Tibetan Plateau.Geophysical Research Letters,44(17):8945-8952.https://doi.org/10.1002/2017gl074338 |
| [23] |
Mu,C.C.,Zhang,T.J.,Wu,Q.B.,et al.,2015.Carbon and Nitrogen Properties of Permafrost over the Eboling Mountain in the Upper Reach of Heihe River Basin,Northwestern China.Arctic,Antarctic,and Alpine Research,47(2):203-211.https://doi.org/10.1657/aaar00c-13-095 |
| [24] |
Ni,J.E.,Wu,T.H.,Zhu,X.F.,et al.,2021.Simulation of the Present and Future Projection of Permafrost on the Qinghai-Tibet Plateau with Statistical and Machine Learning Models.Journal of Geophysical Research:Atmospheres,126(2):e2020JD033402.https://doi.org/10.1029/2020jd033402 |
| [25] |
Niu,F.J.,Cheng,G.D.,Ni,W.K.,et al.,2005.Engineering-Related Slope Failure in Permafrost Regions of the Qinghai-Tibet Plateau.Cold Regions Science and Technology,42(3):215-225.https://doi.org/10.1016/j.coldregions.2005.02.002 |
| [26] |
Obu,J.,2021.How Much of the Earth's Surface is Underlain by Permafrost? Journal of Geophysical Research:Earth Surface,126(5):e2021JF006123.https://doi.org/10.1029/2021jf006123 |
| [27] |
Obu,J.,Westermann,S.,Bartsch,A.,et al.,2019.Northern Hemisphere Permafrost Map Based on TTOP Modelling for 2000—2016 at 1 km2 Scale.Earth-Science Reviews,193:299-316.https://doi.org/10.1016/j.earscirev.2019.04.023 |
| [28] |
Peng,C.Y.,Sheng,Y.,Wu,J.C.,et al.,2021.Simulation of the Permafrost Distribution in the Qilian Mountains.Journal of Glaciology and Geocryology,43(1):158-169 (in Chinese with English abstract). |
| [29] |
Qiu,G.Q.,Cheng,G.D.,1995.Permafrost in China:Past and Persent.Quaternary Sciences,15(1)13-22(in Chinese with English abstract). |
| [30] |
Ran,Y.H.,Li,X.,Cheng,G.D.,et al.,2012.Distribution of Permafrost in China:An Overview of Existing Permafrost Maps.Permafrost and Periglacial Processes,23(4):322-333.https://doi.org/10.1002/ppp.1756 |
| [31] |
Riseborough,D.,Shiklomanov,N.,Etzelmüller,B.,et al.,2008.Recent Advances in Permafrost Modelling.Permafrost and Periglacial Processes,19(2):137-156.https://doi.org/10.1002/ppp.615 |
| [32] |
Sayedi,S.S.,Abbott,B.W.,Thornton,B.F.,et al.,2020.Subsea Permafrost Carbon Stocks and Climate Change Sensitivity Estimated by Expert Assessment.Environmental Research Letters,15(12):124075.https://doi.org/10.1088/1748-9326/abcc29 |
| [33] |
Schaefer,K.,Zhang,T.J.,Bruhwiler,L.,et al.,2011.Amount and Timing of Permafrost Carbon Release in Response to Climate Warming.Tellus B,63(2):165-180.https://doi.org/10.1111/j.1600-0889.2011.00527.x |
| [34] |
Schneider von Deimling,T.,Meinshausen,M.,Levermann,A.,et al.,2012.Estimating the Near-Surface Permafrost-Carbon Feedback on Global Warming.Biogeosciences,9(2):649-665.https://doi.org/10.5194/bg-9-649-2012 |
| [35] |
Schuur,E.A.G.,McGuire,A.D.,Schädel,C.,et al.,2015.Climate Change and the Permafrost Carbon Feedback.Nature,520(7546):171-179.https://doi.org/10.1038/nature14338 |
| [36] |
Wu,Q.B.,Liu,Y.Z.,Zhang,J.M.,et al.,2002.A Review of Recent Frozen Soil Engineering in Permafrost Regions along Qinghai-Tibet Highway,China.Permafrost and Periglacial Processes,13(3):199-205.https://doi.org/10.1002/ppp.420 |
| [37] |
Wu,Q.B.,Zhang,Z.Q.,Gao,S.R.,et al.,2016a.Thermal Impacts of Engineering Activities and Vegetation Layer on Permafrostin Different Alpine Ecosystems of the Qinghai-Tibet Plateau,China.The Cryosphere,10(4):1695-1706.https://doi.org/10.5194/tc-10-1695-2016 |
| [38] |
Wu,X.D.,Zhao,L.,Fang,H.B.,et al.,2016b.Environmental Controls on Soil Organic Carbon and Nitrogen Stocks in the High-Altitude Arid Western Qinghai-Tibetan Plateau Permafrost Region.Journal of Geophysical Research:Biogeosciences,121(1):176-187.https://doi.org/10.1002/2015jg003138 |
| [39] |
Wu,X.D.,Zhao,L.,Hu,G.J.,et al.,2018.Permafrost and Land Cover as Controlling Factors for Light Fraction Organic Matter on the Southern Qinghai-Tibetan Plateau.Science of the Total Environment,613/614:1165-1174.https://doi.org/10.1016/j.scitotenv.2017.09.052 |
| [40] |
Xie,C.W.,Gough,W.A.,Tam,A.,et al.,2013.Characteristics and Persistence of Relict High-Altitude Permafrost on Mahan Mountain,Loess Plateau,China.Permafrost and Periglacial Processes,24(3):200-209.https://doi.org/10.1002/ppp.1776 |
| [41] |
Zhang,F.,Mu,M.,Fan,C.Y.,et al.,2020.Studies of Permafrost Carbon Cycle in the Third Polar and Arctic Regions.Journal of Glaciology and Geocryology,42(1):170-181 (in Chinese with English abstract). |
| [42] |
Zhang,T.,Barry,R.G.,Knowles,K.,et al.,1999.Statistics and Characteristics of Permafrost and Ground-Ice Distribution in the Northern Hemisphere.Polar Geography,23(2):132-154.https://doi.org/10.1080/10889379909377670 |
| [43] |
Zhang,T.,Heginbottom,J.A.,Barry,R.G.,et al.,2000.Further Statistics on the Distribution of Permafrost and Ground Ice in the Northern Hemisphere.Polar Geography,24(2):126-131.https://doi.org/10.1080/10889370009377692 |
| [44] |
Zhang,Y.Y.,Zang,S.Y.,Li,M.A.,et al.,2021a.Spatial Distribution of Permafrost in the Xing’an Mountains of Northeast China from 2001 to 2018.Land,10(11):1127.https://doi.org/10.3390/land10111127 |
| [45] |
Zhang,Z.Q.,Wu,Q.B.,Hou,M.T.,et al.,2021b.Permafrost Change in Northeast China in the 1950s—2010s.Advances in Climate Change Research,12(1):18-28.https://doi.org/10.1016/j.accre.2021.01.006 |
| [46] |
Zhang,Z.Q.,Wu,Q.B.,Xun,X.Y.,et al.,2019.Spatial Distribution and Changes of Xing'an Permafrost in China over the Past Three Decades.Quaternary International,523:16-24.https://doi.org/10.1016/j.quaint.2019.06.007 |
| [47] |
Zhao,L.,Cheng,G.D.,Li,S.X.,et al.,2000.Thawing and Freezing Processes of Active Layer in Wudaoliang Region of Tibetan Plateau.Chinese Science Bulletin,45(23):2181-2187.https://doi.org/10.1007/bf02886326 |
| [48] |
Zhao,L.,Hu,G.J.,Zou,D.F.,et al.,2019.Permafrost Changes and Its Effects on Hydrological Processes on Qinghai-Tibet Plateau.Bulletin of Chinese Academy of Sciences,34(11):1233-1246 (in Chinese with English abstract). |
| [49] |
Zhao,L.,Sheng,Y.,2015.Permafrost Survey Manual.Science Press,Beijing(in Chinese). |
| [50] |
Zhao,L.,Wu,X.D.,Wang,Z.W.,et al.,2018.Soil Organic Carbon and Total Nitrogen Pools in Permafrost Zones of the Qinghai-Tibetan Plateau.Scientific Reports,8:3656.https://doi.org/10.1038/s41598-018-22024-2 |
| [51] |
Zhou,Y.W.,2000.Geocryology in China.Science Press,Beijing(in Chinese). |
| [52] |
Zhuang,Q.L.,Melillo,J.M.,Sarofim,M.C.,et al.,2006.CO2 and CH4 Exchanges between Land Ecosystems and the Atmosphere in Northern High Latitudes over the 21st Century.Geophysical Research Letters,33(17):L17403.https://doi.org/10.1029/2006gl026972 |
| [53] |
Zou,D.F.,Zhao,L.,Sheng,Y.,et al.,2017.A New Map of Permafrost Distribution on the Tibetan Plateau.The Cryosphere,11(6):2527-2542.https://doi.org/10.5194/tc-11-2527-2017 |
| [54] |
程国栋,1994.中国冰川学和冻土学研究近10年进展和展望.地理学报,49(增刊1):589-600. |
| [55] |
黄丰,许继峰,王保弟,等,2020.印度-亚洲大陆碰撞过程中新特提斯洋岩石圈的命运.地球科学,45(8):2785-2804. |
| [56] |
李星波,季军良,曹展铭,等,2021.柴达木盆地北缘古-新近纪河湖相沉积物颜色的气候意义.地球科学,46(9):3278-3289. |
| [57] |
罗栋梁,金会军,林琳,等,2012.青海高原中、东部多年冻土及寒区环境退化.冰川冻土,34(3):538-546. |
| [58] |
马蔷,金会军,2020.气候变暖对多年冻土区土壤有机碳库的影响.冰川冻土,42(1):91-103. |
| [59] |
彭晨阳,盛煜,吴吉春,等,2021.祁连山区多年冻土空间分布模拟.冰川冻土,43(1):158-169. |
| [60] |
邱国庆,程国栋,1995.中国的多年冻土:过去与现在.第四纪研究,15(1)13-22. |
| [61] |
张凤,母梅,范成彦,等,2020.从第三极到北极:多年冻土碳循环研究进展.冰川冻土,42(1):170-181. |
| [62] |
赵林,胡国杰,邹德富,等,2019.青藏高原多年冻土变化对水文过程的影响.中国科学院院刊,34(11):1233-1246. |
| [63] |
赵林,盛煜,2015.多年冻土调查手册.北京:科学出版社. |
| [64] |
周幼吾,2000.中国冻土.北京:科学出版社. |
国家自然科学基金项目(41941015;32061143032;41871060)
中科院西部之光项目资助(2020-82)
/
| 〈 |
|
〉 |