桂东北鹰扬关地区罗家山辉长岩的矿物化学特征及其构造意义

秦亚 ,  杨珺茹 ,  冯佐海 ,  朱家明 ,  倪战旭 ,  黄永高 ,  吴杰 ,  周云 ,  刘奕志 ,  白玉明

地球科学 ›› 2024, Vol. 49 ›› Issue (03) : 803 -821.

PDF (6123KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (03) : 803 -821. DOI: 10.3799/dqkx.2022.096

桂东北鹰扬关地区罗家山辉长岩的矿物化学特征及其构造意义

作者信息 +

Mineralogy and Mineral Chemistry of the Luojiashan Gabbro in the Yingyangguan Area of Northeastern Guangxi and Its Tectonic Significance

Author information +
文章历史 +
PDF (6269K)

摘要

对桂东北鹰扬关地区新发现的罗家山辉长岩开展年代学、矿物学和矿物化学研究,可进一步约束区域构造背景.罗家山辉长岩的主要矿物为单斜辉石(Cpx)和斜长石(Pl).单斜辉石具有高铁铝、低钙钠钛的特征,其成分为Wo27~31En36~47Fs21~32,属于普通辉石;斜长石具有高硅铝钠、低钙钾的特点,其成分为An0~3Ab96~100Or0~2,属于钠长石.根据单斜辉石的化学成分判定罗家山辉长岩的母岩浆属于Si不饱和的亚碱性拉斑玄武岩系列.单斜辉石温压估算结果表明,罗家山辉长岩的形成温度介于1 282~1 292 ℃,平均值1 287 ℃;形成压力介于1.53~ 2.37 GPa,平均值2.02 GPa;对应深度介于50.49~78.21 km,平均值66.80 km. LA-ICP-MS锆石U-Pb年龄表明罗家山辉长岩形成于(768.9±6.8) Ma.单斜辉石的化学成分特征表明罗家山辉长岩属于典型的板内拉斑玄武岩.结合区域构造演化特征,推断罗家山辉长岩起源于地幔物质上涌、岩石圈减薄的伸展裂谷构造背景.

关键词

温压估算 / 单斜辉石 / 板内裂谷 / 罗家山辉长岩 / 桂东北鹰扬关地区 / 岩石学 / 矿物学

Key words

estimating the temperature and pressure / clinopyroxene / intraplate rifting / Luojiashan gabbro / Yingyangguan area of northeastern Guangxi / petrology / mineralogy

引用本文

引用格式 ▾
秦亚,杨珺茹,冯佐海,朱家明,倪战旭,黄永高,吴杰,周云,刘奕志,白玉明. 桂东北鹰扬关地区罗家山辉长岩的矿物化学特征及其构造意义[J]. 地球科学, 2024, 49(03): 803-821 DOI:10.3799/dqkx.2022.096

登录浏览全文

4963

注册一个新账户 忘记密码

统一的华南大陆由扬子和华夏地块在新元古代中期碰撞拼贴而成,其后随着Rodinia超大陆的裂解而裂陷(Li et al., 2009Wang et al., 2010; 张国伟等,2013;崔晓庄等,2016;王剑等,2019).随着古华南大陆的裂陷,湘西、桂北、黔东等地分别出露大量与裂解作用相关的镁铁质‒超镁铁质岩石(葛文春等,2001;周继彬等, 2007; 周金城等,2009;寇彩化等,2017a, 2017b;Liu et al., 2021),如桂北地区的吊竹山辉绿岩、金结辉绿岩、上朗变镁铁质岩、金车辉长岩、花桥辉石岩,湘西通道地区的长界橄榄辉石岩和黔阳地区的茅渡辉长岩等(葛文春等,2001;寇彩化等,2017a, 2017b;张成龙等,2020;Liu et al., 2021Kou et al., 2021;秦亚等,2022).近年来,桂北地区更有双峰式火山岩的报道(Li et al., 2021).桂东北鹰扬关地区位于扬子和华夏地块拼贴‒裂解带内(图1a),其间出露的鹰扬关组(又称“鹰扬关群”)记录着扬子和华夏地块拼合过程及后期裂解历程(Tian et al., 2020Qi et al., 2021).早期对桂东北鹰扬关地区的研究多集中在鹰扬关组的火山岩、沉积地层及构造变形等方面,而与裂解作用相关的镁铁质‒超镁铁质岩石的报道则相对较少(周汉文等,2002;覃小锋等,2015;王令占等,2019,2020;Tian et al., 2020Qi et al., 2021).
镁铁质‒超镁铁质侵入岩通常是下地壳或上地幔玄武质岩浆结晶的产物,其化学成分可以反映地球深部的物理化学状态和物质组成,因而一定程度上可以约束壳幔相互作用、岩浆起源和演化以及特定时期的大地构造背景(邓奇等,2016;寇彩化等,2017a;梁文博等,2019).单斜辉石是镁铁质‒超镁铁质岩石中最主要的造岩矿物之一,其成分特征保留了岩浆形成、演化历史和成岩构造背景等重要信息(Nisbet and Pearce, 1977Streck, 2008; 寇彩化等,2017a).近期,笔者及其研究团队在桂东北鹰扬关地区发现新的辉长岩体(罗家山辉长岩),并对其开展系统的年代学、矿物学及矿物化学研究,旨在讨论其母岩浆性质、成岩物理化学条件和成岩构造环境,并为区域地球动力学背景研究提供约束.

1 地质背景

华南大陆由北西侧的扬子地块和南东侧的华夏地块在新元古代中期碰撞拼贴而成(Li et al., 2009; Wang et al., 2010; 张国伟等,2013;秦亚等,2021).桂东北鹰扬关地区位于湘粤桂三省交界处,处于扬子和华夏地块碰撞拼贴带的西南端(图1a).

研究区出露的最老地层为上元古界鹰扬关组,其上覆盖上元古界下龙组、南华系,古生界寒武系和泥盆系,以及中生界白垩系和新生界第四系(图1b).鹰扬关组呈NE向展布于湘粤桂交界的鹰扬关地区,出露面积约120 km2图1b).鹰扬关组下未见底,以海底火山喷发沉积的细碧‒角斑岩、角斑岩及火山(碎屑)岩为主,并含有浅变质的碎屑岩和碳酸盐岩,总体显示海相火山(碎屑)‒沉积岩系特征(覃小锋等,2015).关于鹰扬关组的构造属性长期以来备受争议(周汉文等,2002;覃小锋等,2015;王令占等,2019,2020;Tian et al., 2020;Qi et al., 2021).早期观点认为鹰扬关组形成于Rodinia超大陆裂解背景下的大陆裂谷环境,其中的火山岩形成于地幔柱岩浆活动下的伸展构造背景(王剑等, 2001;周汉文等,2002;李献华等,2008).也有学者认为,该套岩石组合形成于弧后(或弧前)盆地(尹福光等,2003;许效松等,2012),其中的火山岩为海底喷发溢流的产物.甚至有学者认为,鹰扬关组形成于特提斯多岛洋环境,并将其称之为“鹰扬关蛇绿岩”,以此作为扬子和华夏地块的分界线(殷鸿福等,1999).近年来,覃小锋等(2015)根据鹰扬关组火山岩的地球化学特征和变角斑岩的锆石U-Pb年龄,认为其形成于具有俯冲‒消减作用的岛弧‒弧后盆地,是早古生代扬子和华夏地块洋陆俯冲‒消减的产物.王令占等(2019,2020)根据鹰扬关组的物质组成、构造变形特征及变质火山(碎屑)岩的锆石U-Pb年龄,认定其为一套构造混杂岩,混杂作用发生在晋宁期,是扬子与华夏地块新元古代碰撞拼合的地质记录.

区域上,扬子东南缘湘黔桂交界地区的新元古代岩浆岩十分发育,中酸性岩浆岩和基性‒超基性岩浆岩均广泛出露(Li et al., 1995;李江海和穆剑,1999;葛文春等,2001;Wang et al., 2006;周继彬等,2007;周金城等,2009,2014).湘黔桂交界地区的岩浆岩主要集中在790~750 Ma和870~820 Ma(Li, 1999; Li et al., 2021;葛文春等,2001;Wang et al., 2007; 周继彬等,2007; 王鹏鸣等,2012; Liu et al., 2021).近年来,桂北地区甚至有早白垩纪镁铁质岩石的报道(Su et al., 2021).而研究区新元古代岩浆岩主要分布于鹰扬关组.目前,鹰扬关组火山岩的成岩时代还存在不同的认识.早期,周汉文等(2002)采用TIMS锆石U-Pb测年获得鹰扬关组浅变质基性火山岩的年龄为819±11 Ma;覃小锋等(2015)获得鹰扬关组变角斑岩的LA-ICP-MS锆石U-Pb年龄为415.1± 2.1 Ma,变基性火山岩的锆石U-Pb谐和年龄为755.8±3.9 Ma.近年来,Tian et al.(2020)获得鹰扬关组熔结凝灰岩和流纹质凝灰岩的LA-ICP-MS锆石U-Pb年龄分别为821.3±3.9 Ma和765 Ma.Qi et al.(2021)获得鹰扬关组镁铁质岩石和凝灰岩的LA-ICP-MS锆石U-Pb年龄分别为753±5 Ma和670±6 Ma.研究区岩浆岩除新元古代岩浆岩外,还广泛出露加里东期和燕山期花岗岩(图1b).

桂东北鹰扬关地区受多期构造运动的叠加影响,呈现复杂的构造形迹(图1b).区域构造以NE、NW向构造为主,一系列NE和NW向断裂展布于沉积地层和花岗岩体中(图1b).上元古界鹰扬关组亦呈NE向展布于研究区(图1b).

2 侵入体特征及岩相学特征

罗家山辉长岩侵入于上元古界鹰扬关组(Pt3 y)浅变质岩系(图1c图2a),总体呈NW-SE向展布的岩墙产出,露头长约800 m,宽200~260 m.岩石风化面呈黑绿色,新鲜面呈灰黑色、黑绿色,总体显示中‒细粒结构,块状构造(图2b).岩石遭受不同程度的蚀变,越靠近接触带,岩石的蚀变越强,且发生糜棱岩化;而岩体中部则蚀变较弱,粒度较粗,局部可达中‒粗粒结构(图2c).

罗家山辉长岩主要造岩矿物为单斜辉石 (~45%)和斜长石(~40%),含少量次要矿物角闪石和副矿物锆石、榍石、磷灰石及钛铁氧化物等.单斜辉石呈半自形的柱状、粒状,粒径0.3~4.0 mm,局部因蚀变而呈灰白干涉色(图2c~2g);斜长石多呈半自形到自形的板状,粒径0.5~5.0 mm,具有Ⅰ级灰白干涉色,蚀变较弱者可见聚片双晶(图2c2e2f).岩石具有绿泥石化(图2c2e)、碳酸盐化(图2g)、绢云母化(图2f2g)和钠黝帘石化(图2f2g)等蚀变.在电子背散射图像中,单斜辉石颗粒具有无环带的特征(图2h2i).

3 矿物化学特征

3.1 分析测试方法

本次研究共采集4件样品磨制探针片,选择其中新鲜且晶形较好的单斜辉石和斜长石进行电子探针分析(图1c).

罗家山辉长岩单斜辉石和斜长石的电子探针分析在广西隐伏金属矿产勘查重点实验室完成.测试仪器为JEOL JXA8230型电子探针仪(EPMA).测试条件为加速电压15 kV,探针电流20 nA,束斑直径 5 μm,计数时间20 s.标样采用钠长石(Na、Al)、磷灰石(P)、透辉石(Ca、Si)、镁橄榄石(Mg、Fe)、氧化锰(M)、氧化铬(Cr)、氧化镍(Ni)、金云母(K)和金红石(Ti),校正方法为ZAF修正法.单斜辉石和斜长石的主量元素分析结果,以及以6个氧原子为单位计算的单斜辉石和斜长石阳离子数分别见表1表2.

3.2 辉石矿物学特征

共获得45组罗家山辉长岩的单斜辉石电子探针数据(表1).整体上看,罗家山辉长岩单斜辉石的氧化物总量相对较低,介于96.04~98.42,平均值97.30,其主要原因可能与样品具有相对较强的蚀变作用有关(图2c~2g).根据Morimoto et al.(1988)提出的辉石分类命名方案,罗家山辉长岩的单斜辉石均属于Ca-Mg-Fe辉石族(图3a),其成分为Wo27~31En36~47Fs21~32,属于普通辉石(图3b);单斜辉石的Mg#值相对较低,介于54.71~69.10,平均值62.08;Cr#值较低,介于0~3.96,平均值1.14;Ca/(Ca+Mg+Fe)也较低,介于0.28~0.31,平均值0.30,表明罗家山辉长岩具有低钙的特征,与其具有较低的CaO含量(12.37%~13.31%,平均值12.91%,质量分数,后同)一致.此外,单斜辉石具有相对较高的FeO*(11.59%~17.01%,平均值14.42%)、Al2O3含量(2.65%~7.19%,平均值4.74%),相对较低的Na2O(0.24%~0.99%,平均值0.59%)、TiO2含量(0.02%~0.67%,平均值0.17%).

与扬子东南缘桂北地区金车辉长岩(寇彩化等,2017b)和花桥辉石岩(Kou et al., 2021)、湘西通道地区长界橄榄辉石岩(寇彩化等,2017a)和黔阳地区茅渡辉长岩(Kou et al., 2021)相比较,桂东北鹰扬关地区罗家山辉长岩的单斜辉石具有相对低的Mg#、Cr#和TiO2含量,相对较高的FeO*和Al2O3含量.在罗家山辉长岩的单斜辉石主要氧化物与Mg#值相关图解中(图4),仅FeO*含量与Mg#呈良好的负相关性,其余氧化物含量与Mg#值的相关性不明显(图4).

3.3 斜长石矿物化学特征

本次研究共获得48组罗家山辉长岩的斜长石电子探针数据(表2).48组数据整体变化较小,An值介于0.24~2.30,平均值0.90;Ab值介于96.94~99.48,平均值98.63;Or值介于0.19~1.17,平均值0.47.在斜长石An-Ab-Or分类图解中(图5),48组数据均落入钠长石区间内,暗示罗家山辉长岩中斜长石已经被蚀变为钠长石.此外,罗家山辉长岩的斜长石总体显示高SiO2(64.41%~70.38%,平均67.59%)、Al2O3(18.67%~21.16%,平均19.70%)和Na2O含量(6.79%~12.81%,平均11.76%),以及低CaO(0.05%~0.53%,平均0.19%)和K2O含量(0.04%~0.22%,平均0.08%)的特征.

4 成岩时代

论文采用LA-ICP-MS锆石U-Pb测年对罗家山辉长岩进行年代学研究.测年样品(样品20020)的采样坐标为111°55′04″E,24°39′28″N.锆石的单矿物分选、制靶和照相委托北京锆年领航科技有限公司完成,锆石U-Pb测年在桂林理工大学广西隐伏金属矿床勘查重点实验室完成.ICP-MS型号为Agilent 7700a,激光剥蚀系统为Geolas 2005,工作波长为193 nm,激光剥蚀束斑直径为32 μm,脉冲频率6 Hz.利用标准矿物GJ-1和Plesovice作为外标物质进行同位素校正.每间隔8个分析点,加测2个标样各2次.分析数据的离线处理采用ICPMSDataCal 10.7软件进行(Liu et al., 2010).微量元素含量测定采用NIST610作为外标,29Si作为内标元素进行定年计算(Liu et al., 2010).年龄谐和图采用Isoplot 3.0程序完成(Ludwig, 2003).锆石CL图像采用Coreldraw X3进行完善.

样品20020共测试27粒单颗粒锆石,LA-ICP-MS锆石U-Pb年龄数据见表3. 27粒锆石呈长柱状、短柱状、不规则状的形态特征(图6a).锆石内部环带特征多样,既具有岩浆振荡环带,也具有带状的环带.阴极发光图像(CL)明暗程度不一,既具有明亮的CL图像,也具有较暗的CL图像(图6a).锆石Th、U含量分别为(140.41~6 175.99)×10-6和(238.88~7 347.11)×10-6,Th/U值为0.11~2.36.锆石U-Pb年龄谐和图上,27组年龄数据均落入谐和线上及其附近(图6b).锆石U-Pb年龄介于768~2 779 Ma,主体分布于768~770 Ma和900~ 1 300 Ma这2个年龄区间,其余锆石的U-Pb年龄大于1 800 Ma(图6b).768~770 Ma的7个锆石年龄相对集中,206Pb/238U加权平均年龄为(768.9±6.8)Ma(MSWD=0.01).900~1 300 Ma的16粒锆石,占比59.3%.27粒锆石中,最年轻一组岩浆锆石的加权平均年龄为(768.9±6.8) Ma,该年龄值应代表罗家山辉长岩的侵位时代.而格林威尔期和古元古代‒太古代的锆石年龄应为岩体侵位过程中捕获的锆石年龄或继承锆石年龄.

5 岩浆系列及温压估算

5.1 岩浆系列

前人研究表明,单斜辉石的化学成分取决于母岩浆的成分和结晶环境,故单斜辉石化学成分可以很好反映母岩浆的成分特征(邱家骧和廖群安,1996;Leterrier et al., 1982; 孙传敏,1994;寇彩化等,2017a, 2017b; Kou et al., 2021).罗家山辉长岩具有高硅、铝,而低钛、钠和钙的特征.在Al2O3-SiO2图解中,罗家山辉长岩的单斜辉石一部分落入亚碱性系列,另一部分落入碱性系列岩石区域(图7a).但在TiO2-Al2O3图解(图7b)和Ca+Na-Ti图解(图7c)中,罗家山辉长岩单斜辉石均位于亚碱性系列区域.Al-Ti图解(图7d),Al2O3-Na2O-TiO2图解(图7e)和SiO2-10×Na2O-10×TiO2图解(图7f)中,罗家山辉长岩的单斜辉石均位于拉斑玄武岩系列.因此,罗家山辉长岩的母岩浆应为亚碱性拉斑玄武岩系列.此外,单斜辉石主要氧化物对Mg#值相关图解(图4)显示,随着岩浆演化,岩浆成分由富镁向富铁方向演化,这也表明岩浆为亚碱性拉斑玄武岩系列.

岩浆岩中,Si与Al有互不相容的地球化学特性,因此Si与Al可以作为确定母岩浆类型的标型元素(Seyler and Bonatti, 1994;邱家骧和廖群安,1996;寇彩化等,2017a,2017b).单斜辉石中,Al的含量多少取决于岩浆中硅的饱和度,若岩浆中Si强烈不饱和,常常造成单斜辉石在结晶时四面体位置Si不足,Al进入四面体位置充填因Si不足引起的空缺,而四面体位置Al对Si替代所导致的电荷不平衡,则要由Al、Fe3+和Ti4+进入到八面体位置来达到平衡(Campbell and Borley, 1974Vuorinen et al., 2005; 寇彩化等,2011,2017b).罗家山辉长岩单斜辉石的Al值介于0~0.15,平均值0.06,绝大多数大于零,指示单斜辉石的寄主岩石母岩浆为Si不饱和状态.

综上所述,罗家山辉长岩单斜辉石的化学成分特征表明其母岩浆为硅不饱和的亚碱性拉斑玄武岩系列.

5.2 温压估算

根据Putirka et al.(2003)提出的辉石‒熔体温压计计算了罗家山辉长岩单斜辉石形成的温度和压力,计算结果见表4.罗家山辉长岩单斜辉石形成的温度相对较低,介于1 282~1 292 ℃,平均值1 287 ℃;压力相对较小,为1.53~2.37 GPa,平均值2.02 GPa;对应深度为50.49~78.21 km,平均值66.80 km.此外,利用辉石成分等温线图解估计(图8),罗家山辉长岩中单斜辉石的形成温度范围介于1 100~1 200 ℃,与依据Putirka et al.(2003)估算的温度大致相当.

单斜辉石是罗家山辉长岩的主要造岩矿物之一,而且是最早结晶的矿物,故单斜辉石的结晶温压条件可以代表罗家山辉长岩的形成温压条件.如上所述,罗家山辉长岩的单斜辉石形成温度为1 282~1 297 ℃,该温度与上地幔顶部温度相当,略低于软流圈地幔温度(1 280~1 350 ℃,McKenzie and Bickle, 1988; 寇彩化等, 2017a, 2017b).与扬子东南缘桂北金车辉长岩(寇彩化等,2017b)和花桥辉石岩(Kou et al., 2021)、湘西通道地区长界橄榄辉石岩(寇彩化等,2017a)和黔阳地区茅渡辉长岩(Kou et al., 2021)相比较,桂东北鹰扬关地区罗家山辉长岩具有与之一致的温度和压力,以及形成深度.

6 构造意义及深部动力学过程

LA-ICP-MS锆石U-Pb测年结果表明罗家山辉长岩形成于(768.9±6.8) Ma,该年龄值与桂东北地区鹰扬关组火山岩的年龄一致(Tian et al., 2020;Qi et al., 2021),暗示该时期研究区发生了一次重要的构造岩浆事件.区域上,扬子地块东南缘的桂北、湘西和黔东南地区亦大量出露该期镁铁质‒超镁铁质岩石(葛文春等,2001;周继彬等, 2007; 周金城等,2009;寇彩化等,2017a, 2017b;Liu et al., 2021).区域上,新元古代中期(~770 Ma)的镁铁质‒超镁铁质岩石的成岩构造背景长期存在不同的认识,如与新元古代俯冲‒碰撞造山后的伸展构造背景有关(Zheng et al., 2008Wang et al., 2012),与引起Rodinia超大陆裂解的地幔柱有关(葛文春等,2001;Li et al., 2008),是扬子和华夏地块持续俯冲碰撞的产物(Lin et al., 2016)和与Rodinia超大陆裂解背景下的软流圈物质上涌发生的减压熔融作用有关等(寇彩化等,2016,2017a,2017b).

前人研究表明,华南大陆在扬子和华夏地块于新元古代中期碰撞拼贴后开始裂解(Li et al., 2009; Wang et al., 2010; 张国伟等,2013),形成一系列新元古代裂谷盆地,包括扬子东南缘的南华裂谷盆地、西缘的康滇裂谷盆地和北缘的碧口‒汉南裂谷盆地等(Li et al., 2008Wang et al., 2011; 崔晓庄等,2016;王剑等,2019).桂东北鹰扬关地区处于扬子东南缘的南华裂谷盆地,侵位于(768.9±6.8) Ma的罗家山辉长岩应形成于区域伸展裂谷背景.单斜辉石的化学成分判定其母岩浆为拉斑玄武岩系列,表明罗家山辉长岩的形成可能与俯冲碰撞作用无关.

单斜辉石是镁铁质‒超镁铁质岩石中最为常见的造岩矿物之一,其化学成分往往与构造环境密切相关(Nisbet and Pearce, 1977),故分析单斜辉石的化学成分也成为识别成岩构造背景的重要手段之一.Nisbet and Pearce (1977) 运用单斜辉石主要氧化物的质量分数构建了F 1-F 2因子判别图解,用以判别寄主岩石的成岩构造背景.F 1-F 2因子构建的构造环境判别图解中(图9a),罗家山辉长岩除少数几个样品落入洋底玄武岩和岛弧玄武岩外,绝大多数样品落入板内拉斑玄武岩区.此外,在Leterrier et al.(1982)构建的Ti-Ca+Na构造环境判别图解中,罗家山辉长岩的所有样品均落入板内拉斑玄武岩区(图9b).罗家山辉长岩的成岩构造环境判别结果与寇彩化等(2017a,2017b)对桂北和湘西地区利用单斜辉石化学成分判定的成岩构造环境一致.

另一方面,罗家山辉长岩的成岩温度(1 162~ 1 230 ℃,平均值1 168 ℃)比地幔柱成因的岩石形成温度要低(一般大于1 350 ℃,最高可达1 600℃;Zhang et al., 2006),略低于软流圈地幔的温度 (1 280~1 350 ℃;McKenzie and Bickle, 1988),与上地幔顶部温度相当,其形成深度~66.80 km,指示该区可能存在一个减薄的岩石圈地幔,暗示其非地幔柱成因.区域上,扬子东南缘桂北地区的金车辉长岩和花桥辉石岩,湘西通道地区的长界橄榄辉石岩和黔阳地区的茅渡辉长岩均具有板内拉斑玄武岩的特征(寇彩化等,2017a, 2017b;Kou et al., 2021);尽管其单斜辉石形成的温度压力条件均较罗家山辉长岩要高,但均指示区域上存在一个减薄的岩石圈地幔以及伸展裂谷背景.综上所述,罗家山辉长岩形成于地幔物质上涌、岩石圈减薄的区域伸展构造背景.

7 结论

(1)桂东北鹰扬关地区罗家山辉长岩中单斜辉石成分为Wo27~31En36~47Fs21~32,属于普通辉石;总体具有高铁铝,低钙钠钛的特征.斜长石主要为钠长石,呈现高硅铝钠,低钙钾的特点.母岩浆为Si不饱和的拉斑玄武岩系列.

(2)单斜辉石的温压估算表明,罗家山辉长岩形成温度介于1 282~1 292 ℃,平均值1 287 ℃;形成压力介于1.53~2.37 GPa,平均值2.02 GPa;对应深度介于50.49~78.21 km,平均值66.80 km.

(3)罗家山辉长岩侵位于(768.9±6.8)Ma,为典型的板内拉斑玄武岩,起源于地幔物质上涌,岩石圈减薄的伸展裂谷构造背景.

参考文献

[1]

Campbell, I. H., Borley, G. D., 1974. The Geochemistry of Pyroxenes from the Lower Layered Series of the Jimberlana Intrusion, Western Australia. Contributions to Mineralogy and Petrology, 47(4): 281-297. https://doi.org/10.1007/BF00390151

[2]

Cui, X. Z., Jiang, X. S., Deng, Q., et al., 2016. Zircon U-Pb Geochronological Results of the Danzhou Group in Northern Guangxi and Their Implications for the Neoproterozoic Rifting Stages in South China. Geotectonica et Metallogenia, 40(5): 1049-1063 (in Chinese with English abstract).

[3]

Deng, Q., Wang, J., Wang, Z. J., et al., 2016. Middle Neoproterozoic Magmatic Activities and Their Constraints on Tectonic Evolution of the Jiangnan Orogen. Geotectonica et Metallogenia, 40(4): 753-771 (in Chinese with English abstract).

[4]

Ge, W. C., Li, X. H., Li, Z. X., et al., 2001. Mafic Intrusions in Longsheng Area: Age and Its Geological Implications. Chinese Journal of Geology, 36(1): 112-118 (in Chinese with English abstract).

[5]

Kou, C. H., Liu, Y. X., Li, T. D., et al., 2016. Geochronology and Geochemistry of Neoproterozoic Ultrabasic Rocks in the Western Segment of Jiangnan Orogenic Belt and Constraints on Their Sources. Acta Petrologica et Mineralogica, 35(6): 947-964 (in Chinese with English abstract).

[6]

Kou, C. H., Liu, Y. X., Li, T. D., et al., 2017a. Mineralogical Characteristics of Clinopyroxene from the Neoproterozoic Changjie Olivine Pyroxenolite in Tongdao County, Western Hunan: An Evidence for the Intraplate Rift Origin. Geological Review, 63(4): 881-893 (in Chinese with English abstract).

[7]

Kou, C. H., Liu, Y. X., Li, T. D., et al., 2017b. Mineralogy and Mineral Chemistry of the Jinche Gabbro in the Longsheng Area of Northern Guangxi in the Western Segment of the Jiangnan Orogen and Its Geological Significance. Acta Petrologica et Mineralogica, 36(1): 20-35 (in Chinese with English abstract).

[8]

Kou, C. H., Liu, Y. X., Li, T. D., et al., 2021. Petrogenesis and Tectonic Implications of the Neoproterozoic Mafic-Ultramafic Rocks in the Western Jiangnan Orogen: Insights from in Situ Analysis of Clinopyroxenes. Lithos, 392-393: 106156. https://doi.org/10.1016/j.lithos.2021.106156

[9]

Kou, C. H., Zhang, Z. C., Liao, B. L., et al., 2011. Mineralogy of Clinopyroxene in Jianchuan Picritic Porphyrite of Western Yunnan Province and Its Geological Significance. Acta Petrologica et Mineralogica, 30(3): 449-462 (in Chinese with English abstract).

[10]

Leterrier, J., Maury, R. C., Thonon, P., et al., 1982. Clinopyroxene Composition as a Method of Identification of the Magmatic Affinities of Paleo-Volcanic Series. Earth and Planetary Science Letters, 59(1): 139-154. https://doi.org/10.1016/0012-821X(82)90122-4

[11]

Li, J. H., Mu, J., 1999. Tectonic Constraints from Chinese Cratonic Blocks for the Reconstruction of Rodinia. Chinese Journal of Geology, 34(3): 259-272 (in Chinese with English abstract).

[12]

Li, W. X., Li, X. H., Li, Z. X., et al., 2008. Obduction-Type Granites within the NE Jiangxi Ophiolite: Implications for the Final Amalgamation between the Yangtze and Cathaysia Blocks. Gondwana Research, 13(3): 288-301. https://doi.org/10.1016/j.gr.2007.12.010

[13]

Li, X. H., 1999. U-Pb Zircon Ages of Granites from the Southern Margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and Implications for Rodinia Assembly. Precambrian Research, 97(1-2): 43-57. https://doi.org/10.1016/S0301-9268(99)00020-0

[14]

Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1-2): 117-128. https://doi.org/10.1016/j.precamres.2009.07.004

[15]

Li, X. H., Wang, X. C., Li, W. X., et al., 2008. Petrogenesis and Tectonic Significance of Neoproterozoic Basaltic Rocks in South China: From Orogenesis to Intracontinental Rifting. Geochimica, 37(4): 382-398 (in Chinese with English abstract).

[16]

Li, Y. X., Yin, C. Q., Lin, S. F., et al., 2021. Geochronology and Geochemistry of Bimodal Volcanic Rocks from the Western Jiangnan Orogenic Belt: Petrogenesis, Source Nature and Tectonic Implication. Precambrian Research, 359: 106218. https://doi.org/10.1016/j.precamres.2021.106218

[17]

Li, Z. X., Zhang, L. H., Powell, C. M., 1995. South China in Rodinia: Part of the Missing Link between Australia-East Antarctica and Laurentia? Geology, 23(5): 407-410. https://doi.org/10.1130/0091-7613(1995)0230407: scirpo>2.3.co;2

[18]

Liang, W. B., Guo, R. Q., Liu, G. P., et al., 2019. LA-ICP-MS Zircon U-Pb Age and Geochemistry of the Olivine Gabbro Dike in the Western Segment of Kuruktag, Xinjiang and Its Tectonic Significance. Bulletin of Geological Science and Technology, 38(1): 58-67 (in Chinese with English abstract).

[19]

Lin, M. S., Peng, S. B., Jiang, X. F., et al., 2016. Geochemistry, Petrogenesis and Tectonic Setting of Neoproterozoic Mafic-Ultramafic Rocks from the Western Jiangnan Orogen, South China. Gondwana Research, 35: 338-356. https://doi.org/10.1016/j.gr.2015.05.015

[20]

Lindsley, D. H., 1983. Pyroxene Thermometry. American Mineralogist, 68: 477-493.

[21]

Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082

[22]

Liu, Y. Z., Qin, Y., Feng, Z. H., et al., 2021. New Geochronological and Geochemical Data of the Longsheng Mafic-Ultramafic Suite in Northern Guangxi, China, and Their Implications in Rodinia Breakup. Arabian Journal of Geosciences, 14(2): 1-18. https://doi.org/10.1007/s12517-020-06360-0

[23]

Ludwig, K. R., 2003. User’s Manual for Isoplot 3.0: A Geochronological Toolkit for Mircrosoft Excel. Berkeley Geochronology Center. Berkeley.

[24]

McKenzie, D., Bickle, M. J., 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphere. Journal of Petrology, 29(3): 625-679. https://doi.org/10.1093/petrology/29.3.625

[25]

Morimoto, N., Pabries, J., Ferguson, K., et al., 1988. Nomenclature of Pyroxenes. Mineralogy and Petrology, 39(1): 55-76. https://doi.org/10.1007/BF01226262

[26]

Nisbet, E. G., Pearce, J. A., 1977. Clinopyroxene Composition in Mafic Lavas from Different Tectonic Settings. Contributions to Mineralogy and Petrology, 63(2): 149-160. https://doi.org/10.1007/BF00398776

[27]

Putirka, K. D., Mikaelian, H., Ryerson, F., et al., 2003. New Clinopyroxene-Liquid Thermobarometers for Mafic, Evolved, and Volatile-Bearing Lava Compositions, with Applications to Lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88(10): 1542-1554. https://doi.org/10.2138/am-2003-1017

[28]

Qi, L., Xu, Y. J., Cawood, P. A., et al., 2021. Implications for Supercontinent Reconstructions of Mid-Late Neoproterozoic Volcanic-Sedimentary Rocks from the Cathaysia Block, South China. Precambrian Research, 354: 106056. https://doi.org/10.1016/j.precamres.2020.106056

[29]

Qin, X. F., Wang, Z. Q., Wang, T., et al., 2015. The Reconfirmation of Age and Tectonic Setting of the Volcanic Rocks of Yingyangguan Group in the Eastern Guangxi: Constraints on the Structural Pattern of the Southwestern Segment of Qinzhou-Hangzhou Joint Belt. Acta Geoscientica Sinica, 36(3): 283-292 (in Chinese with English abstract).

[30]

Qin, Y., Feng, Z. H., Wan, L., et al., 2022. LA-ICP-MS Zircon U-Pb Age of Shanglang Metamafic Rocks in Longsheng, Northern Guangxi and Its Geological Significance. Journal of Jilin University (Earth Science Edition), 52(1): 109-133 (in Chinese with English abstract).

[31]

Qin, Y., Feng, Z. H., Huang, J. Z., et al., 2021. Discovery of Sanmen Ductile Shear Zone in North Guangxi and Its Tectonic Significances. Earth Science, 46(11): 4017-4032 (in Chinese with English abstract).

[32]

Qiu, J. X., Liao, Q. A., 1996. Petrogenesis and Cpx Mineral Chemistry of Cenozoic Basalts from Zhejiang and Fujian of Eastern China. Volcanology & Mineral Resources, 17(S1): 16-25 (in Chinese with English abstract).

[33]

Seyler, M., Bonatti, E., 1994. Na, AlIV and AlVI in Clinopyroxenes of Subcontinental and Suboceanic Ridge Peridotites: A Clue to Different Melting Processes in the Mantle? Earth and Planetary Science Letters, 122(3-4): 281-289. https://doi.org/10.1016/0012-821X(94)90002-7

[34]

Simith, J. V., Brown, W. L., 1974. Feldspar Minerals. Springer-Verlag, Berlin.

[35]

Streck, M. J., 2008. Mineral Textures and Zoning as Evidence for Open System Processes. Reviews in Mineralogy and Geochemistry, 69(1): 595-622. https://doi.org/10.2138/rmg.2008.69.15

[36]

Su, H. M., Jiang, S. Y., Shao, J. B., et al., 2021. New Identification and Significance of Early Cretaceous Mafic Rocks in the Interior South China Block. Scientific Reports, 11: 11396. https://doi.org/10.1038/s41598-021-91045-1

[37]

Sun, C. M., 1994. Genetic Mineralogy of Pyroxenes from the Yanbian Proterozoic Ophiolites (Sichuan, China), and Its Geotectonic Implications. Mineralogy and Petrology, 14(3): 1-15 (in Chinese with English abstract).

[38]

Tian, Y., Wang, W., Wang, L. Z., et al., 2020. Age and Petrogenesis of the Yingyangguan Volcanic Rocks: Implications on Constraining the Boundary between Yangtze and Cathaysia Blocks, South China. Lithos, 376-377: 105775. https://doi.org/10.1016/j.lithos.2020.105775

[39]

Vuorinen, J. H., Hålenius, U., Whitehouse, M. J., et al., 2005. Compositional Variations (Major and Trace Elements) of Clinopyroxene and Ti-Andradite from Pyroxenite, Ijolite and Nepheline Syenite, Alnö Island, Sweden. Lithos, 81(1-4): 55-77. https://doi.org/10.1016/j.lithos.2004.09.021

[40]

Wang, J., Jiang, X. S., Zhuo, J. W., et al., 2019. Neoproterozoic Rift Basin Evolution and Lithofacies Paleogeography in South China. Science Press, Beijing (in Chinese).

[41]

Wang, J., Liu, B. J., Pan, G. T., 2001. Neoproterozoic Rifting History of South China Significance to Rodinia Breakup. Mineralogy and Petrology, 21(3): 135-145 (in Chinese with English abstract).

[42]

Wang, L. Z., Tian, Y., Li, X., et al., 2020. Composition and Deformation of the Yingyangguan Tectonic Mélange in Eastern Guangxi. Geotectonica et Metallogenia, 44(3): 340-356 (in Chinese with English abstract).

[43]

Wang, L. Z., Tu, B., Tian, Y., et al., 2019. New Progress in 1: 50 000 Regional Geological and Mineral Survey in Yingyangguan Area, Eastern Guangxi. Geology and Mineral Resources of South China, 35(3): 283-292 (in Chinese with English abstract).

[44]

Wang, P. M., Yu, J. H., Sun, T., et al., 2012. Geochemistry and Detrital Zircon Geochronology of Neoproterozoic Sedimentary Rocks in Eastern Hunan Province and Their Tectonic Significance. Acta Petrologica Sinica, 28(12): 3841-3857 (in Chinese with English abstract).

[45]

Wang, X. C., Li, Z. X., Li, X. H., et al., 2011. Geochemical and Hf-Nd Isotope Data of Nanhua Rift Sedimentary and Volcaniclastic Rocks Indicate a Neoproterozoic Continental Flood Basalt Provenance. Lithos, 127(3-4): 427-440. https://doi.org/10.1016/j.lithos.2011.09.020

[46]

Wang, X. L., Shu, L. S., Xing, G. F., et al., 2012. Post-Orogenic Extension in the Eastern Part of the Jiangnan Orogen: Evidence from Ca. 800-760 Ma Volcanic Rocks. Precambrian Research, 222-223: 404-423. https://doi.org/10.1016/j.precamres.2011.07.003

[47]

Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2007. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen: Dating the Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159(1-2): 117-131. https://doi.org/10.1016/j.precamres.2007.06.005

[48]

Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2006. LA-ICP-MS U-Pb Zircon Geochronology of the Neoproterozoic Igneous Rocks from Northern Guangxi, South China: Implications for Tectonic Evolution. Precambrian Research, 145(1-2): 111-130. https://doi.org/10.1016/j.precamres.2005.11.014

[49]

Wang, Y. J., Zhang, F. F., Fan, W. M., et al., 2010. Tectonic Setting of the South China Block in the Early Paleozoic: Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology. Tectonics, 29(6): TC6020. https://doi.org/10.1029/2010TC002750

[50]

Xu, X. S., Liu, W., Men, Y. P., et al., 2012. Probe into the Tectonic Nature of Neoproterozoic Southern Hunan-Northern Guangxi Marine Basin. Acta Geologica Sinica, 86(12): 1890-1904 (in Chinese with English abstract).

[51]

Yin, F. G., Wan, F., Chen, M., 2003. The Multi-Arc Basin System on the South-Eastern Margin of the Pan-Cathaysian Continental Group. Journal of Chengdu University of Technology (Science & Technology Edition), 30(2): 126-131 (in Chinese with English abstract).

[52]

Yin, H. F., Wu, S. B., Du, Y. S., et al., 1999. South China Defined as Part of Tethyan Archipelagic Ocean System. Earth Science, 24(1): 1-12 (in Chinese with English abstract).

[53]

Zhang, C. L., Qin, Y., Feng, Z. H., et al., 2020. Chronological Characteristics and Significance of Diaozhushan Diabase in Longsheng, Northern Guangxi. Journal of Guilin University of Technology, 40(1): 1-14 (in Chinese with English abstract).

[54]

Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. China South China Continental Structure and Problems. Science in China (Series D), 43(10): 1553-1582 (in Chinese).

[55]

Zhang, Z. C., Mahoney, J. J., Mao, J. W., et al., 2006. Geochemistry of Picritic and Associated Basalt Flows of the Western Emeishan Flood Basalt Province, China. Journal of Petrology, 47(10): 1997-2019. https://doi.org/10.1093/petrology/egl034

[56]

Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004

[57]

Zhou, H. W., Li, X. H., Wang, H. R., et al., 2002. U-Pb Zircon Geochronology of Basic Volcanic Rocks of the Yingyangguan Group in Hezhou, Guangxi, and Its Tectonic Implications. Geological Review, 48(S1): 22-25 (in Chinese with English abstract).

[58]

Zhou, J. B., Li, X. H., Ge, W. C., et al., 2007. Geochronology, Mantle Source and Geological Implications of Neoproterozoic Ultramafic Rocks from Yuanbaoshan Area of Northern Guangxi. Geological Science and Technology Information, 26(1): 11-18 (in Chinese with English abstract).

[59]

Zhou, J. C., Wang, X. L., Qiu, J. S., 2009. Some Neoproterozoic Geological Events Involved in the Development of the Jiangnan Orogen. Geological Journal of China Universities, 15(4): 453-459 (in Chinese with English abstract).

[60]

Zhou, J. C., Wang, X. L., Qiu, J. S., 2014. Neoproterozoic Tectonic-Magmatic Evolution of Jiangnan Orogenic Belt. Science Press, Beijing (in Chinese).

[61]

Zhou, X. Y., Yu, J. H., Wang, L. J., et al., 2015. Compositions and Formation of the Basement Metamorphic Rocks in Yunkai Terrane, Western Guangdong Province, South China. Acta Petrologica Sinica, 31(3): 855-882 (in Chinese with English abstract).

基金资助

国家自然科学基金项目(42072259;42162018)

广西自然科学基金项目(2022GXNSFAA035570;2019GXNSFDA245009)

AI Summary AI Mindmap
PDF (6123KB)

192

访问

0

被引

详细

导航
相关文章

AI思维导图

/