基于遥感解译的盐湖地区输电线路杆塔地面沉降易发性评价
金必晶 , 殷坤龙 , 桂蕾 , 赵斌滨 , 郭宝瑞 , 曾韬睿
地球科学 ›› 2024, Vol. 49 ›› Issue (02) : 538 -549.
基于遥感解译的盐湖地区输电线路杆塔地面沉降易发性评价
Susceptibility Assessment of Land Subsidence of Transmission Line Towers in the Salt Lake Area Based on Remote Sensing Interpretation
,
跨越察尔汗盐湖地区的750 kV柴鱼输电线路是国家西部能源运输通道上重要的一环,受盐湖地区特殊的地质环境与人类活动影响,使得部分杆塔塔基发生不均匀沉降,严重威胁到输电线路的安全运行. 针对盐湖地区目前存在的杆塔地基变形破坏问题,利用小基线集合成孔径雷达干涉测量(SBAS-InSAR)技术对杆塔基础变形失稳前2018年的Sentinel-1A数据开展遥感解译,获取了盐湖地区地面沉降分布情况. 基于频率比法,筛选出与地面沉降相关性较强的8种评价因子构建盐湖地区地面沉降易发性评价指标体系,采用多层感知器神经网络(MLPNN)、逻辑回归(LR)、贝叶斯网络(BN),对比分析了盐湖地区地面沉降的易发性评价效果和精度. 评价结果表明,MLPNN、LR、BN的评价精度均较高,分别为0.85、0.84、0.82. 这表明,通过遥感解译获得地面沉降样本数据与机器学习相结合的方法是盐湖地区输电线路杆塔地面沉降易发性评价的有效手段;同时,评价结果可为输电线路杆塔监测、运行管理及新塔选址提供参考.
盐湖地区 / 杆塔地基变形破坏 / 遥感 / 频率比 / 机器学习
salt lake region / deformation and failure of tower foundation / remote sensing / frequency ratio / machine learning
| [1] |
Atkinson, P. M., Massari, R., 2011. Autologistic Modelling of Susceptibility to Landsliding in the Central Apennines, Italy. Geomorphology, 130(1/2): 55-64. https://doi.org/10.1016/j.geomorph.2011.02.001 |
| [2] |
Bianchini, Solari, Soldato, et al., 2019. Ground Subsidence Susceptibility (GSS) Mapping in Grosseto Plain (Tuscany, Italy) Based on Satellite InSAR Data Using Frequency Ratio and Fuzzy Logic. Remote Sensing, 11(17): 2015. https://doi.org/10.3390/rs11172015 |
| [3] |
Buscema, M., 2002. A Brief Overview and Introduction to Artificial Neural Networks. Substance Use & Misuse, 37(8/9/10): 1093-1148. https://doi.org/10.1081/ja-120004171 |
| [4] |
Chen, G., Zhang, Y., Zeng, R. Q., et al., 2018. Detection of Land Subsidence Associated with Land Creation and Rapid Urbanization in the Chinese Loess Plateau Using Time Series InSAR: A Case Study of Lanzhou New District. Remote Sensing, 10(2): 270. https://doi.org/10.3390/rs10020270 |
| [5] |
Du, Q., Li, G., Zhou, Y., et al., 2021. Deformation Monitoring in an Alpine Mining Area in the Tianshan Mountains Based on SBAS-InSAR Technology. Advances in Materials Science and Engineering, 2021(12): 1-15. https://doi.org/10.1155/2021/9988017 |
| [6] |
Fadhillah, M. F., Achmad, A. R., Lee, C. W., 2020. Integration of InSAR Time-Series Data and GIS to Assess Land Subsidence along Subway Lines in the Seoul Metropolitan Area, South Korea. Remote Sensing, 12(21): 3505. https://doi.org/10.3390/rs12213505 |
| [7] |
Fergason, K. C., Rucker, M. L., Panda, B. B., 2015. Methods for Monitoring Land Subsidence and Earth Fissures in the Western USA. Proceedings of the International Association of Hydrological Sciences, 372: 361-366. https://doi.org/10.5194/piahs-372-361-2015 |
| [8] |
Gao, X. X., Li, S.M., Chen, P.D., et al., 2022. Research on Instability Mechanism of Transmission Tower under Time-Series In SAR Slope Slip Monitoring. Journal of Guizhou University(Natural Sciences),39(1):43-50 (in Chinese with English abstract). |
| [9] |
Guo, Z. Z., Yin, K. L., Fu, S.,et al., 2019. Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model. Earth Science, 44(12):4299-4312 (in Chinese with English abstract). |
| [10] |
Hakim, W., Achmad, A., Lee, C. W., 2020. Land Subsidence Susceptibility Mapping in Jakarta Using Functional and Meta-Ensemble Machine Learning Algorithm Based on Time-Series InSAR Data. Remote Sensing, 12(21): 3627. https://doi.org/10.3390/rs12213627 |
| [11] |
Han, L. N., Zhang, J. Q., Zhang, Y. C., et al., 2019. Applying a Series and Parallel Model and a Bayesian Networks Model to Produce Disaster Chain Susceptibility Maps in the Changbai Mountain Area, China. Water, 11(10): 2144. https://doi.org/10.3390/w11102144 |
| [12] |
He, S. W., Pan, P., Dai, L., et al., 2012. Application of Kernel-Based Fisher Discriminant Analysis to Map Landslide Susceptibility in the Qinggan River Delta, Three Gorges, China. Geomorphology, 171-172(6): 30-41. https://doi.org/10.1016/j.geomorph.2012.04.024 |
| [13] |
Holzer, T. L., Galloway, D. L.,2005.Impacts of Land Subsidence Caused by Withdrawal of Underground Fluids in the United States.Humans as Geologic Agents,4016(8).https://doi.org/10.1130/2005.4016(8) |
| [14] |
Huang, F. M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different AttributeInterval Divisions of Environmental Factors and Different Data-Based Models. Earth Science,46(10): 3777-3795 (in Chinese with English abstract). |
| [15] |
Ilia, I., Tsangaratos, P., 2016. Applying Weight of Evidence Method and Sensitivity Analysis to Produce a Landslide Susceptibility Map. Landslides, 13(2): 379-397. https://doi.org/10.1007/s10346-015-0576-3 |
| [16] |
Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under DifferentEnvironmental Factor Connections and Prediction Models. Earth Science, 46(10):3777-3795 (in Chinese with English abstract). |
| [17] |
Luo, Y. D., 2010. Distribution Law of Saline Soil and Its Salt Expansion and Subsidence Mechanism in Qinghai. Hydrogeological Engineering Geology, 37 (4): 116-120 (in Chinese). |
| [18] |
Mohammady, M., Pourghasemi, H. R., Amiri, M., 2019. Land Subsidence Susceptibility Assessment Using Random Forest Machine Learning Algorithm. Environmental Earth Sciences, 78(16): https://doi.org/10.1007/s12665-019-8518-3 |
| [19] |
Moreira, A., Prats-Iraola, P., Younis, M., et al., 2013. A Tutorial on Synthetic Aperture Radar. IEEE Geoscience and Remote Sensing Magazine, 1(1): 6-43. https://doi.org/10.1109/mgrs.2013.2248301 |
| [20] |
Ning, Z. W., 2014. Study on the Highway Foundation Settlement Regularity of Soft Soil Salinization in Yanhu Area (Dissertation). Chang’ an University, Xi’an, 19-35 (in Chinese with English abstract). |
| [21] |
Qi, Z. X., Wang, X. J., Liu, C. Q., et al., 2021. Analysis on Collapsible Deformation and Prevention Measures of Transmission Line Tower Ground in Qarhan Salt Lake Area. Electric Power Survey and Design,(5): 72-76 (in Chinese with English abstract). |
| [22] |
Shi, M., Gong, H. L., Gao, M. L., et al., 2020. Recent Ground Subsidence in the North China Plain, China, Revealed by Sentinel-1A Datasets. Remote Sensing, 12(21): 3579. https://doi.org/10.3390/rs12213579 |
| [23] |
Wang, Z, J.,1986. Engineering Geological Study of Ground Subsidence. Earth Science, (2):199-206 (in Chinese). |
| [24] |
Wei, Z. Y., 2007. Harm of Qinghai Saline Soil to Power Transformation Engineering and Treatment Measure. Qinghai Electric Power, (S1): 40-44 (in Chinese with English abstract). |
| [25] |
Xiang, W., Zhang, R., Liu, G. X., et al., 2022. Extraction and Analysis of Saline Soil Deformation in the Qarhan Salt Lake Region (in Qinghai, China) by the Sentinel SBAS-InSAR Technique. Geodesy and Geodynamics, 13(2): 127-137. https://doi.org/10.1016/j.geog.2020.11.003 |
| [26] |
Xu, Q., Pu, C. H., Zhao, K. Y.,et al., 2021. Time Series InSAR Monitoring and Analysis of Spatiotemporal Evolution Characteristics of Land Subsidence in Yan’an New District. Geomatics and Information Science of Wuhan University, 46(7):957-969 (in Chinese with English abstract) |
| [27] |
Yan, T, Z., 1989. New Model for Predicting Land Subsidence. Earth Science, (2): 181-188 (in Chinese). |
| [28] |
Zhang, Z. J., Wang, C., Wang, M. M., et al., 2018. Surface Deformation Monitoring in Zhengzhou City from 2014 to 2016 Using Time-Series InSAR. Remote Sensing, 10(11): 1731. https://doi.org/10.3390/rs10111731 |
| [29] |
Zhang, Z. Y., Deng, M. G.,Xu, S. G., 2022. Comparison of Landslide Susceptibility Assessment Models in Zhenkang County,Yunnan Province,China.Chinese Journal of Rock Mechanics and Engineering, 41(1):157-171 (in Chinese with English abstract). |
| [30] |
Zhou, C., Yin, K. L., Cao, Y., et al., 2020. Landslide Susceptibility Assessment by Applying the Coupling Method of Radial Basis Neural Network and Adaboost: A Case Study from the Three Gorges Reservoir Area. Earth Science,45(6):1865-1876 (in Chinese with English abstract). |
| [31] |
Zhu, X, G., Ming, S.,2021. Application of Time Series In SAR Technology in Prevention and Control of Surface Deformation Disaster of High-Voltage Transmission line. Bulletin of Surveying and Mapping, (7):92-97 (in Chinese with English abstract). |
| [32] |
高霞霞,李素敏,陈朋弟,等,2021.时序InSAR边坡滑移监测下输电杆塔失稳机理研究.贵州大学学报(自然科学版),39(1):43-50. |
| [33] |
郭子正,殷坤龙,付圣,等,2019.基于GIS与WOE-BP模型的滑坡易发性评价.地球科学, 44(12):4299-4312. |
| [34] |
黄发明,舟叶,池姚,等,2020.滑坡易发性预测不确定性:环境因子不同属性区间划分和不同数据驱动模型的影响.地球科学,12(45): 4535-4549. |
| [35] |
李文彬,范宣梅,黄发明,等,2021.不同环境因子联接和预测模型的滑坡易发性建模不确定性.地球科学,46(10): 3777-3795. |
| [36] |
罗友弟,2010.青海地区盐渍土分布规律及其盐胀溶陷机制探讨.水文地质工程地质,37(4): 116-120. |
| [37] |
宁展望,2014.盐湖区高速公路盐渍化软土地基沉降规律研究(硕士学位论文).西安:长安大学. |
| [38] |
祁兆鑫,王新军,刘常青,等,2021.察尔汗盐湖区输电线路杆塔地基溶陷变形分析及防治措施.电力勘测设计,(5): 72-76 |
| [39] |
王智济,1986.地面沉降的工程地质研究.地球科学,(2):199-206. |
| [40] |
魏占元,2007.青海盐渍土对变电工程的危害与治理措施.青海电力,(S1): 40-44. |
| [41] |
许强,蒲川豪,赵宽耀,等,2021.延安新区地面沉降时空演化特征时序InSAR监测与分析.武汉大学学报(信息科学版),46(7): 957-969. |
| [42] |
晏同珍,1989.地面沉降规律预测新模式.地球科学,(2):181-188. |
| [43] |
张钟远,邓明国,徐世光,等, 2022.镇康县滑坡易发性评价模型对比研究.岩石力学与工程学报,41(1): 157-171. |
| [44] |
周超,殷坤龙,曹颖,等, 2020.基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价.地球科学,45(6):1865-1876. |
| [45] |
祝昕刚,明生, 2021. 时序InSAR技术应用于高压输电线路附近的地表形变灾害防控. 测绘通报,(7): 92-97. |
国家电网公司总部管理科技项目(52280721000A;SGQHDKY0SBJS2100034)
/
| 〈 |
|
〉 |