碰撞后岩浆作用与陆壳生长:以柴北缘超高压变质带为例

周辰傲 ,  宋述光

地球科学 ›› 2023, Vol. 48 ›› Issue (12) : 4481 -4494.

PDF (8508KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (12) : 4481 -4494. DOI: 10.3799/dqkx.2022.117

碰撞后岩浆作用与陆壳生长:以柴北缘超高压变质带为例

作者信息 +

Post-Collision Magmatism and Continental Crust Growth in Continental Orogenic Belt:An Example from North Qaidam Ultrahigh-Pressure Metamorphic Belt

Author information +
文章历史 +
PDF (8711K)

摘要

碰撞后岩浆活动对于了解造山带垮塌和去根过程及陆壳生长具有重要意义.总结了柴北缘超高压变质带中形成于400~360 Ma的碰撞后花岗岩-辉长岩侵入体和镁铁质岩脉的年代学和地球化学特征.其中,花岗岩侵入体具有典型的I-型花岗岩特征,形成于壳幔相互作用的岩浆混合.来自地幔的镁铁质岩脉可以划分为两组:(1)392~375 Ma中基性岩脉;(2)约360 Ma超基性岩脉.其地球化学特征表明,镁铁质岩脉的微量元素和同位素随形成时间的变新而逐渐亏损,地幔源区从岩石圈地幔变为软流圈地幔.这种源自地幔的镁铁质岩浆活动是碰撞后岩浆活动开始和造山带垮塌的关键指标.结合碰撞后岩浆作用的特征,提出了一个地球动力学模型来解释柴北缘约35 百万年(Ma)的造山带垮塌去根过程,在395~375 Ma发生缓慢的岩石圈地幔侵蚀,360 Ma前岩石圈发生拆沉作用,岩石圈地幔垮塌,同时软流圈地幔上升.地幔岩浆的加入表明碰撞后阶段是大陆生长的重要时期.

关键词

大陆碰撞 / 碰撞后岩浆作用 / 造山带垮塌 / 拆沉作用 / 陆壳生长 / 岩石学 / 地球化学

Key words

continental collision / post-collisional magmatism / orogenic collapse / delamination / continental growth / petrology / geochemistry

引用本文

引用格式 ▾
周辰傲,宋述光. 碰撞后岩浆作用与陆壳生长:以柴北缘超高压变质带为例[J]. 地球科学, 2023, 48(12): 4481-4494 DOI:10.3799/dqkx.2022.117

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

大陆造山带记录了从大洋俯冲、大陆碰撞、俯冲、造山形成以及后期垮塌的复杂过程,是板块构造的重要部分,显示了威尔逊旋回的特征(Thomas,1983Torsvik et al.,1996Handy et al.,2010Song et al.,2014a).根据造山带的不同特征,划分出两种主要类型:增生造山带和碰撞造山带(Cawood and Kroner,2009),其中碰撞型造山带是大洋单向俯冲的结果,部分造山带伴随大陆深俯冲形成超高压变质带,例如苏鲁-大别超高压变质带、柴北缘超高压变质带等(Zheng et al.,2003Song et al.,2005, 2014a).碰撞造山带的岩浆作用是指在碰撞过程中各个阶段演化出的岩浆,主要可以分为碰撞前、同碰撞和碰撞后岩浆作用(Liégeois et al.,1998Song et al.,2015),并控制着地壳增生和再循环(莫宣学,2020).碰撞前岩浆作用发生在地幔楔、俯冲大洋板片、岛弧以及大陆边缘地壳中,主要产生拉斑-钙碱性岩浆、埃达克岩、弧火山岩等类型的岩浆(Bénard et al.,2017).同碰撞岩浆作用发生于大陆碰撞、深俯冲和折返的过程中,通常与超高压变质作用同时发生或者晚于变质作用5~10 Ma之后,是超高压岩体折返过程中减压熔融发生的岩浆作用(Song et al.,2014a, 2015Yu et al.,2019许文良等,2020Yang et al.,2020),近来对于碰撞后岩浆的研究逐渐增多(Zhao et al.,2009, 2018Topuz et al.,2011Prelević et al.,2012Wang et al.,2014Couzinié et al.,2016),但对于碰撞后岩浆的辨别和区分还是比较模糊,在时间上,碰撞后阶段与伸展和造山带垮塌有关,这可能是由加厚的大陆岩石圈的热和重力不稳定触发的(England and Houseman,1989),在岩石类型上,碰撞后阶段有多种岩石类型(Liégeois et al.,1998Bonin,2004),例如出露面积大的I型花岗岩(Karsli et al.,2007Wang et al.,2014),碰撞后岩浆作用的研究中将大规模的花岗质岩浆作为碰撞后的标志和威尔逊循环结束、造山带垮塌的标志(Abbassene et al.,2016),而实际上碰撞后岩浆作用大量的中-基性,乃至超基性岩浆作用也反映了伸展构造的出现,同时这些幔源成分的岩浆作用记录了地幔化学成分和大陆构造演化的重要信息.地幔物质上涌的过程中,幔源成分在地壳中的加入也是碰撞后大陆地壳生长的物质来源之一.因此,碰撞后岩浆作用对于揭示地幔性质、壳幔作用情况和大陆地壳生长的研究都具有重要意义(Niu et al.,2013).

碰撞后岩浆作用主要发生在岩石圈减薄阶段,关于岩石圈减薄和碰撞后岩浆作用的发生主要有两种机制成因,主要包括有:(1)岩石圈拆沉作用(delamination or detachment),指碰撞之后在挤压环境下地壳和岩石圈地幔处于加厚状态,由于密度高,重力处于不稳定状态发生拆沉作用.岩石圈地幔发生拆沉作用发生后,软流圈地幔物质上涌,自身可以发生减压熔融,也可以产生壳幔反应导致部分熔融作用发生(Gao et al.,2004Dong et al.,2019);(2)热对流侵蚀减薄作用(thermal erosion),增厚的岩石圈地幔底部与软流圈地幔发生对流作用,导致岩石圈地幔逐渐减薄,最终地壳伸展并变薄(Molnar,1998).通过对碰撞后岩浆作用构造环境特征和不同岩石类型成因的研究,可以更好地限制碰撞后造山带的深部作用和岩浆作用过程.

1 地质概况

祁连-柴北缘造山体系位于青藏高原以北,地处阿拉善地块和柴达木地块之间,西部被阿尔金断裂带切分,东端与西秦岭造山带相邻,由温泉断裂间隔.祁连-柴北缘造山体系柴北缘超高压变质带位于祁连-柴北缘造山体系南部,呈WNW-ESE方向展布,展布达400 km.祁连-柴北缘造山体系中自北向南发育北祁连增生带、南祁连增生带和柴北缘超高压变质带,记录了从大洋俯冲、增生,到大陆俯冲、超高压变质、折返垮塌的完整造山过程.是研究碰撞型造山带完整演化过程的典型案例(Song et al.,2006, 2014aYang et al.,2019).

柴北缘超高压变质岩从东向西不连续出露约400 km,主要出露于都兰、锡铁山、绿梁山、鱼卡地体.岩石类型主要有超高压变质的花岗质和泥质片麻岩、榴辉岩、石榴橄榄岩和岩浆侵入体.根据对榴辉岩及片麻岩的研究,其超高压峰期变质年龄为440~420 Ma,退变质年龄为405~400 Ma(Song et al.,2005, 2006,2014a,,2014b;Mattinson et al.,2006).同碰撞和碰撞后岩浆作用主要出露于都兰地体(图1b)、锡铁山地体(图1c)和鱼卡-绿梁山地体,同碰撞岩浆以440~400 Ma的埃达克质奥长花岗岩和S-型花岗岩为主(Song et al.,2014a, 2014bYu et al.,2019Yang et al.,2020),碰撞后岩浆主要有形成于400~360 Ma的I型花岗岩、镁铁质岩脉(Wang et al.,2014张延军等,2016Zhao et al.,2018Zhou et al.,2021).

泥盆纪磨拉石建造由分选差的砾岩和红色砂岩组成,这些岩石广泛分布于泥盆纪前的柴北缘超高压碰撞带岩石之上,而在早石炭纪碳酸盐岩广泛沉积于祁连-柴达木地区,这意味着该大陆的表面在石炭纪已经低于海平面,并且地壳的厚度也已经减薄接近正常地壳厚度.

2 岩石学特征

柴北缘碰撞后岩浆岩主要可分为花岗岩-辉长岩侵入体和镁铁质岩脉,主要出露于都兰地体和锡铁山地体(Wang et al.,2014Zhao et al.,2018;Zhou et al.,2021).样品根据其野外产状、岩石类型和地球化学特征划分为3组,分别为花岗岩-花岗闪长岩-闪长岩复式岩体、辉长岩侵入体和镁铁质岩脉.

都兰野马滩岩体为一复式岩体,主体为粗粒黑云母花岗岩、含暗色包体中粗粒花岗闪长岩,野马滩岩体南部出露闪长岩-石英闪长岩体(Wang et al.,2014).粗粒黑云母花岗岩为浅红色,主要矿物为斜长石(~40%)、碱性长石(~30%)、石英(~25%)、次要矿物黑云母(~5%),碱性长石主要为条纹长石及少量正长石,其中部分碱性长石巨晶内部可见黑云母及斜长石包裹体,为花岗嵌晶结构,是典型的晚期生长阶段产物.含暗色包体中粗粒花岗闪长岩为灰白色,主要矿物为斜长石(~45%)、碱性长石(~25%)、角闪石(~10%~15%)、石英(~15%~20%),副矿物磷灰石、锆石、榍石及不透明氧化物矿物.其中可见镁铁质暗色包体,包体为中粗粒或似斑状结构.黑云母二长花岗岩为肉红色中粗粒结构,主要矿物为斜长石、碱性长石(主要为正长石)、石英、黑云母,与花岗闪长岩伴生.石英闪长岩主要矿物为斜长石、角闪石、黑云母,角闪石比花岗闪长岩及包体中的角闪石有更高的Mg#Wang et al.,2014).

锡铁山北部岩体出露含角闪石花岗岩和黑云母花岗岩(Zhao et al.,2018). 角闪石花岗岩,矿物组成为斜长石、碱性长石、石英、角闪石、黑云母,副矿物榍石、磷灰石、锆石.碱性长石主要为正长石,包裹部分斜长石和角闪石形成花岗嵌晶结构,暗色矿物蚀变严重.黑云母花岗岩,主要矿物碱性长石、斜长石、石英、黑云母.在黑云母花岗岩岩体中见基性岩脉侵入(Zhao et al.,2018).

镁铁质岩脉在都兰野马滩、锡铁山岩体均有出露(图2).岩脉宽0.5~3.0 m,多沿NNE方向延伸,围岩多为浅色花岗质和闪长岩,岩脉与围岩间有明

显的侵入边界和隐晶质冷边.中-基性岩以中粒至细粒为主,呈辉绿-辉长结构,主要矿物为单斜辉石和斜长石,副矿物有磷灰石、锆石和不透明矿物,超基性岩呈似斑状结构,斑晶为单斜辉石和斜长石,基质由微晶斜长石、微晶辉石和隐晶组成,表明该岩浆岩冷却速度快.大多数样品显示出细粒中粒的辉绿结构.单斜辉石和斜长石晶体为呈现半自形状态,大小从50~500 μm,少数样品中的单斜辉石晶体被角闪石取代.

3 主微量地球化学特征

根据已发表的分析数据,柴北缘地区碰撞后岩浆岩在TAS图上以亚碱性为主,从超基性到酸性连续分布(图3a).花岗岩-闪长岩主要为钙碱性-高钾钙碱性系列成分(图3b),具有右倾的稀土配分模式,富集大离子亲石元素,亏损高场强元素.其中,黑云母花岗岩SiO2含量69.53%~74.06%,呈现Eu正异常、Sm负异常、中稀土亏损的特征.黑云母二长花岗岩SiO2含量74.74%~76.34%,低Ti低Mg的特征.黑云母花岗和黑云母二长花岗岩为高钾钙碱性系列,具有强烈的稀土右倾模式((La/Yb)N=14.09~22.94,两个样品为3.11~4.51)花岗闪长岩SiO2含量64.06%~68.24%,贫K富Mg、Fe、Ca等,高Mg#(51~57).闪长岩-石英闪长岩体贫Si、K,富Fe、Ca、Na,具有高Mg#(64~71)和稀土总量较低的特征(Wang et al.,2014Zhao et al.,2018).锡铁山辉长岩具有低的SiO2含量(49.10%~52.20%)和K2O含量(0.18%~0.80 %),Mg#(57~65),具有较为平缓的稀土配分模式,轻稀土略富集((La/Yb)N=1.6~3.0),轻微Eu负异常(Eu/Eu*=0.77~1.09),稀土配分模式与都兰超基性岩相似,但稀土总量高于都兰超基性岩.在微量元素蛛网图(图4)中,样品富集Rb、Th、U、Pb和Sr,亏损Nb、Ta、Zr、Hf、P和Ti元素(Zhao et al.,2018).柴北缘碰撞后辉长岩-花岗岩具有类似弧岩浆的地球化学特征(Pearce et al.,1984)(图3c3d).

根据SiO2含量,我们将柴北缘镁铁质岩脉划分为中性、基性和超基性.中性岩脉和基性岩脉在地球化学特征上较为相似,同时又与超基性岩脉有明显的区别,所以可将样品划分为中-基性岩脉和超基性岩脉.其中,中-基性岩脉SiO2含量(46.3%~62.17%),Fe2O3含量和Mg# 变化较大,并且具有较高的TiO2(0.84%~2.49 %) 和稀土总量(∑REE=72×10-6~254×10-6),中-基性岩相对富集LREE,亏损HREE,明显的轻稀土富集的配分模式(La/Yb)N=2.04~8.99, Eu异常为轻微负异常(Eu/Eu*=0.74~1.00).在微量元素蛛网图中,研究的样品具有明显的Nb、Ta、Ti的一致负异常,Th、U正异常,Zr和Hf中表现为具有一致性的变化异常.

超基性岩脉样品具有低的SiO2(42.45%~43.85%)、K2O(0.11%~0.36%)和Sr(213×10-6~2 723×10-6)含量,但MgO(9.05%~10.07%)、Fe2O3(11.45%~12.37 %)、Cr(243×10-6~375×10-6)和Ni(122×10-6~156×10-6) 含量较中基性高,且Mg#(61~62) 具有一致性.与中-基性样品相比,超基性样品显示出类似E-MORB的模式,与中性和基性岩样品相比发生了显著的变化.稀土元素含量较低(∑REE=65×10-6~69×10-6) 和低的轻重稀土比值((La/Yb)N=1.99~2.15).在微量元素蛛网图(图4) 中,超基性样品显示出高场强元素(HFSE) 的正异常,Nb/La(1.3~1.4) 和Nb/Th(14.7~17.6),类似于E-MORB(Nb/La=1.3,Nb/Th=13.8;Sun and McDonough,1989).

4 碰撞后岩浆作用的锆石U-Pb年龄及Hf同位素

表1列出了柴北缘超高压变质带碰撞后代表性岩浆作用的锆石年龄数据,碰撞后岩浆作用集中于400~360 Ma,主要出露于都兰野马滩、都兰沙流河、察察公麻地区,锡铁山地区、大柴旦地区.以典型年龄为例,都兰以花岗岩-闪长岩、中性-超基性岩脉为主,花岗质岩石中黑云母二长花岗岩年龄为380±5 Ma、花岗闪长岩年龄为379±2 Ma、386±2 Ma、粗粒黑云母花岗岩年龄为366.7±2.6 Ma,石英闪长岩年龄为374±2 Ma(Wang et al.,2014),中-基性岩脉年龄为393±1 Ma、376±2 Ma,超基性岩脉年龄为同时期中最晚年龄,为360±2 Ma(Zhou et al.,2021).大柴旦出露有石英闪长岩和花岗岩,年龄一致分布在372~375 Ma (吴才来等,2007),锡铁山出露有花岗岩和辉长岩,年龄分布一致,在368~375 Ma(Zhao et al.,2018;Zhou et al.,2021).

柴北缘碰撞后岩浆岩的锆石Hf同位素特征见图5,两个年龄较老的花岗岩样品及其基性包体锆石的ε Hft)值主要为负值,而两个较为年轻的花岗岩ε Hft)值主要为正值,闪长岩、辉长岩和镁铁质岩脉锆石的ε Hft)值主要为正值,总体上随时间从老到新ε Hft)值逐渐增大的趋势.

5 Sr-Nd同位素

统计柴北缘超高压变质带39件碰撞后岩浆岩样品的Sr-Nd同位素特征(图6),都兰野马滩花岗岩-闪长岩系列I Sr值为0.705~0.711,ε Hft)为-6.2~+1.7,其中黑云母二长花岗岩、花岗闪长岩、粗粒黑云母花岗岩的ε Hft)值依次由富集向亏损变化,石英闪长岩具有正值ε Ndt)(1.0~1.7) 和较低的I Sr值的特征,与其他花岗岩类明显不同.粗粒黑云母花岗岩与石英闪长岩t DM2特征接近(1.02~1.37 Ga),花岗闪长岩、黑云母二长花岗岩呈现递增的t DM2.锡铁山北岩体的样品12XT-20具有最低的ε Ndt)(-9.4),与围岩片麻岩在同一范围内,t DM2为2.26 Ga.

都兰中-基性岩脉具有相对较高的ε Ndt)值(+0.3~+3.2),相近的ε Ndt)值和宽泛的I Sr值,指示中-基性岩脉在形成过程中受到了热液或者流体的改造影响.该地区超基性岩脉相对于其他碰撞后岩浆岩类型具有最亏损的ε Ndt)值(+5.3~+5.4)和最低的I Sr值(0.705 07~0.705 33)特征.所有侵入岩的I Srε Ndt)呈现明显的现负相关的关系,结合Hf同位素定年可以获得时间与Sr-Nd同位素变化的规律.

6 讨论

6.1 壳幔岩浆混合

柴北缘碰撞后岩浆作用从辉长岩到花岗质岩石均有出露,经历了从壳幔混合到幔源岩浆比例增高、以幔源岩浆为主导的过程.前人将柴北缘花岗岩-闪长岩的岩石成因通常解释为:(1) 上地壳片麻质基底部分熔融产物;(2)下地壳基性物质高度部分熔融产物;(3)岩浆混合产物(吴才来等,20072014Wang et al.,2014;Zhao et al.,2018).如图6所示,全岩ε Ndt)值从花岗岩、闪长岩到辉长岩逐渐升高,同时,锆石ε Ndt)值从负值到正值系统变化(图5),Hf同位素模式年龄从0.93~0.53 Ga 逐渐年轻,代表幔源物质成分的不断加入,代表在碰撞后伸展环境下壳幔物质混合的过程.

6.2 地幔源区的变化:从岩石圈地幔熔融到软流圈地幔熔融

一般来说,碰撞造山带下基性岩浆的地幔源区可能是不同且复杂的.通常来说,岩石圈地幔源区具有大离子亲石元素(LILEs) 和轻稀土元素(LREE)富集、高场强元素(HFSE)的亏损,如Nb、Ta亏损,相比软流圈地幔具有更低的地温和流动性(Griffin et al.,2009),并且一般只有被强烈交代改造过的岩石圈地幔才能发生熔融(Xiong et al.,2015).软流圈地幔熔体的主量元素和微量元素特征通常具有大洋玄武岩的元素特征,大离子亲石元素(LILE) 相对较低,富含高场强元素(HFSE,如Nb、Ta).同位素特征通常是具有低87Sr/86Sr和高ε Ndt)值(Saunders et al.,1992Dong et al.,2019).

柴北缘中-基性岩样品和锡铁山辉长岩样品富集LILEs和LREEs,轻微亏损Nb和Ta(图4f).具有高La/Nb值(1.41~4.68) 和低Nb/Ta值(9.6~17.9),表明它们来自岩石圈地幔(Fitton et al.,1988;).ε Ndt)正值(+0.3~+3.4) 和年轻的模式年龄(t DM=1.34~1.15 Ga) 表明岩石圈地幔是较年轻的,主要形成于格林威尔造山期,与该带中的UHPM岩石的原岩时代一致(Song et al.,2012).这些地球化学特征表明大陆岩石圈地幔经历了不同程度的流体交代作用,La/Nb与La/Ba图解(图7a) 和Nb/Yb-Th/Yb图解(图7b) 的变化证明地幔交代作用主要是由俯冲带流体引起的,而不是由沉积物或沉积物熔体引起的.都兰超基性岩脉样品的Sr-Nd同位素亏损量(87Sr/86Sr=0.705 33~0.705 07,ε Ndt)=+5.3~+5.4) 大于都兰基性-中间岩脉样品(图5).Rb、Ba、Pb变化,HFSE(如Nb、Ta) 富集(图4),Nb/U比值(50.9~58.0).这些证据表明,超基性岩脉样品来源于360±1.7 Ma的软流圈地幔.较低的La/Nb值(0.72~0.77,<1.0)也证明其不是来源于岩石圈地幔(Fitton et al.,1988).超基性样品来源于泥盆纪末期(360±1.7 Ma)的软流圈地幔.

6.3 碰撞后岩浆作用的识别

碰撞后岩浆是在造山带垮塌和伸展过程中产生的,其中地幔物质的上涌和软流圈向岩石圈的热传导在壳幔相互作用和大规模岩浆活动中起关键作用(Zhao et al.,2009Prelević et al.,2012Wang et al.,2014).柴北缘碰撞造山带超高压变质时间为440~420 Ma(Song et al.,2014a).同碰撞阶段与超高压变质阶段时间吻合,同碰撞岩浆由榴辉岩熔融产生的埃达克岩(Song et al.,2014bYu et al.,2019).碰撞后岩浆的形成年龄在395~360 Ma,是祁连-柴达木造山带减薄垮塌的时间.

结合柴北缘碰撞造山带和其他造山带的结果,我们总结出碰撞后岩浆活动具有以下3个特征:(1)造山带根部的垮塌和消亡伴随着伸展结构和岩石圈变薄(Williamse et al.,2001;Song et al.,2014a);(2) 软流圈上涌熔融产生基性岩浆作用;(3) 大量出露的I型或A型花岗岩可以指示碰撞后的构造状态(Wang et al.,2014).柴北缘碰撞造山带基性岩浆的出现代表造山带垮塌的开始和碰撞后岩浆作用的开始(Zhao et al.,2018;Zhou et al.,2021);它与具有同碰撞特征的早期岩浆活动明显不同(Yang et al.,2020).

6.4 碰撞后岩浆作用与大陆生长

幔源岩浆物质长期添加到大陆地壳中是陆壳净增长的关键(Niu et al. 2013Couzinié et al.,2016).一般认为,岩浆弧是大陆生长的主要场所.然而,碰撞后的岩浆也是大陆增长的重要因素,或者至少是不可忽视的因素(Couzinié et al.,2016).

除了镁铁质岩脉外,柴北缘碰撞造山带还广泛发育年龄为395~360 Ma的碰撞后辉长岩-花岗岩侵入体(Wang et al.,2014;Zhao et al.,2018).这些长英质岩体中的岩性包括闪长岩、花岗闪长岩和花岗岩等类型,出露相当广泛.部分岩体中出露基性捕虏体,例如都兰花岗闪长岩、锡铁山,揭示了来自地幔和地壳的两种端元岩浆的混合(Wang et al.,2014).因此,大量的碰撞后岩浆也对大陆的生长起到了重要的作用.

根据柴北缘地区花岗岩、闪长岩和辉长岩岩体的Hf同位素特征(图5),可知较年轻的样品ε Hft)值较高(Zheng et al.,2007Zhou et al.,2021),这表明随着时间的推移,来自亏损地幔的比例越来越多.碰撞后岩浆锆石的ε Hft)值变化范围大,表明地幔来源的基性岩浆和地壳来源的长英质岩浆发生相互混合.镁铁质岩脉锆石的ε Hft)值变化随着样品SiO2含量的减少逐渐增大,表明地幔源随着时间的推移越来越亏损,且碰撞后岩浆的幔源成分逐渐增加,证明了幔源物质在大陆的生长过程中发挥了重要作用.碰撞后岩浆中较年轻t DM年龄和ε Hft)的高正值都是新生地壳生长的标志.大规模幔源物质进入陆壳,对于大陆生长具有重要意义.

6.5 造山带垮塌过程:从对流侵蚀到拆沉作用

总的来说,碰撞后的岩浆记录了造山带垮塌的过程,并提出了两种典型的模型,即岩石圈拆沉和对流侵蚀(Houseman et al.,1981Huw Davies et al.,1995).这两种碰撞后的模型都无法完全解释柴北缘碰撞造山带的所有现象.

柴北缘碰撞造山带的大陆碰撞形成了增厚的地壳.已确定埃达克质岩石形成于约435~410 Ma,形成环境为18~20 kbar和 >900 ℃的P-T条件下(Song et al.,2014b),这表明当时地壳厚度超过60 km,同时也具有岩石圈地幔增厚的特征.基性岩浆作用最早开始于393 Ma,这表明岩石圈地幔侵蚀熔融过程,造山带的垮塌已经开始.393~375 Ma期间,柴北缘碰撞造山带出现中-基性岩脉,其来源于岩石圈地幔的熔融,表明岩石圈的对流侵蚀和岩浆活动的周期较长,约20 Ma.375~360 Ma期间,都兰和锡铁山地体中的超基性岩脉、辉长岩岩体的代表了山根的完全去除(Wang et al.,2014;Zhao et al.,2018),与拆沉作用的时限一致.

图8详细说明了柴北缘碰撞造山带的去根和垮塌过程:(1) 柴北缘与祁连地块发生大陆碰撞,随后发生大陆俯冲和折返,在~440~395 Ma时产生同碰撞岩浆;(2) 造山带山根在约395 Ma开始垮塌,在约375 Ma时,由于底部流软流圈的热对流,岩石圈地幔发生持续的对流侵蚀作用,持续了近20 Ma;(3) 随着软流圈地幔上涌,375 Ma以后发生岩石圈地幔拆沉,山根被完全去除,岩石圈地幔减薄过程结束,岩浆活动在约360 Ma后停止;(4)石炭纪发育浅海相复理石建造,海相沉积岩代表山脉已完全夷平,这标志着原特提斯造山旋回的结束.

7 结论

(1)柴北缘碰撞造山带碰撞后岩浆作用的时间为395~360 Ma,持续了约35 Ma.有从酸性-超基性的岩浆活动,其中碰撞后岩浆作用的划定可以由镁铁质岩脉时代的限制.柴北缘碰撞造山带镁铁质岩脉来源于幔源物质,可以作为造山带碰撞后岩浆作用开始的关键标志.

(2)碰撞后镁铁质岩脉的地球化学成分随时间发生变化.中-基性岩脉源区为与俯冲相关的流体交代的岩石圈地幔在~395~375 Ma期间发生的熔融,超基性岩脉源区为约360 Ma的上升的软流圈.

(3)碰撞后的镁铁质岩浆揭示了造山带垮塌和裂解两个阶段.第一阶段是从约395 Ma到约375 Ma的热侵蚀过程,该过程是缓慢且渐变的,然后在约360 Ma时发生拆沉作用,该过程是快速且突变的.在360 Ma之后,地表起伏消失,该地区被早石炭世碳酸盐岩覆盖.原始特提斯造山循环周期结束.

(4)碰撞后的岩浆参与大陆生长的过程,不仅酸性岩浆是大陆生长改造的重要部分,基性岩浆成分长期进入大陆地壳,也是大陆生长的重要组成部分.

参考文献

[1]

Abbassene,F.,Chazot,G.,Bellon,H.,et al.,2016.A 17 Ma Onset for the Post-Collisional K-Rich Calc-Alkaline Magmatism in the Maghrebides:Evidence from Bougaroun (Northeastern Algeria) and Geodynamic Implications.Tectonophysics,674:114-134.https://doi.org/10.1016/j.tecto.2016.02.013

[2]

Bénard,A.,Arculus,R.J.,Nebel,O.,et al.,2017.Silica-Enriched Mantle Sources of Subalkaline Picrite-Boninite-Andesite Island Arc Magmas.Geochimica et Cosmochimica Acta,199:287-303.https://doi.org/10.1016/j.gca.2016.09.030

[3]

Bonin,B.,2004.Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting,Mantle and Crustal,Sources? A Review.Lithos,78(1-2):1-24.https://doi.org/10.1016/j.lithos.2004.04.042

[4]

Cawood,P.A.,Kroner,A.,2009. Earth Accretionary Systems in Space and Time.Geological Society,London,Special Publications,318(1):351-372.https://doi.org/10.1144/sp318.0

[5]

Couzinié,S.,Laurent,O.,Moyen,J.F.,et al.,2016.Post-Collisional Magmatism:Crustal Growth not Identified by Zircon Hf-O Isotopes.Earth and Planetary Science Letters,456:182-195.https://doi.org/10.1016/j.epsl.2016.09.033

[6]

Dong,J.L.,Song,S.G.,Su,L.,et al.,2019.Onset of the North-South Gravity Lineament,NE China:Constraints of Late Jurassic Bimodal Volcanic Rocks.Lithos,334-335:58-68.https://doi.org/10.1016/j.lithos.2019.03.016

[7]

England,P.,Houseman,G.,1989.Extension during Continental Convergence,with Application to the Tibetan Plateau.Journal of Geophysical Research:Solid Earth,94(B12):17561-17579.https://doi.org/10.1029/jb094ib12p17561

[8]

Fitton,J.G.,James,D.,Kempton,P.D.,et al.,1988.The Role of Lithospheric Mantle in the Generation of Late Cenozoic Basic Magmas in the Western United States.Journal of Petrology,Special_Volume(1):331-349.https://doi.org/10.1093/petrology/special_volume.1.331

[9]

Gao,S.,Rudnick,R.L.,Yuan,H.L.,et al.,2004.Recycling Lower Continental Crust in the North China Craton.Nature,432:892-897.https://doi.org/10.1038/nature03162

[10]

Griffin,W.L.,O’Reilly,S.Y.,Afonso,J.C.,et al.,2009.The Composition and Evolution of Lithospheric Mantle:A Re-Evaluation and Its Tectonic Implications.Journal of Petrology,50(7):1185-1204.https://doi.org/10.1093/petrology/egn033

[11]

Handy,M.R.,Schmid,S.M.,Bousquet,R.,et al.,2010.Reconciling Plate-Tectonic Reconstructions of Alpine Tethys with the Geological-Geophysical Record of Spreading and Subduction in the Alps.Earth-Science Reviews,102(3-4):121-158.https://doi.org/10.1016/j.earscirev.2010.06.002

[12]

Houseman,G.A.,McKenzie,D.P.,Molnar,P.,1981.Convective Instability of a Thickened Boundary Layer and Its Relevance for the Thermal Evolution of Continental Convergent Belts.Journal of Geophysical Research:Solid Earth,86(B7):6115-6132.https://doi.org/10.1029/jb086ib07p06115

[13]

Huw Davies,J.,von Blanckenburg,F.,1995.Slab Breakoff:A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens.Earth and Planetary Science Letters,129(1-4):85-102.https://doi.org/10.1016/0012-821x(94)00237-s

[14]

Karsli,O.,Chen,B.,Aydin,F.,et al.,2007.Geochemical and Sr-Nd-Pb Isotopic Compositions of the Eocene Dölek and Sariçiçek Plutons,Eastern Turkey:Implications for Magma Interaction in the Genesis of High-K Calc-Alkaline Granitoids in a Post-Collision Extensional Setting.Lithos,98(1-4):67-96.https://doi.org/10.1016/j.lithos.2007.03.005

[15]

Le Maitre,R.W.,1989.A Classification of Igneous Rocks and Glossary Terms (2nd Edition).Blackwell Scientific Publications, Oxford,193.

[16]

Liégeois,J.P.,Navez,J.,Hertogen,J.,et al.,1998.Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic versus Alkaline and Peralkaline Granitoids.the Use of Sliding Normalization.Lithos,45(1-4):1-28.https://doi.org/10.1016/s0024-4937(98)00023-1

[17]

Mattinson,C.G.,Wooden,J.L.,Liou,J.G.,et al.,2006.Geochronology and Tectonic Significance of Middle Proterozoic Granitic Orthogneiss,North Qaidam HP/UHP Terrane,Western China.Mineralogy and Petrology,88(1-2):227-241.https://doi.org/10.1007/s00710-006-0149-1

[18]

Mo,X.X.,2020.Growth and Evolution of Crust of Tibetan Plateau from Perspective of Magmatic Rocks.Earth Science,45(7):2245-2257 (in Chinese with English abstract).

[19]

Molnar,P.,Houseman,G.A.,Conrad,C.P.,1998.Rayleigh-Taylor Instability and Convective Thinning of Mechanically Thickened Lithosphere:Effects of Non-Linear Viscosity Decreasing Exponentially with Depth and of Horizontal Shortening of the Layer.Geophysical Journal International,133(3):568-584.https://doi.org/10.1046/j.1365-246x.1998.00510.x

[20]

Niu,Y.L.,Zhao,Z.D.,Zhu,D.C.,et al.,2013.Continental Collision Zones are Primary Sites for Net Continental Crust Growth:A Testable Hypothesis.Earth-Science Reviews,127:96-110.https://doi.org/10.1016/j.earscirev.2013.09.004

[21]

Pearce,J.A.,Harris,N.B.W.,Tindle,A.G.,1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology,25(4):956-983.https://doi.org/10.1093/petrology/25.4.956

[22]

Prelević,D.,Akal,C.,Foley,S.F.,et al.,2012.Ultrapotassic Mafic Rocks as Geochemical Proxies for Post-Collisional Dynamics of Orogenic Lithospheric Mantle:The Case of Southwestern Anatolia,Turkey.Journal of Petrology,53(5):1019-1055.https://doi.org/10.1093/petrology/egs008

[23]

Saunders,A.D.,Storey,M.,Kent,R.W.,et al.,1992.Consequences of Plume-Lithosphere Interactions.Geological Society,London,Special Publications,68(1):41-60.https://doi.org/10.1144/gsl.sp.1992.068.01.04

[24]

Song,S.G.,Niu,Y.L.,Su,L.,et al.,2014a.Continental Orogenesis from Ocean Subduction,Continent Collision/Subduction,to Orogen Collapse,and Orogen Recycling:The Example of the North Qaidam UHPM Belt,NW China.Earth-Science Reviews,129:59-84.https://doi.org/10.1016/j.earscirev.2013.11.010

[25]

Song,S.G.,Niu,Y.L.,Su,L.,et al.,2014b.Adakitic (Tonalitic-Trondhjemitic) Magmas Resulting from Eclogite Decompression and Dehydration Melting during Exhumation in Response to Continental Collision.Geochimica et Cosmochimica Acta,130:42-62.https://doi.org/10.1016/j.gca.2014.01.008

[26]

Song,S.G.,Su,L.,Li,X.H.,et al.,2012.Grenville-Age Orogenesis in the Qaidam-Qilian Block:The Link between South China and Tarim.Precambrian Research,220:9-22.

[27]

Song,S.G.,Wang,M.J.,Wang,C.,et al.,2015.Magmatism during Continental Collision,Subduction,Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth:A Perspective.Science China Earth Sciences,58(8):1284-1304.https://doi.org/10.1007/s11430-015-5102-x

[28]

Song,S.G.,Zhang,L.F.,Niu,Y.L.,et al.,2005.Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt,Northern Tibetan Plateau: A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision.Earth and Planetary Science Letters,234(1-2):99-118.https://doi.org/10.1016/j.epsl.2005.02.036

[29]

Song,S.G.,Zhang,L.F.,Niu,Y.L.,et al.,2006.Evolution from Oceanic Subduction to Continental Collision:A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data.Journal of Petrology,47(3):435-455.https://doi.org/10.1093/petrology/egi080

[30]

Sun,S.S.,McDonough,W.F.,1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society,London,Special Publications,42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19

[31]

Thomas,W.A.,1983.Continental Margins,Orogenic Belts,and Intracratonic Structures.Geology,11(5):270-272.https://doi.org/10.1130/0091-7613(1983)11270:cmobai>2.0.co;2

[32]

Topuz,G.,Okay,A.I.,Altherr,R.,et al.,2011.Post-Collisional Adakite-Like Magmatism in the Ağvanis Massif and Implications for the Evolution of the Eocene Magmatism in the Eastern Pontides (NE Turkey).Lithos,125(1-2):131-150.https://doi.org/10.1016/j.lithos.2011.02.003

[33]

Torsvik,T.H.,Smethurst,M.A.,Meert,J.G.,et al.,1996.Continental Break-up and Collision in the Neoproterozoic and Palaeozoic:A Tale of Baltica and Laurentia.Earth-Science Reviews,40(3-4):229-258.https://doi.org/10.1016/0012-8252(96)00008-6

[34]

Wang,M.J.,Song,S.G.,Niu,Y.L.,et al.,2014.Post-Collisional Magmatism:Consequences of UHPM Terrane Exhumation and Orogen Collapse,N.Qaidam UHPM Belt,NW China.Lithos,210-211:181-198.https://doi.org/10.1016/j.lithos.2014.10.006

[35]

Williams,H.,Turner,S.,Kelley,S.,et al.,2001.Age and Composition of Dikes in Southern Tibet:New Constraints on the Timing of East-West Extension and Its Relationship to Postcollisional Volcanism.Geology,29(4):339.https://doi.org/10.1130/0091-7613(2001)0290339:aacodi>2.0.co;2

[36]

Wu,C.L.,Gao,Y.H.,Li,Z.L.,et al.,2014.Zircon SHRIMP Dating of Dulan Granite and Granite Chronological Framework of Ultra-High Pressure Belt in Northern Qaidam Basin.Scientia Sinica (Terrae),44(10):2142-2165 (in Chinese).

[37]

Wu,C.L.,Gao,Y.H.,Wu,S.P.,et al.,2007.Zircon SHRIMP U-Pb Dating of Granites from the Da Qaidam Area in the North Margin of Qaidam Basin,NW China.Acta Petrologica Sinica,23(8):1861-1875 (in Chinese with English abstract).

[38]

Xiong,Q.,Griffin,W.L.,Zheng,J.P.,et al.,2015.Episodic Refertilization and Metasomatism of Archean Mantle:Evidence from an Orogenic Peridotite in North Qaidam (NE Tibet,China).Contributions to Mineralogy and Petrology,169(3):31.https://doi.org/10.1007/s00410-015-1126-7

[39]

Xu,W.L.,Zhao,Z.F.,Dai,L.Q.,2020.Post-Collisional Mafic Magmatism:Record of Lithospheric Mantle Evolution in Continental Orogenic Belt.Scientia Sinica (Terrae),50(12):1906-1918 (in Chinese).

[40]

Yang,L.M.,Song,S.G.,Su,L.,et al.,2019.Heterogeneous Oceanic Arc Volcanic Rocks in the South Qilian Accretionary Belt (Qilian Orogen,NW China).Journal of Petrology,60(1):85-116.https://doi.org/10.1093/petrology/egy107

[41]

Yang,S.X.,Su,L.,Song,S.G.,et al.,2020.Melting of Subducted Continental Crust during Collision and Exhumation:Insights from Granitic Rocks from the North Qaidam UHP Metamorphic Belt,NW China.Lithos,378-379:105794.https://doi.org/10.1016/j.lithos.2020.105794

[42]

Yu,S.Y.,Li,S.Z.,Zhang,J.X.,et al.,2019.Multistage Anatexis during Tectonic Evolution from Oceanic Subduction to Continental Collision:A Review of the North Qaidam UHP Belt,NW China.Earth-Science Reviews,191:190-211.https://doi.org/10.1016/j.earscirev.2019.02.016

[43]

Zhang,Y.J.,Sun,F.Y.,Xu,C.H.,et al.,2016.Geochronology,Geochemistry and Zircon Hf Isotopes of the Tanjianshan Granite Porphyry Intrusion in Dachaidan Area of the North Margin of Qaidam Basin,NW China.Earth Science,41(11):1830-1844 (in Chinese with English abstract).

[44]

Zhao,Z.D.,Mo,X.X.,Dilek,Y.,et al.,2009.Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet:Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet.Lithos,113(1-2):190-212.https://doi.org/10.1016/j.lithos.2009.02.004

[45]

Zhao,Z.X.,Wei,J.H.,Santosh,M.,et al.,2018.Late Devonian Postcollisional Magmatism in the Ultrahigh-Pressure Metamorphic Belt,Xitieshan Terrane,NW China.GSA Bulletin,130(5-6):999-1016.https://doi.org/10.1130/b31772.1

[46]

Zheng,Y.F.,Fu,B.,Gong,B.,et al.,2003.Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China:Implications for Geodynamics and Fluid Regime.Earth-Science Reviews,62(1-2):105-161.https://doi.org/10.1016/s0012-8252(02)00133-2

[47]

Zheng,Y.F.,Zhang,S.B.,Zhao,Z.F.,et al.,2007.Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China:Implications for Growth and Reworking of Continental Crust.Lithos,96(1-2):127-150.https://doi.org/10.1016/j.lithos.2006.10.003

[48]

Zhou,C.N.,Song,S.G.,Allen,M.B.,et al.,2021.Post-Collisional Mafic Magmatism:Insights into Orogenic Collapse and Mantle Modification from North Qaidam Collisional Belt,NW China.Lithos,398/399:106311.https://doi.org/10.1016/j.lithos.2021.106311

[49]

莫宣学,2020.从岩浆岩看青藏高原地壳的生长演化.地球科学,45(7):2245-2257.

[50]

吴才来,郜源红,李兆丽,等,2014.都兰花岗岩锆石SHRIMP定年及柴北缘超高压带花岗岩年代学格架.中国科学:地球科学,44(10):2142-2165.

[51]

吴才来,郜源红,吴锁平,等,2007.柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年.岩石学报,23(8):1861-1875.

[52]

许文良,赵子福,戴立群,2020.碰撞后镁铁质岩浆作用:大陆造山带岩石圈地幔演化的物质记录.中国科学:地球科学,50(12):1906-1918.

[53]

张延军,孙丰月,许成瀚,等,2016.柴北缘大柴旦滩间山花岗斑岩体锆石U-Pb年代学、地球化学及Hf同位素.地球科学,41(11):1830-1844.

基金资助

国家自然科学基金(91955202)

AI Summary AI Mindmap
PDF (8508KB)

237

访问

0

被引

详细

导航
相关文章

AI思维导图

/