基于BP神经网络的第四系覆盖物厚度预测及三维地质建模
Prediction of Quaternary Cover Thickness and 3D Geological Modeling Based on BP Neural Network
,
,
地质灾害风险精细化调查和评估是目前地质灾害减灾防控的重要内容. 斜坡三维地质建模技术的发展为滑坡灾害风险精细化调查评估提供了新的思路,可大幅提高区域范围内滑坡灾害调查的效率和评估精度. 基于Skua-Gocad平台,针对第四系覆盖物和下伏基岩两大模块开展区域斜坡三维地质建模技术研究,以重庆市万州区大周镇为例,采用BP神经网络模型,通过构建研究区第四系覆盖物厚度与地质环境指标的多维非线性网络实现了第四系覆盖物厚度预测. 结合现场调查数据进行方法验证,基于BP神经网络的第四系覆盖物厚度预测精度达91.49%,在此基础上构建了三维地质模型,具有良好的可视化效果,并确保了数据的可靠性. 克服了传统基于克里金插值方法无法反应地质环境因素的缺点,解决了区域范围第四系覆盖物厚度预测的难题.
第四系覆盖物 / 预测 / BP神经网络 / 三维地质建模 / 工程地质
quaternary covering / forecast / BP neural network / three-dimensional geological construction / engineering geology
| [1] |
Cascini, L., Ciurleo, M., Di Nocera, S., 2016. Soil Depth Reconstruction for the Assessment of the Susceptibility to Shallow Landslides in Fine-Grained Slopes. Landslides, 14(2): 459-471. https://doi.org/10.1007/s10346-016-0720-8 |
| [2] |
Chai, Q., 2015. The Analysis about Soil Main Properties and Its Influence Factors of Grassland in Xinjiang(Dissertation). Xinjiang Agricultural University, Xinjian(in Chinese with English abstract). |
| [3] |
Che, D. F., Jia, Q. R., 2019. Three-Dimensional Geological Modeling of Coal Seams Using Weighted Kriging Method and Multi-Source Data. IEEE Access, 7: 118037-118045. https://doi.org/10.1109/access.2019.2936811 |
| [4] |
Chen, S., Chen, G.J., Xu, G.L., 2008. Mechanism of Geological Processes of Formation and Deformation of the Huangtupo Landslide. Earth Science, 33(3):411-415 (in Chinese with English abstract). |
| [5] |
Chen, Y.Y., Li, Y.Q., Wei, D.T., et al., 2021. Quantitative Relationship between Tectonic Deformation and Topography in Bogda Piedmont of Eastern Tianshan Mountains: Based on 3D Structural Modeling and Geomorphic Analysis. Earth Science, 47(2):418-436 (in Chinese with English abstract). |
| [6] |
Clyde, W. C., Fisher, D. C., 1997. Comparing the Fit of Stratigraphic and Morphologic Data in Phylogenetic Analysis. Paleobiology, 23(1): 1-19. https://doi.org/10.1017/s0094837300016614 |
| [7] |
Houlding, S.W., 1992. Subsurface Contaminant Assessment by 3D Geoscience Modeling. In:Singhal,R.K., Mehrotra,A.K., Fytas,K., eds., Environmental Issues and Management of Waste in Energy and Mineral, AA Balkema, Calgary, Canada, 1355-1362. |
| [8] |
Jiang, T. Y., Cui, L. L., Li, J. H., 2012. An Implementation of 3D Landslide Geological Modeling and Visualization. Advanced Materials Research, 594-597: 2338-2343. https://doi.org/10.4028/www.scientific.net/amr.594-597.2338 |
| [9] |
Kuriakose, S. L., Devkota, S., Rossiter, D. G., et al., 2009. Prediction of Soil Depth Using Environmental Variables in an Anthropogenic Landscape, a Case Study in the Western Ghats of Kerala, India. CATENA, 79(1): 27-38. https://doi.org/10.1016/j.catena.2009.05.005 |
| [10] |
Li, M.C., Bai, S., Kong, R., et al., 2020. 3D Parametric Modeling Method of Engineering-Scale Geological Structures. Chinese Journal of Rock Mechanics and Engineering, 39(Supp.1): 2848-2858(in Chinese with English abstract). |
| [11] |
Liu, L., Yin, K.L., Zhang, J., 2016. Estimation Method of the Quaternary Deposits Thickness and Its Application in Wanzhou Central District, Three Gorges Reservoir Region. Bulletin of Geological Science and Technology, 35(1): 177-183 (in Chinese with English abstract). |
| [12] |
Mehnatkesh, A., Ayoubi, S., Jalalian, A., et al., 2013. Relationships between Soil Depth and Terrain Attributes in a Semi Arid Hilly Region in Western Iran. JournalofMountainScience, 10(1): 163-172. https://doi.org/10.1007/s11629-013-2427-9 |
| [13] |
Miu, X., 2016, Research on Landslide Risk Assessment Considering the States of Slope Activity: A Case of Fengjie New County(Dissertation), Chengdu University of Technology,Chengdu(in Chinese with English abstract). |
| [14] |
Muzik, J., Vondráčková, T., Sitányiová, D., et al., 2015. Creation of 3D Geological Models Using Interpolation Methods for Numerical Modelling. Procedia Earth and Planetary Science, 15: 25-30. https://doi.org/10.1016/j.proeps.2015.08.007 |
| [15] |
Na, W. B., Su, Z. W., Zhang, P., 2013. Research of Oilfield Production Forecast Based on Least Squares Fitting and Improved BP Neural Network. Applied Mechanics and Materials, 333-335: 1456-1460. https://doi.org/10.4028/www.scientific.net/amm.333-335.1456 |
| [16] |
Patton, N. R., Lohse, K. A., Godsey, S. E., et al., 2018. Predicting Soil Thickness on Soil Mantled Hillslopes. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-05743-y |
| [17] |
Penížek, V., Borůvka, L., 2006. Soil Depth Prediction Supported by Primary Terrain Attributes: A Comparison of Methods. Plant, SoilandEnvironment, 52(9): 424-430. https://doi.org/10.17221/3461-pse |
| [18] |
Shen, J., Xu, D.W., Cai, J,X., 2008. 3D Geological Modeling of Landslides Based on Borehole Data. Journal of East China University of Technology(Natural Science), 31(2):127-130 (in Chinese with English abstract). |
| [19] |
Thak, J. H., Ryu, T. G., Sin, J. S., et al., 2021. Digital Terrain Analysis Approach to Improve Soil Depth Prediction with Parent Material Dataset. Eurasian Soil Science, 54(12): 1818-1825. https://doi.org/10.1134/s1064229321120139 |
| [20] |
Wang, J. M., Zhao, H., Bi, L., et al., 2018. Implicit 3D Modeling of Ore Body from Geological Boreholes Data Using Hermite Radial Basis Functions. Minerals, 8(10): 443. https://doi.org/10.3390/min8100443 |
| [21] |
Wang, Y., Zhang, X.Y., Chen, W.J., et al., 2017. Application of Virtual Boreholes in 3D Deep Geological Modeling. Urban Geology, 12(2):118-122 (in Chinese with English abstract). |
| [22] |
Wen, C.M., 2018. 3D Geological Modeling Technology And Tts Application Tn a Mine.In:3rd International Conference on Smart City and Systems Engineering(ICSCSE), IEEE, China, 809-812. |
| [23] |
Xiong, Z.Q., 2007. Study on the Technology of 3D Engineering Geological Modeling and Visualization(PhD thesis). The Chinese Academy of Sciences(Institute of Rock & Soil Mechanics), Wuhan(in Chinese with English abstract). |
| [24] |
Yan,Z.,2015. Research and Application on BP Neural Network Algorithm. In: International Industrial Informatics and Computer Engineering Conference in Peoples R China 2015,Xi’an, 1444-1447. |
| [25] |
Yang, L., Song, M.L., 2009. Research on BP Neural Network for Nonlinear Economic Modeling and Its Realization Based on Matlab. In:Luo,Q.,Song,M., eds., 3rd International Symposium on Intelligent Information Technology Application, IEEE, Nanchang, 505. |
| [26] |
Yi, X.S., Li, G.S., Yin, Y.Y., et al., 2012. Comparison on Soil Depth Prediction among Different Spatial Interpolation Methods: A Case study in the Three-River Headwaters Region of Qinghai Province. Geographical Research, 31(10): 1793-1805 (in Chinese with English abstract). |
| [27] |
Yip, H.J., Ji, G.R., Liu, J.H., et al., 2016. Optimal Structure and Parameters of BP Neural Network for Curve Fitting Problem. In: Jing, W., Guiran, C., Huiyu, Z., eds., 6th International Conference on Electronic, Mechanical, Information and Management Society (EMIM), Shenyang, 40:1647-1652. |
| [28] |
Zhang, L.Q., Zhang, X., Liang, X., et al., 2021. Identification and Characteristics of the Sedimentary Environment since the Quaternary in Zi River Delta, Dongting Basin. Earth Science, 46(9):3245-3257 (in Chinese with English abstract). |
| [29] |
Zhang, M.S., Tang, Y.M., 2008. Risk Investigation Method and Practice of Geohazards. Geological Bulletin of China, 27(8):1205-1216 (in Chinese with English abstract). |
| [30] |
Zhang, W. T., Hu, G. Q., Sheng, J. D., et al., 2018. Estimating Effective Soil Depth at Regional Scales: Legacy Maps versus Environmental Covariates. Journal of Plant Nutrition and Soil Science, 181(2): 167-176. https://doi.org/10.1002/jpln.201700081 |
| [31] |
Zhu, D.P., Niu, W.J., Yang, Q., et al., 2001. 3 Dimension visualization for Geology-Constructed-Model. Journal of Beijing University of Aeronautics and Astronautics, 27(4):448-451 (in Chinese with English abstract). |
| [32] |
Zhu, L. F., Wang, X. F., Zhang, B., 2014. Modeling and Visualizing Borehole Information on Virtual Globes Using KML. Computers&Geosciences, 62(1): 62-70. https://doi.org/10.1016/j.cageo.2013.09.016 |
| [33] |
Ziadat, F. M., 2010. Prediction of Soil Depth from Digital Terrain Data by Integrating Statistical and Visual Approaches. Pedosphere, 20(3): 361-367. https://doi.org/10.1016/s1002-0160(10)60025-2 |
| [34] |
柴强,2015. 新疆草地土壤主要性质及影响因素的分析(硕士学位论文). 新疆:新疆农业大学. |
| [35] |
陈松,陈国金,徐光黎,2008.黄土坡滑坡形成与变形的地质过程机制.地球科学,33(3):411-415. |
| [36] |
陈莹莹,李一泉,魏东涛,等,2022. 东天山博格达山前构造变形与地形定量关系:基于三维建模与地貌分析.地球科学,47(2): 418-436. |
| [37] |
杜文凤,彭苏萍,2010. 利用地质统计学预测煤层厚度. 岩石力学与工程学报,29(增1):2762-2767. |
| [38] |
李明超,白硕,孔锐,等,2020. 工程尺度地质结构三维参数化建模方法.岩石力学与工程学报,39(增1):2848-2858. |
| [39] |
刘磊,殷坤龙,张俊,2016.三峡库区万州主城区第四系堆积层厚度的估算方法及应用. 地质科技情报,35(1):177-183. |
| [40] |
缪信,2016. 考虑斜坡活动性状态的滑坡风险评价技术研究——以奉节新城区为例(硕士学位论文). 成都:成都理工大学. |
| [41] |
申健,徐大伟,蔡雄翔,2008. 基于钻孔数据的滑坡三维地质建模研究. 东华理工大学学报(自然科学版),31(2):127-130. |
| [42] |
孙立群,张鑫,梁杏,等,2021. 洞庭盆地资水三角洲地区第四纪沉积环境判别及其特征.地球科学,46(9):3245-3257. |
| [43] |
王瑶,张像源,陈文杰,等,2017. 虚拟钻孔在深层三维地质建模中的应用. 城市地质,12(2):118-122. |
| [44] |
熊祖强,2007. 工程地质三维建模及可视化技术研究(博士学位论文). 武汉:中国科学院研究生院(武汉岩土力学研究所). |
| [45] |
易湘生,李国胜,尹衍雨,等,2012.土壤厚度的空间插值方法比较——以青海三江源地区为例. 地理研究,31(10):1793-1805. |
| [46] |
张茂省,唐亚明,2008. 地质灾害风险调查的方法与实践.地质通报,27(8):1205-1216. |
| [47] |
朱大培,牛文杰,杨钦,等,2001. 地质构造的三维可视化. 北京航空航天大学学报,27(4):448-451. |
国家自然科学基金青年基金项目(41601563)
地质探测与评估教育部重点实验室主任基金培育项目(GLAB2020ZR16)
/
| 〈 |
|
〉 |