库车坳陷侏罗系致密砂岩气藏“三品质”测井评价

信毅 ,  王贵文 ,  刘秉昌 ,  王冰 ,  艾勇 ,  蔡德洋 ,  曹军涛 ,  赵新建

地球科学 ›› 2024, Vol. 49 ›› Issue (06) : 2085 -2102.

PDF (9528KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (06) : 2085 -2102. DOI: 10.3799/dqkx.2022.187

库车坳陷侏罗系致密砂岩气藏“三品质”测井评价

作者信息 +

Well Logging Evaluation of “Three Quality” of Jurassic Tight Gas Sandstone Reservoirs in Kuqa Depression

Author information +
文章历史 +
PDF (9756K)

摘要

为了阐明库车坳陷侏罗系致密砂岩气藏特征并建立配套的测井评价方法,利用岩心观察、岩石物理实验、常规测井和成像测井等资料,对阿合组致密砂岩气藏“七性关系”(岩性、物性、电性、含油气性、脆性、烃源岩特性和地应力各向异性特征)进行了研究.建立了孔隙度、渗透率、饱和度等测井解释模型及TOC、脆性指数、三轴地应力剖面的测井评价模型.在致密气藏“七性关系”测井表征基础上,提出了储层品质、烃源岩品质和工程品质(三品质)分类标准与对应测井评价体系.结果表明阿合组岩性主要包括砂砾岩、中粗砂岩和泥岩,储集空间主要为粒内溶孔、粒间溶孔、微裂缝以及微孔隙,典型含气层段表现为低伽马(<60 API)、高电阻(>10 Ω·m)、高声波时差(>70 μs/ft)的特征.根据测井计算TOC刻画烃源岩品质,根据物性测试、压汞测试和裂缝发育程度,划分出4种储层品质类型,工程品质则主要通过脆性指数和地应力大小来识别与划分.最终将烃源岩品质、储层品质和工程品质测井评价结果应用到单井产能的评价与预测,与实际试油情况吻合较好,DB101等7口井8个层段中均得到验证.

关键词

致密砂岩气 / 测井评价 / 甜点优选 / 阿合组 / 库车坳陷 / 石油地质.

Key words

tight sandstone gas / well logging evaluation / sweet spot optimization / Ahe Formation / Kuqa depression / petroleum geology

引用本文

引用格式 ▾
信毅,王贵文,刘秉昌,王冰,艾勇,蔡德洋,曹军涛,赵新建. 库车坳陷侏罗系致密砂岩气藏“三品质”测井评价[J]. 地球科学, 2024, 49(06): 2085-2102 DOI:10.3799/dqkx.2022.187

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

致密砂岩是指孔隙度小于10%、覆压渗透率小于0.1 mD的砂岩(Zou et al.,2012Lai et al.,2016).致密砂岩气即指富存于致密砂岩中的非常规天然气资源,通常其含气饱和度低(<60%),含水饱和度高(>40%),依靠常规技术难以开采,但在一定经济和技术措施下可获得工业产能(戴金星等,2012;赖锦等,2014).致密砂岩气以其规模储量日益引起石油行业关注,并在非常规油气格架中扮演重要角色(Higgs et al.,2007Zou et al.,2012).然而由于致密砂岩储层往往经历较强成岩和构造改造作用,岩性致密、物性差为其主要特征(Rezaee et al.,2012Lai et al.,2014Anovitz et al.,2015Anovitz and Cole,2015;史超群等,2021).常规油气研究的灵魂是成藏,而非常规油气研究的灵魂是储层(李丹等,2020).目前缺乏针对致密砂岩气储层完善的测井评价技术体系,且致密砂岩气一般需要压裂等投产,因此致密砂岩气测井评价不仅仅需解决“四性”关系问题,而更需要进一步考虑烃源岩特性、脆性和地应力各向异性等特征,即“七性关系”评价(孙建孟,2013;付金华等,2019).此外由于非常规油气的富集与高产往往同时需要具备资源甜点、物性甜点和工程甜点三因素耦合,因此需要综合考虑其烃源岩品质、储层品质和工程品质(闫伟林等,2014;付金华等,2019;王小军等,2019;付锁堂等,2020).

然而,目前针对致密油气等非常规油气的“七性关系”、“三品质”评价技术体系目前研究尚不够深入,这严重阻碍了油气勘探开发的进程.本文以库车坳陷侏罗系阿合组致密砂岩气藏为例,首先分别阐明气藏岩性、物性、电性、含油性、脆性、烃源岩特性和地应力各向异性等七性特征,然后通过岩心分析化验资料以及常规测井结合新技术测井资料实现以上致密气藏“七性关系”测井表征;在此基础上分别建立“三品质”(储层品质、烃源岩品质和工程品质)分类标准与对应测井评价体系,优选测井解释模型及处理参数,形成研究区区域测井解释评价标准及图版和解释成果集,提高测井解释符合率,以期为致密油气和页岩油气勘探开发提供理论依据与技术示范(Zou et al.,2012;闫伟林等,2014;唐振兴等,2019).

1 区域地质概况

库车坳陷位于塔里木盆地北部,北与南天山造山带以逆冲断层相接,南与塔北隆起相连,西起乌什凹陷,东至阳霞凹陷,面积约3 000 km2(王鹏威等,2014),从海西运动的晚期开始发育,经历了燕山和喜山的构造运动,在古生代被动大陆边缘的基础上叠加发育而来的中、新生代再生前陆盆地(图1)(贾东等,1997;张光亚等,2007;唐雁刚等,2021;Jiang et al.,2024).研究区块主要包括北部斜坡带、依奇克里克构造带、巴什构造带、迪北斜坡带和吐格尔明隆起带.

钻井及露头显示,库车坳陷中、新生代地层发育齐全,自下而上依次为三叠系、侏罗系、白垩系、古近系、新近系和第四系的陆相地层(张惠良等,2002).本次研究的主要目的层为侏罗系阿合组,为一套近源、快速沉积的辫状河三角洲平原、前缘沉积,由多期辫状河分流河道和水下分流河道纵向叠置,横向连片分布而成,区域上整体西厚东薄,粒度西粗东细,砂体的储集物性、孔隙结构和油气产能等在纵向和横向上差异明显,储层非均质性强(康海亮等,2016;张立强等,2018).主要烃源岩为其上二套煤系烃源岩(克孜勒努尔组、阳霞组)和底部一套三叠系湖相烃源岩,厚度大、分布广、有机质丰度高,二者中下部的三叠系湖相烃源岩为主要油气来源(李峰等,2015).新近系吉迪克组的巨厚膏泥岩和膏盐岩形成良好的区域性盖层,中上侏罗统的厚层泥岩作为直接盖层(姜振学等,2015).在空间上,这几套烃源岩、侏罗系阿合组储层和上覆盖层之间呈“三明治”式叠置,形成优质的生储盖组合.这种烃-储之间存在着紧密接触关系的充注供烃体系提高了排烃-聚集效率,非常有利于油气在致密砂岩储层中聚集成藏,而巨厚的膏泥岩和膏盐岩使得天然气能有效保存,这是库车坳陷北部气藏形成的重要条件.

2 “七性关系”研究

如今得益于非常规油气地质理论以及压裂改造工艺等技术的进步,致密油气、页岩油气等非常规油气逐渐成为勘探开发的重要目标(Lai et al.,2018;付金华等,2019).勘探目标的转变以及技术需求的提高对测井评价技术提出了新的要求,即由原来的“四性关系”研究逐渐转向“七性关系”研究(孙建孟等,2013;付金华等,2019;赖锦等,2022).“七性关系”研究即在原“四性关系”(岩性、物性、电性、含油气性)研究基础上着重强调脆性、烃源岩特性和地应力各向异性研究.

2.1 岩性

通过岩心观察表明,库车坳陷北部构造带侏罗系阿合组岩性主要包括砂砾岩、中粗砂岩和泥岩(图2).根据进一步的镜下薄片获得的岩性三角图表明其主要岩石类型为岩屑砂岩,少数为长石岩屑砂岩(图2).岩性测井识别一是粒度的判别,二是成分的识别,本次研究通过常规测井结合元素俘获ECS测井综合建立了岩性的测井评价方法.即利用常规测井资料中的去铀伽马(KTH)、地层真电阻率(RT)及孔隙度(声波AC和中子CNL)等测井曲线,通过主成分分析和多元统计回归建立能够综合评价岩性的判别函数(F)(式1).并综合考虑薄片尺度鉴定的岩性类型,结合测井曲线及其区分岩性类别特征,最终优选出储层的岩石密度和测井曲线判别函数等两种参数建立岩性识别图版(图3).同时对于一些常规测井判断可能出现误差的层段,本次研究也综合了元素俘获测井获得的岩石矿物组合剖面特征来进行综合判别.

F = - 0.009 × K T H - 0.045 × R T + 0.044 × C N L + 0.171 × A C - 10.114.

2.2 物性及储集空间特征

根据98块岩心柱塞样实测结果,迪北井区阿合组孔隙度主要分布在3.0%~9.0%,平均为5.94%;渗透率主要分布在0.01~5.0 mD,平均为4.14 mD,其致密储层特征明显.依据铸体薄片、扫描电镜资料表明,迪北地区侏罗系储集空间类型主要为粒内溶孔、粒间溶孔和微裂缝以及粘土矿物微孔隙,原生孔相对较少发育(图4a4b).此外镜下还可见不同程度发育的微裂缝,裂缝面一般较平直,切割颗粒,是沟通低渗透砂岩储层孔隙的主要通道,微裂缝对砂岩的渗透性改善作用十分明显(图4c).粒内溶孔主要为钾长石溶蚀孔,其次为岩屑溶蚀孔,钾长石溶蚀多沿解理方向分布.粒间溶孔主要为方解石胶结物及长石、岩屑颗粒边缘溶解形成的粒间溶孔,孔隙边缘形态不规则,呈港湾状(图4d).在扫描电镜下颗粒溶蚀呈海绵状、蜂窝状,溶蚀强烈时可形成铸模孔(图4e4f).

岩性的识别和物性参数的测井计算是储集层综合评价的重要内容(唐振兴等,2019;付锁堂等,2020),本次研究优选了密度测井曲线建立了阿合组的孔隙度测井计算模型(式2),并通过孔渗相关关系建立了渗透率解释模型(式3)(图5).从岩性与物性的匹配关系来看,砂岩物性相对最好,其中长石岩屑砂岩既发育原生粒间孔隙,同时长石和岩屑还可发育一定的溶蚀孔隙,因而储层物性最好(图4a~4d).砂砾岩储层物性相对中等,而泥岩在埋藏过程中多被压实致密,因此储层物性最差.

Φ = - 61.35 × D E N + 162.69 R 2 = 0.809   4,
K = 0.007 × e 0.746 × Φ R 2 = 0.828   4.

2.3 含气性及其电性

库车坳陷迪北井区阿合组致密储层主要含气(部分含凝析油)(图6).本次研究采取阿尔奇公式建立了含水(气)饱和度计算模型(式4),其中经过岩电实验确定的岩电参数分别是a=2.841 9,m=1.254,b=1.009,n=1.791,而地层水电阻率经确定为0.012 Ω·m.因此在以上岩电参数和地层水电阻率确定的基础上,即可实现单井含气饱和度的测井计算(图6).

S w = a b R w R t φ m n,

式(4)中:S w为含水饱和度,小数;R w为地层水电阻率,Ω·m;R t为地层真电阻率,Ω·m.

常规测井解释以及试气资料表明,典型气层(含气饱和度较高层段)一般发育于岩性较纯、物性较好的层段,如长石岩屑砂岩.典型含油气层段表现出低伽马(<60 API)、高电阻率(>10 Ω·m)(且深浅电阻存在明显幅度差)的特征,同时三孔隙度明显指示较好的物性(高声波时差),因此物性越好,往往含油气性也较好,这与典型致密砂岩气藏“甜点富气”的特征是相吻合的,此外气层与气层之间常发育一些岩性隔夹层(如泥岩)或者物性致密层(图6).

2.4 烃源岩特性

库车坳陷上三叠统塔里奇克组和下-中侏罗统阳霞组、克孜勒努尔组湖相沉积煤层、碳质泥岩和暗色泥岩属于煤系地层,生气潜力大,是库车坳陷天然气成藏的主力烃源岩层(王朋等,2020).实际的地化参数测试结果表明侏罗系煤层有机质丰度明显高于碳质泥岩和暗色泥岩,可达10%甚至更高,阳霞组碳质泥岩的TOC平均值一般>2%,而侏罗系暗色泥岩的TOC含量较低,平均含量大于1%.煤系烃源岩按有机质丰度由低到高分为暗色泥岩、碳质泥岩和煤层,由于有机碳含量和岩性的差异,使得它们在测井曲线上有着明显的差别.煤层依据其典型的岩性和测井特征,常作为标志性的层段,库车北部侏罗系煤层的测井响应曲线特征明显,表现为高电阻率、高声波时差、低中子、低密度、低自然伽马和低自然电位的特点,易于和围岩区分,但其发育层段相对较少;碳质泥岩和暗色泥岩则表现为高中子、高电阻率、高声波时差、高自然伽马、高铀含量和低密度的特点.

Passey (1990)提出了基于常规测井声波时差和电阻率叠合计算TOC的方法,且定义了ΔlgR为声波时差和电阻率2 条测井曲线分异的幅度(王贵文等,2002;石玉江等,2012).此次研究通过建立岩心实测的TOCΔlgR相关关系,建立了碳质泥岩和暗色泥岩为主的TOC测井计算模型(式6)(图7).

Δ l g R = l g ( R / R 基线 ) + 0.02 ( Δ t - Δ t 基线 ),
T O C = 10.042 × Δ l g R + 1.428   6,

式(5~6)中:ΔlgR为声波和电阻率曲线分异幅度,它包含了岩石属性和烃源岩特性,R为测井(深)电阻率,Ω·m;Δt为实测声波时差,μs/ft;R 基线Δt 基线为声波和电阻率基线对应的电阻率(Ω·m)和声波时差值(μs/ft).

利用该方法对研究区部分井进行验证,计算TOC值与样品实测TOC值吻合较好.由表1可知利用ΔlgR法计算TOC值与实测TOC值绝对误差分布在4.73%以内.这表明建立的测井评价模型对烃源岩TOC测井评价具有较好的稳定性以及较高的可信度.

2.5 脆性

致密油气一般要采取压裂改造等才能获得工业油流,因此岩石脆性评价对优选压裂增产层段至关重要(高辉等,2018).脆性指数的计算方法一般常用的是基于岩石力学参数的泊-杨法(泊松比、杨氏模量法)(式7~式9)(Jarvie et al.,2007Lai et al.,2015;赖锦等,2016;Iqbal et al.,2018).

B I E = E - E m i n E m a x - E m i n
B I ν = ν - ν m a x ν m i n - ν m a x
B I = B I E + B I ν 2 × 100 %

式(7~9)中:BI为脆性指数,%;E为岩石的杨氏模量,GPa;ν为岩石泊松比,无量纲;下标max和min分别代表该参数在某个地层段内的最大值和最小值.BIEBIν 分别为通过杨氏模量和泊松比所计算的脆性指数.式(7~9)中,泊松比和杨氏模量等岩石力学参数均可以通过密度、纵横波时差等测井计算得到,因此即可计算对应的脆性指数.

本次研究采取了泊松比-杨氏模量法计算脆性指数,计算结果表明,脆性指数介于40%~70%,其与岩性有较好对应性,砂砾岩脆性指数相对最高,砂岩当中长石岩屑砂岩脆性也较高,而泥岩脆性指数则最低,但需注意是,往往有些脆性指数较高层段物性及含气性不一定好,即有可能为碳酸盐胶结等致密层段(图8).

2.6 地应力各向异性

地应力是深度、岩性、孔隙压力、结构和构造的综合反映(唐振兴等,2019).各向异性为岩石固有属性,通常可以通过正交偶极测井提取地层各向异性参数(赵军等,2005;魏周拓等,2012).阵列声波测井可用于判断地层各向异性特征,同时可用于岩石力学参数测井计算以及地层压力、最大最小水平主应力测井评价(陆黄生,2012;Lai et al.,2019;徐珂等,2020).

地应力往往可分解成垂向应力、水平最大和最小应力,以及地层压力(孔隙流体压力)(Lai et al.,2019).其中孔隙流体压力可基于声波时差测井利用伊顿法(Eaton,1969)计算(式10).而垂向应力主要由上覆岩层重力产生,因此可通过密度曲线积分的方法求取(式11).

P p = P 0 - ( P 0 - P w ) ( Δ t n / Δ t ) c,
S v = 0 H ρ g d z,

式(10~11)中: P 0.上覆地层压力,MPa; P W.地层水静液柱压力,MPa;c.伊顿指数;Δt和Δt n为实测声波时差和正常流体压力声波时差(Eaton,1969),μs/ft.S v为垂向应力,MPa;H为深度,m;ρ为体积密度,kg/m3;g为重力加速度,m/s2.

而水平最大和最小主应力本次研究则优选黄氏模型(黄荣樽等,1995)(式12).黄氏模型及其改进的模型在油田地应力评价中得到较广泛的应用(赵军等,2005).

σ h = ( P R / ( 1 - P R ) + β 1 × ( P o - α P p ) + α P p σ H = ( P R / ( 1 - P R ) + β 2 × ( P o - α P p ) + α P p,

式(12)中:σ Hσ h分别为水平最大、水平最小地应力,MPa;P p孔隙压力,MPa;PR为静泊松比;P 0为上覆地层压力,MPa,a为有效应力系数;β 1β 2为构造校正量(黄荣樽等,1995;赵军等,2005).

实际的水平最大最小应力计算结果表明DX1井4 760~4 850 m三向应力状态为S H>S v>S h.迪北地区最大水平主应力主要介于96~160 MPa,纵向上最大水平主应力化不大,其平均值分别都在128 MPa;最小水平主应力主要介于78~145 MPa,纵向上最小水平主应力化不大,其平均值分别都在110.56 MPa (图8).

在前面对储层“岩性、物性、电性、含气性、烃源岩特性、脆性、地应力各向异性”等七性参数精细建模的基础上,综合这些参数进行详细分析有效储层和无效储层的七性测井响应特征.如图8,DX1井的电阻率小于40 Ω·m,物性特征好(孔隙度大于6%),含气性达到60%,泊松比小于0.22,水平最大和最小主应力差较小,一般小于20 MPa,同时井段下部位裂缝非常发育,且水平主应力与裂缝走向夹角小于30°,使得裂缝延伸较远,张开度好;另外通过元素测井得到矿物剖面可以看到该井粘土含量少,主要以砂岩为主,使得脆性指数较高(大于45%),全井段易压裂,最后试油获得高产,产量达到20×104 m3/d以上(图8).

3 “三品质”评价

3.1 三品质分类标准

致密油气储层的“三品质”是致密储层测井评价的核心(覃豪等,2019;赖锦等,2021).针对致密、页岩油气的“三品质”评价包括烃源岩品质评价、储层品质评价和工程品质评价.其中,烃源岩品质对应资源甜点区、储层品质对应物性甜点区,工程品质对应工程甜点区.“三品质”评价是致密油气评价的核心,可以此为基础优选出致密油气“甜点”分布(闫伟林等,2014;李晓光等,2019;唐振兴等,2019;王小军等,2019;付锁堂等,2020;匡立春等,2021).

在“三品质”评价中,烃源岩品质评价主要指烃源岩生油能力评价,以评价有机质丰度(TOC)为主(尹成芳等,2017).考虑到库车坳陷侏罗系油气主要来源于下伏的上三叠统和中下侏罗统陆相烃源岩,生烃潜力巨大,为侏罗系阿合组致密砂岩气提供了充足的气源岩,气层的分布受储层品质控制明显.此外,库车坳陷侏罗系阿合组致密砂岩主要扮演储集层角色,其中仅发育少量泥岩和炭质泥岩薄层烃源岩,因此烃源岩品质不作为重点评价对象,而储集层和工程品质则作为测井评价的重点.储集层品质评价主要聚焦岩性识别、宏观孔渗饱等参数和微观孔隙结构参数纵向连续评价,以及基于物性参数和孔隙结构参数等实现单井储层品质分类(付金华等,2019;李晓光等,2019;王小军等,2019;付锁堂等,2020).同时,油气致密砂岩气开发一般需采用压裂,因此工程品质评价主要针对脆性和地应力各向异性(尹成芳等,2017;付金华等,2019;李晓光等,2019;唐振兴等,2019;付锁堂等,2020).

在前面揭示了致密砂岩气“七性关系”的基础上,建立了“三品质”评价的测井表征方法与技术,得到致密气层“三品质”测井评价参数体系,然后再借助“三品质”评价成果优选出甜点.针对侏罗系阿合组致密砂岩气,首先通过TOC等参数实现烃源岩品质评价,并基于测井计算脆性指数和地应力大小揭示其工程品质特征.然后通过常规测井计算孔、渗、饱,结合成像测井拾取的裂缝等特征,实现致密砂岩气储层品质测井综合评价.

3.1.1 烃源岩品质

烃源岩评价是一切油气综合评价的基础,对于源储一体或者源储紧邻的非常规油气而言,烃源岩品质决定了油气的富集程度,烃源岩的评价工作也成为油气勘探的重要任务之一(杜江民等,2016).虽然库车坳陷北部构造带侏罗系致密砂岩气主要天然气来源于下伏地层,烃源岩供应充足,烃源岩并非油气富集的核心控制因素(郭继刚等,2012;王朋等,2020).致密砂岩气层分布也受源储配置控制,一般要求要有源储紧邻,或者源储配置要好,但由于侏罗系烃源岩主要来源于下伏地层,烃源岩难以直接与储层直接接触,因此研究区侏罗系致密砂岩气甜点为储层品质所控制,体现出明显的“甜点富气”的特征(赖锦等,2014),因此“三品质”评价时应注重储层品质和后续工程品质评价.而侏罗系阿合组致密砂岩气藏内部烃源岩品质评价则主要侧重基于TOC测井计算的烃源岩定性判别(图8).

3.1.2 储层品质

储层品质评价(包括储层参数计算和储层分类评价)对油气勘探开发至关重要(Iqbal et al.,2018Stadtmuller et al.,2018).库车坳陷侏罗系致密砂岩裂缝普遍发育(王珂等,2020),而裂缝发育对致密砂岩储层品质和天然气产能的改善作用明显(Lai et al.,2017Zhang et al.,2021).同时基质储层的物性参数也在一定程度上决定了储层产能的优劣.故首先通过成像测井等资料结合岩心观察识别单井裂缝发育特征,在此基础上通过常规测井计算孔隙度和渗透率、饱和度等参数,从而实现基质储层分类评价.

(1) 裂缝评价.成像测井不仅能够拾取裂缝面的形态,还能定量计算裂缝长度、裂缝密度、裂缝孔隙度和裂缝开度等4个参数(赖锦等,2015;Lai et al.,2018),因此对于裂缝定性识别和定量评价至关重要(图9)(Lai et al.,2019).DB104井单井裂缝拾取结果表明,整体上该井段裂缝较发育,裂缝密度最大可达10条/m(图9).

(2) 基质储层分类评价.根据压汞测试和物性测试参数测试可以看到,渗透率与最大孔喉半径以及最大进汞饱和度具有明显正相关关系,说明最大孔喉半径越大、所能注入的最大进汞量(饱和度)一般也越大,代表孔喉的连通性变好,因此对应的渗透率也越高(图10).此外,通过最小流动孔喉半径法,确定了阿合组有效储层物性下限为孔隙度4.0%,渗透率下限0.16 mD.因此基于以上裂缝的发育特征,以及基质储层部分参数计算结果,即可实现储层类型划分(表2).最终在基质与裂缝分类分级评价的基础上,结合试气测试资料,建立了基质储层与裂缝综合评价标准(表2).

在基质储层物性发育较好的基础上,裂缝发育好必将形成高产产能;而在基质储层物性发育较差的基础上,裂缝依然发育较好经过酸化压裂改造条件下也能形成较好的产能,因此Ⅰ类和Ⅱ类储层往往具有天然工业产能.Ⅲ类储层往往不发育裂缝,但因为有基质孔隙支撑,在压裂改造后往往也具有天然气工业产能.Ⅳ类为处于物性下限以下的非储层(表2).

从DX1井储层综合解释评价图(图11)可以看到,DX1井4 898~4 975 m层段,测井解释孔隙度和渗透率以及饱和度均较高,同时成像测井上明显能看到裂缝发育特征,综合划分其储层类型以Ⅰ类和Ⅱ类储层,试油酸后日产气258 622 m3,为高产气层(图11).说明基于储层类型(储层品质)测井划分结果与产能的良好匹配关系.

3.1.3 工程品质

致密油气“工程品质”评价是选择可压裂层段、能否充分解放致密储层的油气潜力的基础.因此“工程品质”评价最终的目的是评价储层的脆性指数和地应力剖面(Rybacki et al.,2015Avanzini et al.,2016Kumar et al.,2018;覃豪等,2019).在以上“七性关系”研究中分别建立的脆性指数和水平最大、最小地应力测井计算模型的基础上,即可实现单井脆性指数和地应力剖面连续测井评价(图12).工程甜点区通常选在地应力较低、脆性较强的页岩层段(高辉等,2018;Zhao et al.,2019).

图12中可以分析得到,DB102井的物性较好,通过岩电实验数据分析,得到含气性达到50%以上,泊松比值相对较小在0.24左右,应力差较大,且大于25 MPa,全井段裂缝不发育,且水平主应力与裂缝走向夹角大于40°以上,使得裂缝延伸较短,容易受应力作用造成裂缝闭合;另外通过元素测井得到矿物剖面可以看到该井粘土含量相比迪西1井略多,主要以岩屑砂岩为主,使得脆性指数相对较低(小于45%),全井段压裂效果不明显,易形成低产,产量仅为1×104 m3/d左右(图12).

3.2 产能评价与预测

通过以上“三品质”定量解释评价,可实现致密砂岩气产能综合评价与预测.综合储层品质和工程品质单井识别与划分结果,可识别单井物性“甜点”和工程“甜点”,指导单井产能建设等生产实践工作(Avanzini et al.,2016Iqbal et al.,2018Zhao et al.,2019;赖锦等,2022).

针对各个单井而言,可将“七性关系”及“三品质”综合评价研究成果及时应用于该井的解释评价中,进行储层参数精确计算、成像测井处理解释及储层综合评价,从而对该井的生产进行指导与开发.针对库车北部构造带迪北井区7口井8个层段的基质储层分类评价成果和裂缝储层综合评价成果数据,综合评价研究储层有效性(表3).当裂缝越发育,裂缝密度越大,裂缝走向与最大主应力夹角越小时,裂缝有效性越好,储层产能极高;当裂缝越不发育,裂缝密度越小,裂缝走向与最大主应力夹角越大时,裂缝有效性较差(以Ⅲ类裂缝为主),储层产能较低.因此通过针对致密砂岩气藏“七性关系”及“三品质”综合评价,可实现其产能的综合评价及预测(表3).

4 结论

揭示了库车坳陷北部构造带侏罗系致密油气藏岩性、物性、电性、含油气性、脆性、烃源岩特性和地应力各向异性等“七性关系”特征,并建立了“三品质”测井评价方法.

(1)阿合组岩性主要包括砂砾岩、中粗砂岩和泥岩,镜下薄片揭示的岩石类型为岩屑砂岩和长石岩屑砂岩.利用常规测井资料中的去铀伽马(KTH)、深电阻率(RT)及孔隙度(声波AC和中子CNL)等测井曲线,构建了能够综合评价岩性的判别函数(F),结合密度测井实现了岩性的判别.

(2)储集空间主要为粒内溶孔、粒间溶孔和微裂缝以及粘土矿物微孔隙,物性总体较差,根据密度曲线与实测物性拟合,建立了孔隙度和渗透率的测井解释模型.含气饱和度则通过阿尔奇公式来计算,此外含气层段表现为典型的低伽马、高电阻、高声波时差的特征.

(3)根据ΔlgR的方法建立了TOC的测井解释模型,并采用了泊松比-杨氏模量的方法来计算脆性,利用常规和阵列声波测井计算了岩石力学参数,并利用黄氏模型计算了三轴地应力剖面.

(4)烃源岩品质主要依托测井计算TOC来刻画,而储集层品质则主要根据物性测试和压汞测试数据划分基质储层类型,同时结合裂缝发育特征以及最小流动孔喉半径确定的储层物性下限,实现了储层品质的综合识别与划分.最终划分出4种类型储层Ⅰ类、Ⅱ类、Ⅲ类和Ⅳ类非产层.工程品质则主要通过脆性指数和地应力大小来识别与划分,以指导后期的压裂生产.

(5)将“三品质”测井评价结果应用到产能的评价与预测中,首先进行七性参数测井计算以评价其相互关系,并通过成像测井处理解释识别与评价裂缝,然后划分储层品质类型以及结合工程品质参数,从而可对各单井的生产进行指导与开发.

参考文献

[1]

Anovitz,L.M.,Cole,D.R.,2015.Characterization and Analysis of Porosity and Pore Structures.Reviews in Mineralogy and Geochemistry,80(1):61-164.https://doi.org/10.2138/rmg.2015.80.04

[2]

Anovitz,L.M.,Cole,D.R.,Jackson,A.J.,et al.,2015.Effect of Quartz Overgrowth Precipitation on the Multiscale Porosity of Sandstone:A (U)SANS and Imaging Analysis.Geochimica et Cosmochimica Acta,158:199-222.https://doi.org/10.1016/j.gca.2015.01.028

[3]

Avanzini,A.,Balossino,P.,Brignoli,M.,et al.,2016.Lithologic and Geomechanical Facies Classification for Sweet Spot Identification in Gas Shale Reservoir.Interpretation,4(3):SL21-SL31.https://doi.org/10.1190/int-2015-0199.1

[4]

Dai,J.X.,Ni,Y.Y.,Wu,X.Q.,2012.Tight Gas in China and Its Significance in Exploration and Exploitation.Petroleum Exploration and Development,39(3):257-264 (in Chinese with English abstract).

[5]

Du,J.M.,Zhang,X.L.,Zhong,G.R.,et al.,2016.Analysis on the Optimization and Application of Well Logs Indentification Methods for Organic Carbon Content in Source Rocks of the Tight Oil:Illustrated by the Example of the Source Rocks of Chang 7 Member of Yanchang Formation in Ordos Basin.Progress in Geophysics,31(6):2526-2533 (in Chinese with English abstract).

[6]

Eaton,B.A.,1969.Fracture Gradient Prediction and Its Application in Oilfield Operations.Journal of Petroleum Technology,21(10):1353-1360.https://doi.org/10.2118/2163-pa

[7]

Fu,J.H.,Niu,X.B.,Dan,W.D.,et al.,2019.The Geological Characteristics and the Progress on Exploration and Development of Shale Oil in Chang7 Member of Mesozoic Yanchang Formation,Ordos Basin.China Petroleum Exploration,24(5):601-614 (in Chinese with English abstract).

[8]

Fu,S.T.,Fu,J.H.,Niu,X.B.,et al.,2020.Accumulation Conditions and Key Exploration and Development Technologies in Qingcheng Oilfield.Acta Petrolei Sinica,41(7):777-795 (in Chinese with English abstract).

[9]

Gao,H.,Zhang,X.,He,M.Q.,et al.,2018.Study on Evaluation of Shale Oil Reservoir Fracability Based on Well Logging Data Volume.Progress in Geophysics,33(2):603-612 (in Chinese with English abstract).

[10]

Guo,J.G.,Pang,X.Q.,Liu,D.D.,et al.,2012.Hydrocarbon Expulsion for Middle-Lower Jurassic Coal Measures and Evaluation of Potential Resource in Kuqa Depression.Natural Gas Geoscience,23(2):327-334 (in Chinese with English abstract).

[11]

Higgs,K.E.,Zwingmann,H.,Reyes,A.G.,et al.,2007.Diagenesis,Porosity Evolution,and Petroleum Emplacement in Tight Gas Reservoirs,Taranaki Basin,New Zealand.Journal of Sedimentary Research,77(12):1003-1025.https://doi.org/10.2110/jsr.2007.095

[12]

Huang,R.Z.,Chen,M.,Deng,J.G.,et al.,1995.Study on Shale Stability of Wellbore by Mechanics Coupling with Chemistry Method.Drilling Fluid and Completion Fluld,12(3):15-21,25(in Chinese with English abstract).

[13]

Iqbal,O.,Ahmad,M.,Kadir,A.A.,2018.Effective Evaluation of Shale Gas Reservoirs by Means of an Integrated Approach to Petrophysics and Geomechanics for the Optimization of Hydraulic Fracturing:A Case Study of the Permian Roseneath and Murteree Shale Gas Reservoirs,Cooper Basin,Australia.Journal of Natural Gas Science and Engineering,58:34-58.https://doi.org/10.1016/j.jngse.2018.07.017

[14]

Jarvie,D.M.,Hill,R.J.,Ruble,T.E.,et al.,2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as one Model for Thermogenic Shale-Gas Assessment.Bulletin of the American Association of Petroleum Geologists,91(4):475-499.https://doi.org/10.1306/12190606068

[15]

Jia,D.,Lu,H.X.,Cai,D.S,et al.,1997.Structural Analyses of Kuqa Foreland Fold-Thrust Belt along the Northern Margin of Tarim Basin.Geotectonica et Metallogenia,21(1):1-8 (in Chinese with English abstract).

[16]

Jiang,F.J., Chen,X., Wang,P.W., et al., 2024. Genesis and Accumulation of Paleo-Oil Reservoir in Dabei Area, Kuqa Depression, Northwest China: Implications for Tight-Gas Accumulation. Journal of Earth Science, 35(2): 655-665.

[17]

Jiang,Z.X.,Li,F.,Yang,H.J.,et al.,2015.Development Characteristics of Fractures in Jurassic Tight Reservoir in Dibei Area of Kuqa Depression and Its Reservoir-Controlling Mode.Acta Petrolei Sinica,36(Suppl.2):102-111(in Chinese with English abstract).

[18]

Kang,H.L.,Lin,C.S.,Li,H.H.,et al.,2016.Reservoir Characteristics and Favorable Zone Prediction of Tight Sandstone Gas of the Ahe Formation in Yinan Area,Kuqa Depression.Petroleum Geology & Experiment,38(2):162-169 (in Chinese with English abstract).

[19]

Kuang,L.C.,Hou,L.H.,Yang,Z.,et al.,2021.Key Parameters and Methods of Lacustrine Shale Oil Reservoir Characterization.Acta Petrolei Sinica,42(1):1-14 (in Chinese with English abstract).

[20]

Kumar,S.,Das,S.,Bastia,R.,et al.,2018.Mineralogical and Morphological Characterization of Older Cambay Shale from North Cambay Basin,India:Implication for Shale Oil/Gas Development.Marine and Petroleum Geology,97:339-354.https://doi.org/10.1016/j.marpetgeo.2018.07.020

[21]

Lai,J.,Fan,X.C.,Li,Y.H.,et al.,2022.Well Logging Evaluation of Seven Kinds of Relationships and Three Types of Properties of Paleogene Funing Formation Oil Shales in Subei Basin.Geological Review,68(2):751-768 (in Chinese with English abstract).

[22]

Lai,J.,Pang,X.J.,Xu,F.,et al.,2019.Origin and Formation Mechanisms of Low Oil Saturation Reservoirs in Nanpu Sag,Bohai Bay Basin,China.Marine and Petroleum Geology,110:317-334.https://doi.org/10.1016/j.marpetgeo.2019.07.021

[23]

Lai,J.,Wang,G.W.,Fan,Z.Y.,et al.,2016.Insight into the Pore Structure of Tight Sandstones Using NMR and HPMI Measurements.Energy & Fuels,30(12):10200-10214.https://doi.org/10.1021/acs.energyfuels.6b01982.

[24]

Lai,J.,Wang,G.W.,Fan,Z.Y.,et al.,2016.Research Progress in Brittleness Index Evaluation Methods with Logging Data in Unconventional Oil and Gas Reservoirs.Petroleum Science Bulletin,1(3):330-341 (in Chinese with English abstract).

[25]

Lai,J.,Wang,G.W.,Fan,Z.Y.,et al.,2017.Fracture Detection in Oil-Based Drilling Mud Using a Combination of Borehole Image and Sonic Logs.Marine and Petroleum Geology,84:195-214.https://doi.org/10.1016/j.marpetgeo.2017.03.035

[26]

Lai,J.,Wang,G.W.,Huang,L.X.,et al.,2015.Brittleness Index Estimation in a Tight Shaly Sandstone Reservoir Using Well Logs.Journal of Natural Gas Science and Engineering,27:1536-1545.https://doi.org/10.1016/j.jngse.2015.10.020

[27]

Lai,J.,Wang,G.W.,Pang,X.J.,et al.,2021.The Past,Present and Future of Well Logging Geology:To Celebrate the Publication of Second Edition of “Well Logging Geology”.Geological Review,67(6):1804-1828 (in Chinese with English abstract).

[28]

Lai,J.,Wang,G.W.,Sun,S.M.,et al.,2015.Research Advances in Logging Recognition and Evaluation Method of Fractures in Tight Sandstone Reservoirs.Progress in Geophysics,30(4):1712-1724 (in Chinese with English abstract).

[29]

Lai,J.,Wang,G.W.,Wang,S.,et al.,2018.A Review on the Applications of Image Logs in Structural Analysis and Sedimentary Characterization.Marine and Petroleum Geology,95:139-166.https://doi.org/10.1016/j.marpetgeo.2018.04.020

[30]

Lai,J.,Wang,G.W.,Xin,Y.,et al.,2014.Diagenetic Facies Analysis of Tight Sandstone Gas Reservoir of Bashijiqike Formation in Kuqa Depression.Natural Gas Geoscience,25(7):1019-1032 (in Chinese with English abstract).

[31]

Li,D.,Lin,C.Y.,Dong,C.M.,et al.,2020.Genetic Mechanism of Vertical Diagenesis Heterogeneity in Tight Sandstone as Underlying Reservoirs of Source Rocks.Journal of China University of Mining & Technology,49(4):693-707 (in Chinese with English abstract).

[32]

Li,F.,Jiang,Z.X.,Li,Z.,et al.,2015.Enriched Mechanism of Natural Gas of Lower Jurassic in Dibei Area,Kuqa Depression.Earth Science,40(9):1538-1548 (in Chinese with English abstract).

[33]

Li,X.G.,Liu,X.Z.,Li,J.P.,et al.,2019.Comprehensive Evaluation and Exploration Practice of Sha 4 Lacustrine Shale Oil in Damintun Sag,Liaohe Depression.China Petroleum Exploration,24(5):636-648 (in Chinese with English abstract).

[34]

Lu,H.S.,2012.Application and Development Analysis of Well Logging Information in Petroleum Engineering.Petroleum Drilling Techniques,40(6):1-7 (in Chinese with English abstract).

[35]

Passey,Q.,Creaney,S.,Kulla,J.,et al.,1990.A Practical Model for Organic Richness from Porosity and Resistivity Logs. AAPG Bulletin, 74(12): 1777-1794. https://doi.org/10.1306/0c9b25c9-1710-11d7-8645000102c1865d

[36]

Qin,H.,Yang,X.L.,2019.Log Interpretation Methods for Measuring the Brittleness of Tight Reservoir.Well Logging Technology,43(5):509-513,530(in Chinese with English abstract).

[37]

Rezaee,R.,Saeedi,A.,Clennell,B.,2012.Tight Gas Sands Permeability Estimation from Mercury Injection Capillary Pressure and Nuclear Magnetic Resonance Data.Journal of Petroleum Science and Engineering,88:92-99.https://doi.org/10.1016/j.petrol.2011.12.014.

[38]

Rybacki,E.,Reinicke,A.,Meier,T.,et al.,2015.What Controls the Mechanical Properties of Shale Rocks? - Part I:Strength and Young’s Modulus.Journal of Petroleum Science and Engineering,135:702-722.https://doi.org/10.1016/j.petrol.2015.10.028

[39]

Shi,Y.J.,Li,C.X.,Li,G.R.,et al.,2012.Well Logging Evaluation Method for Hydrocarbon Source Rock-Reservoir Collocation and Oil Enrichment Area Optimization of Low Permeability Reservoirs.Lithologic Reservoirs,24(4):45-50 (in Chinese with English abstract).

[40]

Stadtmuller,M.,Lis-Śledziona,A.,Słota-Valim,M.,2018.Petrophysical and Geomechanical Analysis of the Lower Paleozoic Shale Formation,North Poland.Interpretation,6(3):SH91-SH106.https://doi.org/10.1190/int-2017-0193.1

[41]

Shi,C.Q.,Li,Y.,Yuan,W.F.,et al.,2021.Characteristics on Reservoir Architecture and Quality of Tight Sandstone Reservoirs:Taking Jurassic Ahe Formation in Dibei Area of Kuqa Foreland Basin as an Example.Journal of China University of Mining & Technology,50(5):877-892 (in Chinese with English abstract).

[42]

Sun,J.M.,2013.Coalbed Methane and Shale Gas Evaluation Based on New Seven Related Logging Goals.Well Logging Technology,37(5):457-465 (in Chinese with English abstract).

[43]

Tang,Y.G.,Yang,X.Z.,Xie,H.W.,et al.,2021.Tight Gas Reservoir Characteristics and Exploration Potential of Jurassic Ahe Formation in Kuqa Depression,Tarim Basin.China Petroleum Exploration,26(4):113-124 (in Chinese with English abstract).

[44]

Tang,Z.X.,Zhao,J.H.,Wang,T.X.,2019.Evaluation and Key Technology Application of “Sweet Area”of Tight Oil in Southern Songliao Basin.Natural Gas Geoscience,30(8):1114-1124 (in Chinese with English abstract).

[45]

Wang,G.W.,Zhu,Z.Y.,Zhu G.Y.,2002.Logging Identification and Evaluation of Cambrian-Ordovician Source Rocks in Syneclise of Tarim Basin.Petroleum Exploration and Development,29(4):50-52 (in Chinese with English abstract).

[46]

Wang,K.,Zhang,R.H.,Yu,C.F.,et al.,2020.Characteristics and Controlling Factors of Jurassic Ahe Reservoir of the Northern Tectonic Belt,Kuqa Depression,Tarim Basin.Natural Gas Geoscience,31(5):623-635 (in Chinese with English abstract).

[47]

Wang,P.,Sun,L.H.,Wang,H.,et al.,2020.Microscopic Pore Structure of Ahe Tight Sand Gas Reservoirs of the Low Jurassic in Kuqa Depression and Its Controls on Tight Gas Enrichment.Oil & Gas Geology,41(2):295-304 (in Chinese with English abstract).

[48]

Wang,P.W.,Pang,X.Q.,Jiang,Z.X.,et al.,2014.Critical Phyisical Conditions for Accumulation of Yinan 2 “Continuous” Tight Sandstone Gas Reservoir,Kuqa Depression.Earth Science,39(10):1381-1390 (in Chinese with English abstract).

[49]

Wang,X.J.,Yang,Z.F.,Guo,X.G.,et al.,2019.Practices and Prospects of Shale Oil Exploration in Jimsar Sag of Junggar Basin.Xinjiang Petroleum Geology,40(4):402-413 (in Chinese with English abstract).

[50]

Wei,Z.T.,Fan,Y.R.,Chen,X.L.,2012.Application of Shear Wave Anisotropy in Fractures and In-Situ Stress Analysis.Progress in Geophysics,27(1):217-224 (in Chinese with English abstract).

[51]

Xu,K.,Tian,J.,Yang,H.J.,et al.,2020.Prediction of Current In-Situ Stress Filed and Its Application of Deeply Buried Tight Sandstone Reservoir:A Case Study of Keshen 10 Gas Reservoir in Kelasu Structural Belt,Tarim Basin.Journal of China University of Mining & Technology,49(4):708-720 (in Chinese with English abstract).

[52]

Yan,W.L.,Zhao,J.,Zheng,J.D.,et al.,2014.Well Logging Evaluation of Fuyu Tight Oil Reservoirs in North Songliao Basin.Petroleum Geology & Oilfield Development in Daqing,33(5):209-214 (in Chinese with English abstract).

[53]

Yin,C.F.,Ke,S.Z.,Jiang,M.,et al.,2017.Application of New Well Logging Technology in the Evaluation of “Seven Properties” of Continental Tight Oil:A Case Study on the Gaotaizi Oil Layer in the Northern Songliao Basin.Petroleum Science Bulletin,2(1):32-43 (in Chinese with English abstract).

[54]

Zhang,G.Y.,Zhao,W.Z.,Wang,H.J.,et al.,2007.Multicycle Tectonic Evolution and Composite Petroleum Systems in the Tarim Basin.Oil & Gas Geology,28(5):653-663 (in Chinese with English abstract).

[55]

Zhang,H.L.,Shou,J.F.,Chen,Z.L.,et al.,2002.Sedimentary Characteristics and Sandstone Body Distribution of the Lower Jurassic in Kuqa Depression.Journal of Palaeogeography,4(3):47-58 (in Chinese with English abstract).

[56]

Zhang,L.Q.,Yan,Y.M.,Luo,X.R.,et al.,2018.Diagenetic Differences of Tight Sandstone of the Lower Jurassic Ahe Formation in the Yiqikelike Area of the Kuqa Depression,Tarim Basin.Earth Science Frontiers,25(2):170-178 (in Chinese with English abstract).

[57]

Zhang, Y. Z., Zeng, L. B., Luo, Q., 2021. Influence of Natural Fractures on Tight Oil Migration and Production: A Case Study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin, NW China. Journal of Earth Science, 32(4): 927-945.

[58]

Zhao,J.,Qin,W.Q.,Zhang,L.,et al.,2005.Anisotropy of Dipole Shear Wave and Its Application to Ground Stress Evaluation.Acta Petrolei Sinica,26(4):54-57 (in Chinese with English abstract).

[59]

Zhao,X.Z.,Zhou,L.H.,Pu,X.G.,et al.,2019.Exploration Breakthroughs and Geological Characteristics of Continental Shale Oil:A Case Study of the Kongdian Formation in the Cangdong Sag,China.Marine and Petroleum Geology,102:544-556.https://doi.org/10.1016/j.marpetgeo.2018.12.020

[60]

Zou,C.N.,Zhu,R.K.,Liu,K.Y.,et al.,2012.Tight Gas Sandstone Reservoirs in China:Characteristics and Recognition Criteria.Journal of Petroleum Science and Engineering,88-89:82-91.https://doi.org/10.1016/j.petrol.2012.02.001

基金资助

国家大型油气田及煤层气开发科技重大专项(2017ZX05008-004-001)

AI Summary AI Mindmap
PDF (9528KB)

185

访问

0

被引

详细

导航
相关文章

AI思维导图

/