富有机质页岩天然裂缝研究进展
Research Progress of Natural Fractures in Organic Rich Shale
,
天然裂缝是富有机质页岩油气储层的重要储集空间和主要渗流通道,影响页岩油气的富集、保存、单井产能及开发效果,天然裂缝发育规律研究对富有机质页岩油气勘探开发具有重要意义.本文在调研近年来海相和陆相富有机质页岩裂缝研究成果的基础上,综述了富有机质页岩天然裂缝的成因类型、发育特征、主控因素以及评价与预测方法等方面取得的最新进展,讨论了富有机质页岩天然裂缝今后重点研究方向.富有机质页岩天然裂缝分为构造裂缝、成岩裂缝和异常高压裂缝3大类6小类,其中层内张开裂缝、穿层剪切裂缝、顺层剪切裂缝和水平层理缝是其主要的裂缝类型.页岩构造裂缝的发育程度主要受脆性矿物含量、有机质含量、高脆性页岩层厚度、构造、地层倾角和流体压力等因素的控制,页岩水平层理缝的形成与发育程度主要受有机质含量、纹层类型、纹层数量、纹层厚度及后期构造抬升等因素的影响.由于陆相页岩与海相页岩的沉积环境不同导致的矿物组分、岩相变化及有机质热演化程度等方面的差异,使得陆相页岩与海相页岩裂缝的发育特征明显不同.与海相页岩裂缝相比,通常陆相页岩裂缝的分布型式更复杂,构造裂缝规模更小,穿层剪切裂缝和顺层剪切裂缝的发育程度低.页岩裂缝的评价与预测目前主要借助于已有的常规低渗透致密储层构造裂缝研究方法开展,如何针对页岩裂缝规模小和水平层理缝发育的特点,将地质、地球物理和机器学习相结合,形成适合不同尺度和不同类型页岩裂缝的分类评价与预测方法,对提高页岩裂缝的评价预测精度和更好地指导油气开发至关重要.深层富有机质页岩裂缝的发育规律、天然裂缝对水力压裂缝的影响以及综合多尺度、多产状和多成因页岩裂缝的复杂缝网系统三维地质建模,也将是今后页岩裂缝研究需要解决的重要问题.
构造裂缝 / 层理缝 / 发育特征 / 主控因素 / 海相页岩 / 陆相页岩 / 石油地质学
tectonic fracture / bed-parallel lamellated fracture / developmental characteristic / main control factor / marine shale / continental shale / petroleum geology
| [1] |
Bons, P. D., Elburg, M. A., Gomez-Rivas, E., 2012. A Review of the Formation of Tectonic Veins and Their Microstructures. Journal of Structural Geology, 43: 33-62. https://doi.org/10.1016/j.jsg.2012.07.005 |
| [2] |
Cobbold, P. R., Zanella, A., Rodrigues, N., et al., 2013. Bedding-Parallel Fibrous Veins (Beef and Cone-in-Cone): Worldwide Occurrence and Possible Significance in Terms of Fluid Overpressure, Hydrocarbon Generation and Mineralization. Marine and Petroleum Geology, 43: 1-20. https://doi.org/10.1016/j.marpetgeo.2013.01.010 |
| [3] |
Ding, P.B., Gong, F., Zhang, F., et al., 2021. A Physical Model Study of Shale Seismic Responses and Anisotropic Inversion. Petroleum Science, 18: 1059-1068. https://doi.org/10.1016/j.petsci.2021.01.001 |
| [4] |
Ding, W. L., Xu, C. C., Jiu, K., et al., 2011. The Research Progress of Shale Fractures. Advances in Earth Science, 26(2): 135-144 (in Chinese with English abstract). |
| [5] |
Dong, D.Z., Shi, Z.S., Sun, S.S., et al., 2018.Factors Controlling Microfractures in Black Shale: A Case Study of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe Profile,Changning Area, Sichuan Basin, SW China. Petroleum Exploration and Development,45(5): 763-774 (in Chinese with English abstract). |
| [6] |
Dong, S. Q., Zeng, L. B., Cao, H., et al., 2018. Principle and Implementation of Discrete Fracture Network Modeling Controlled by Fracture Density. Geological Review, 64(5): 1302-1313 (in Chinese with English abstract). |
| [7] |
Dong, S. Q., Zeng, L. B., Lyu, W. Y., et al., 2020. Fracture Identification by Semi-Supervised Learning Using Conventional Logs in Tight Sandstones of Ordos Basin, China. Journal of Natural Gas Science and Engineering, 76: 103131. https://doi.org/10.1016/j.jngse.2019.103131 |
| [8] |
Emmanuel, S., Eliyahu, M., Day-Stirrat, R. J., et al., 2016. Impact of Thermal Maturation on Nano-Scale Elastic Properties of Organic Matter in Shales. Marine and Petroleum Geology, 70: 175-184. https://doi.org/10.1016/j.marpetgeo.2015.12.001 |
| [9] |
Gale, J. F. W., Laubach, S. E., Olson, J. E., et al., 2014. Natural Fractures in Shale: A Review and New Observations. AAPG Bulletin, 98(11): 2165-2216. https://doi.org/10.1306/08121413151 |
| [10] |
Gale, J. F. W., Reed, R. M., Holder, J., 2007. Natural Fractures in the Barnett Shale and Their Importance for Hydraulic Fracture Treatments. AAPG Bulletin, 91(4): 603-622. https://doi.org/10.1306/11010606061 |
| [11] |
Gong, L., Wang, J., Gao, S., et al., 2021. Characterization, Controlling Factors and Evolution of Fracture Effectiveness in Shale Oil Reservoirs. Journal of Petroleum Science and Engineering, 203(2): 108655. https://doi.org/10.1016/j.petrol.2021.108655 |
| [12] |
Gou, Q.Y., 2017. Application of Fracture Prediction Technology Based on Stack Front Anisotropy in Shale Reservoir. China Petrochem, (3): 26-27 (in Chinese with English abstract). |
| [13] |
Gou, Q. Y., Xu, S., Hao, F., et al., 2019. Study on Characterization of Micro-Fracture of Shale Based on Micro-CT. Acta Geologica Sinica, 93(9): 2372-2382 (in Chinese with English abstract). |
| [14] |
Guo, X. S., Hu, D. F., Huang, R. C., et al., 2020. Deep and Ultra-Deep Natural Gas Exploration in the Sichuan Basin: Progress and Prospect. Natural Gas Industry, 40(5): 1-14 (in Chinese with English abstract). |
| [15] |
Guo, X. S., Hu, D. F., Wei, X. F., et al., 2016. Main Controlling Factors on Shale Fractures and Their Influences on Production Capacity in Jiaoshiba Area, the Sichuan Basin. Oil & Gas Geology, 37(6): 799-808 (in Chinese with English abstract). |
| [16] |
He, Z. L., Nie, H. K., Hu, D. F., et al., 2020. Geological Problems in the Effective Development of Deep Shale Gas: A Case Study of Upper Ordovician Wufeng-Lower Silurian Longmaxi Formations in Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 41(4): 379-391 (in Chinese with English abstract). |
| [17] |
Hedberg, H.D., 1974. Relation of Methane Generation to Undercompacted Shales, Shale Diapirs, and Mud Volcanoes. AAPG Bulletin, 58(4): 661-673.https://doi.org/10.1306/83D91466-16C7-11D7-8645000102C1865D |
| [18] |
Jin, Z. J., Hu, Z. Q., Gao, B., et al., 2016. Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations, Southeastern Sichuan Basin. Earth Science Frontiers, 23(1): 1-10 (in Chinese with English abstract). |
| [19] |
Jin, Z. J., Wang, G. P., Liu, G. X., et al., 2021. Research Progress and Key Scientific Issues of Continental Shale Oil in China. Acta Petrolei Sinica, 42(7): 821-835 (in Chinese with English abstract). |
| [20] |
Kalani, M., Jahren, J., Mondol, N. H., et al., 2015. Petrophysical Implications of Source Rock Microfracturing. International Journal of Coal Geology, 143: 43-67. https://doi.org/10.1016/j.coal.2015.03.009 |
| [21] |
Lin, C. M., Wang, H. Y., Liang, P. P., et al., 2019. The Characteristics of Laminae and Its Reservoir Significance in Black Shale: Taking the Wufeng-Longmaxi Formations in the Changning-Shuanghe Section as an Example. Journal of Stratigraphy, 43(2): 133-140 (in Chinese with English abstract). |
| [22] |
Liu, J. S., Ding, W. L., Xiao, Z. K., et al., 2019. Advances in Comprehensive Characterization and Prediction of Reservoir Fractures. Progress in Geophysics, 34(6): 2283-2300 (in Chinese with English abstract). |
| [23] |
Nelson, R. A., 1985. Geologic Analysis of Naturally Fractured Reservoirs: Contributions in Petroleum Geology and Engineering. Gulf Publishing Company, Houston, 320. |
| [24] |
Sun, J., Bao, H. Y., 2018. Comprehensive Characterization of Shale Gas Reservoirs: A Case Study from Fuling Shale Gas Field. Petroleum Geology & Experiment, 40(1): 1-12 (in Chinese with English abstract). |
| [25] |
Tang, X. M., Li, S. Q., Xu, S., et al., 2017. Acoustic Characterization and Imaging of Shale Gas Fractures in Horizontal Wells: Field Case Study in the Sichuan Basin of Southwest China. Well Logging Technology, 41(5): 501-505 (in Chinese with English abstract). |
| [26] |
Teixeira, M. G., Donzé, F., Renard, F., et al., 2017. Microfracturing during Primary Migration in Shales. Tectonophysics, 694: 268-279. https://doi.org/10.1016/j.tecto.2016.11.010 |
| [27] |
Tian, H., Zeng, L. B., Shu, Z. G., et al., 2019. Method for Determining Elastic Parameters for the Prediction Model of Shale Transversely Isotropic Geostress. Journal of Geomechanics, 25(2): 166-176 (in Chinese with English abstract). |
| [28] |
Tian, H., Zeng, L. B., Xu, X., et al., 2020. Characteristics of Natural Fractures in Marine Shale in Fuling Area, Sichuan Basin, and Their Influence on Shale Gas. Oil & Gas Geology, 41(3): 474-483 (in Chinese with English abstract). |
| [29] |
Tian, H., Zeng, L. B., Xu, X., et al., 2021. Factors Influencing the In-Situ Stress Orientations in Shales: A Case Study of the Wufeng-Longmaxi Formations in the Jiaoshiba Area, Southeastern Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 94: 104110. https://doi.org/10.1016/j.jngse.2021.104110 |
| [30] |
Wang, M., Chen, Y., Xu, X. Y., et al., 2015. Progress on Formation Mechanism of the Fibrous Veins in Mudstone and Its Implications to Hydrocarbon Migration. Advances in Earth Science, 30(10): 1107-1118 (in Chinese with English abstract). |
| [31] |
Wang, M. A., Chen, Y., Bain, W. M., et al., 2020. Direct Evidence for Fluid Overpressure during Hydrocarbon Generation and Expulsion from Organic-Rich Shales. Geology, 48(4): 374-378. https://doi.org/10.1130/g46650.1 |
| [32] |
Wang, R. Y., Hu, Z. Q., Liu, J.S., et al., 2018. Comparative Analysis of Characteristics and Controlling Factors of Fractures in Marine and Continental Shales: A Case Study of the Lower Cambrian in Cengong Area, Northern Guizhou Province. Oil & Gas Geology, 39(4): 631-640 (in Chinese with English abstract). |
| [33] |
Wu, J. F., Zhao, S. X., Fan, C. H., et al., 2021. Fracture Characteristics of the Longmaxi Formation Shale and Its Relationship with Gas-Bearing Properties in Changning Area, Southern Sichuan. Acta Petrolei Sinica, 42(4): 428-446 (in Chinese with English abstract). |
| [34] |
Xu, X., Zeng, L. B., Tian, H., et al., 2021. Controlling Factors of Lamellation Fractures in Marine Shales: A Case Study of the Fuling Area in Eastern Sichuan Basin, China. Journal of Petroleum Science and Engineering, 207: 109091. https://doi.org/10.1016/j.petrol.2021.109091 |
| [35] |
Yuan, Y. S., Liu, J. X., Zhou, Y., 2018. Brittle-Ductile Transition Zone of Shale and Its Implications in Shale Gas Exploration. Oil & Gas Geology, 39(5): 899-906 (in Chinese with English abstract). |
| [36] |
Zeng, L. B., Lyu, W. Y., Li, J., et al., 2016. Natural Fractures and Their Influence on Shale Gas Enrichment in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 30: 1-9. https://doi.org/10.1016/j.jngse.2015.11.048 |
| [37] |
Zeng, L.B., 2008. Formation and Distribution of Fractures in Low Permeability Sandstone Reservoirs. Science Press, Beijing (in Chinese). |
| [38] |
Zeng, L. B., Lyu, P., Qu, X. F., et al., 2020. Multi-Scale Fractures in Tight Sandstone Reservoirs with Low Permeability and Geological Conditions of Their Development. Oil & Gas Geology, 41(3): 449-454 (in Chinese with English abstract). |
| [39] |
Zeng, L.B., Shu, Z.G., Lyu, W.Y., et al., 2021. Lamellation Fractures in the Paleogene Continental Shale Oil Reservoirs in the Qianjiang Depression, Jianghan Basin, China. Geofluids, (5): 1-10. https://doi.org/10.1155/2021/6653299 |
| [40] |
Zeng, L. B., Xiao, S., 1999. Fractures in the Mudstone of Tight Reservoirs. Experimental Petroleum Geology, 21(3): 266-269 (in Chinese with English abstract). |
| [41] |
Zeng, W. T., Ding, W. L., Zhang, J. C., et al., 2013. Fracture Development in Paleozoic Shale of Chongqing Area (South China). Part Two: Numerical Simulation of Tectonic Stress Field and Prediction of Fractures Distribution. Journal of Asian Earth Sciences, 75: 267-279. https://doi.org/10.1016/j.jseaes.2013.07.015 |
| [42] |
Zhan, S. F., Chen, M. S., Li, L., et al., 2015. OVT-Domain Wide-Azimuth Prestack Seismic Attribute Analysis. Oil Geophysical Prospecting, 50(5): 956-966 (in Chinese with English abstract). |
| [43] |
Zhao, W. Z., Jia, A. L., Wei, Y. S., et al., 2020a. Progress in Shale Gas Exploration in China and Prospects for Future Development. China Petroleum Exploration, 25(1): 31-44 (in Chinese with English abstract). |
| [44] |
Zhao, W. Z., Hu, S. Y., Hou, L. H., et al., 2020b. Types and Resource Potential of Continental Shale Oil in China and Its Boundary with Tight Oil. Petroleum Exploration and Development, 47(1): 1-10 (in Chinese with English abstract). |
| [45] |
Zou, C. N., Pan, S. Q., Jing, Z. H., et al., 2020. Shale Oil and Gas Revolution and Its Impact. Acta Petrolei Sinica, 41(1): 1-12 (in Chinese with English abstract). |
| [46] |
Zou, C. N., Zhao, Q., Cong, L. Z., et al., 2021. Development Progress, Potential and Prospect of Shale Gas in China. Natural Gas Industry, 41(1): 1-14 (in Chinese with English abstract). |
| [47] |
丁文龙, 许长春, 久凯, 等, 2011. 泥页岩裂缝研究进展. 地球科学进展, 26(2): 135-144. |
| [48] |
董大忠, 施振生, 孙莎莎, 等, 2018. 黑色页岩微裂缝发育控制因素——以长宁双河剖面五峰组‒龙马溪组为例. 石油勘探与开发, 45(5): 763-774. |
| [49] |
董少群, 曾联波, 曹菡, 等, 2018. 裂缝密度约束的离散裂缝网络建模方法与实现. 地质论评, 64(5): 1302-1313. |
| [50] |
苟其勇,2017. 基于叠前方位各向异性的裂缝预测技术在页岩储层中的应用. 中国石油石化,(3): 26-27. |
| [51] |
苟启洋, 徐尚, 郝芳, 等, 2019. 基于微米CT页岩微裂缝表征方法研究. 地质学报, 93(9): 2372-2382. |
| [52] |
郭旭升, 胡东风, 黄仁春, 等, 2020. 四川盆地深层‒超深层天然气勘探进展与展望. 天然气工业, 40(5): 1-14. |
| [53] |
郭旭升, 胡东风, 魏祥峰, 等, 2016. 四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响. 石油与天然气地质, 37(6): 799-808. |
| [54] |
何治亮, 聂海宽, 胡东风, 等, 2020. 深层页岩气有效开发中的地质问题——以四川盆地及其周缘五峰组‒龙马溪组为例. 石油学报, 41(4): 379-391. |
| [55] |
金之钧, 胡宗全, 高波, 等, 2016. 川东南地区五峰组‒龙马溪组页岩气富集与高产控制因素. 地学前缘, 23(1): 1-10. |
| [56] |
金之钧, 王冠平, 刘光祥, 等, 2021. 中国陆相页岩油研究进展与关键科学问题. 石油学报, 42(7): 821-835. |
| [57] |
林长木, 王红岩, 梁萍萍, 等, 2019. 川南地区五峰组‒龙马溪组黑色页岩纹层特征及其储集意义. 地层学杂志, 43(2): 133-140. |
| [58] |
刘敬寿, 丁文龙, 肖子亢, 等, 2019. 储层裂缝综合表征与预测研究进展. 地球物理学进展, 34(6): 2283-2300. |
| [59] |
孙健, 包汉勇, 2018. 页岩气储层综合表征技术研究进 展——以涪陵页岩气田为例. 石油实验地质, 40(1): 1-12. |
| [60] |
唐晓明, 李盛清, 许松, 等, 2017. 页岩气藏水平测井裂缝识别及声学成像研究. 测井技术, 41(5): 501-505. |
| [61] |
田鹤, 曾联波, 舒志国, 等, 2019. 页岩横向各向同性地应力预测模型中弹性参数的确定方法. 地质力学学报, 25(2): 166-176. |
| [62] |
田鹤, 曾联波, 徐翔, 等, 2020. 四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响. 石油与天然气地质, 41(3): 474-483. |
| [63] |
王淼, 陈勇, 徐兴友, 等, 2015. 泥质岩中纤维状结构脉体成因机制及其与油气活动关系研究进展. 地球科学进展, 30(10): 1107-1118. |
| [64] |
王濡岳, 胡宗全, 刘敬寿, 等, 2018. 中国南方海相与陆相页岩裂缝发育特征及主控因素对比——以黔北岑巩地区下寒武统为例. 石油与天然气地质, 39(4): 631-640. |
| [65] |
吴建发, 赵圣贤, 范存辉, 等, 2021. 川南长宁地区龙马溪组富有机质页岩裂缝发育特征及其与含气性的关系. 石油学报, 42(4): 428-446. |
| [66] |
袁玉松, 刘俊新, 周雁, 2018. 泥页岩脆‒延转化带及其在页岩气勘探中的意义. 石油与天然气地质, 39(5): 899-906. |
| [67] |
曾联波,2008. 低渗透砂岩储层裂缝的形成与分布.北京:科学出版社. |
| [68] |
曾联波, 吕鹏, 屈雪峰, 等, 2020. 致密低渗透储层多尺度裂缝及其形成地质条件. 石油与天然气地质, 41(3): 449-454. |
| [69] |
曾联波, 肖淑蓉, 1999. 低渗透储集层中的泥岩裂缝储集体. 石油实验地质, 21(3): 266-269. |
| [70] |
詹仕凡, 陈茂山, 李磊, 等, 2015. OVT域宽方位叠前地震属性分析方法. 石油地球物理勘探, 50(5): 956-966. |
| [71] |
赵文智, 贾爱林, 位云生, 等, 2020a. 中国页岩气勘探开发进展及发展展望. 中国石油勘探, 25(1): 31-44. |
| [72] |
赵文智, 胡素云, 侯连华, 等, 2020b. 中国陆相页岩油类型、资源潜力及与致密油的边界. 石油勘探与开发, 47(1): 1-10. |
| [73] |
邹才能, 潘松圻, 荆振华, 等, 2020. 页岩油气革命及影响. 石油学报, 41(1): 1-12. |
| [74] |
邹才能, 赵群, 丛连铸, 等, 2021. 中国页岩气开发进展、潜力及前景. 天然气工业, 41(1): 1-14. |
国家自然科学基金项目(42090020;U1663203)
/
| 〈 |
|
〉 |