二氧化锰改性粉煤灰制备及其对地下水中砷的吸附特性
王丽楠 , 杨保国 , 谢作明 , 赵欣鑫 , 石天池
地球科学 ›› 2024, Vol. 49 ›› Issue (03) : 1005 -1016.
二氧化锰改性粉煤灰制备及其对地下水中砷的吸附特性
Preparation of Fly Ash Modified with Manganese Dioxide to Enhance As(III) and As(V) Adsorption from Groundwater
,
高砷地下水在我国广泛分布,开发绿色高效的除砷材料对于促进地区发展和保障居民饮用水安全具有重要意义.采用共沉淀法结合NaOH水热处理技术制备了二氧化锰改性粉煤灰吸附材料MFA150,并研究其对地下水中As(III)和As(V)的吸附特性.结果表明,NaOH水热处理破坏了原始粉煤灰的玻璃体结构,且在这一过程中生成沸石相,粉煤灰比表面积由1.30 m2/g增加至40.26 m2/g.在负载MnO2后,MFA150比表面积达到148.82 m2/g.此外,吸附材料表面-OH的含量显著增加,为As(III)和As(V)提供了更多的吸附活性位点.MFA150对As(III)和As(V)的吸附过程符合Elovich模型和Freundlich模型.在中性条件下MFA150对As(V)和As(III)的吸附量分别达到2.55 mg/g和9.71 mg/g,酸性条件更有利于吸附.溶液中共存的HCO3 ‒和PO4 3‒会抑制As(III)和As(V)的吸附,而SO4 2‒对As(III)和As(V)的去除具有轻微促进作用.在模拟地下水中,MFA150对总砷的去除率达到91.90%.MFA150制备方法简单,制备原料廉价易得,吸附性能好有望用于含砷地下水处理.
高砷 / 地下水 / 粉煤灰 / 锰氧化物 / 吸附 / 资源化利用 / 环境地质
high arsenic / groundwater / fly ash / manganese oxide / adsorption / resource utilization / environmental geology
| [1] |
Algoufi, Y. T., Hameed, B. H., 2014. Synthesis of Glycerol Carbonate by Transesterification of Glycerol with Dimethyl Carbonate over K-Zeolite Derived from Coal Fly Ash. Fuel Processing Technology, 126: 5-11. https://doi.org/10.1016/j.fuproc.2014.04.004 |
| [2] |
Asl, S. M. H., Javadian, H., Khavarpour, M., et al., 2019. Porous Adsorbents Derived from Coal Fly Ash as Cost- Effective and Environmentally-Friendly Sources of Aluminosilicate for Sequestration of Aqueous and Gaseous Pollutants: A Review. Journal of Cleaner Production, 208: 1131-1147. https://doi.org/10.1016/j.jclepro.2018.10.186 |
| [3] |
Cuong, D. V., Wu, P. C., Chen, L. I., et al., 2021. Active MnO2/Biochar Composite for Efficient As(III) Removal: Insight into the Mechanisms of Redox Transformation and Adsorption. Water Research, 188: 116495. https://doi.org/10.1016/j.watres.2020.116495 |
| [4] |
Deschamps, E., Ciminelli, V. S. T., Höll, W. H., 2005. Removal of As(III) and As(V) from Water Using a Natural Fe and Mn Enriched Sample. Water Research, 39(20): 5212-5220. https://doi.org/10.1016/j.watres.2005.10.007 |
| [5] |
Fendorf, S., Michael, H. A., van Geen, A., 2010. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science, 328(5982): 1123-1127. https://doi.org/10.1126/science.1172974 |
| [6] |
Feng, W. L., Lü, X. B., Xiong, J., et al., 2021. Research Progress of High Added Value Utilization of Coal Fly Ash. Inorganic Chemicals Industry, 53(4): 25-31 (in Chinese with English abstract). |
| [7] |
Ferguson, J. F., Gavis, J., 1972. A Review of the Arsenic Cycle in Natural Waters. Water Research, 6(11): 1259-1274. https://doi.org/10.1016/0043-1354(72)90052-8 |
| [8] |
Gollakota, A. R. K., Volli, V., Shu, C. M., 2019. Progressive Utilisation Prospects of Coal Fly Ash: A Review. Science of the Total Environment, 672: 951-989. https://doi.org/10.1016/j.scitotenv.2019.03.337 |
| [9] |
Ho, Y. S., 2006. Review of Second-Order Models for Adsorption Systems. Journal of Hazardous Materials, 136(3): 681-689. https://doi.org/10.1016/j.jhazmat.2005.12.043 |
| [10] |
Huang, X. R., Zhao, H. H., Hu, X. F., et al., 2020a. Optimization of Preparation Technology for Modified Coal Fly Ash and Its Adsorption Properties for Cd2+. Journal of Hazardous Materials, 392: 122461. https://doi.org/10.1016/j.jhazmat.2020.122461 |
| [11] |
Huang, X. R., Zhao, H. H., Zhang, G. B., et al., 2020b. Potential of Removing Cd(II) and Pb(II) from Contaminated Water Using a Newly Modified Fly Ash. Chemosphere, 242: 125148. https://doi.org/10.1016/j.chemosphere.2019.125148 |
| [12] |
Jiang, L., 2020. Comprehensiveutilization Situation of Fly Ash in Coal-Fired Power Plants and Its Development Suggestions. Clean Coal Technology, 26(4): 31-39 (in Chinese with English abstract). |
| [13] |
Jiang, L., Chen, J. Y., Li, X. M., et al., 2011. Adsorption of Phosphate from Wastewater by Fly Ash Ceramsite. Acta Scientiae Circumstantiae, 31(7): 1413-1420 (in Chinese with English abstract). |
| [14] |
Karanac, M., Đolić, M., Veljović, Đ., et al., 2018. The Removal of Zn2+, Pb2+, and As(V) Ions by Lime Activated Fly Ash and Valorization of the Exhausted Adsorbent. Waste Management, 78: 366-378. https://doi.org/10.1016/j.wasman.2018.05.052 |
| [15] |
Liang, J., Li, X. M., Yu, Z. G., et al., 2017. Amorphous MnO2 Modified Biochar Derived from Aerobically Composted Swine Manure for Adsorption of Pb(II) and Cd(II). ACS Sustainable Chemistry & Engineering, 5(6): 5049-5058. https://doi.org/10.1021/acssuschemeng.7b00434 |
| [16] |
Lou, Z. M., Cao, Z., Xu, J., et al., 2017. Enhanced Removal of As(III)/(V) from Water by Simultaneously Supported and Stabilized Fe-Mn Binary Oxide Nanohybrids. Chemical Engineering Journal, 322: 710-721. https://doi.org/10.1016/j.cej.2017.04.079 |
| [17] |
Manning, B. A., Fendorf, S. E., Bostick, B., et al., 2002. Arsenic(III) Oxidation and Arsenic(V) Adsorption Reactions on Synthetic Birnessite. Environmental Science & Technology, 36(5): 976-981. https://doi.org/10.1021/es0110170 |
| [18] |
Min, X. Z., Han, C. Y., Yang, L., et al., 2021. Enhancing As(V) and As(III) Adsorption Performance of Low Alumina Fly Ash with Ferric Citrate Modification: Role of FeSiO3 and Monosodium Citrate. Journal of Environmental Management, 287: 112302. https://doi.org/10.1016/j.jenvman.2021.112302 |
| [19] |
Pengthamkeerati, P., Satapanajaru, T., Chatsatapattayakul, N., et al., 2010. Alkaline Treatment of Biomass Fly Ash for Reactive Dye Removal from Aqueous Solution. Desalination, 261(1-2): 34-40. https://doi.org/10.1016/j.desal.2010.05.050 |
| [20] |
Qiu, R. F., Cheng, F. Q., Huang, H. M., 2018. Removal of Cd2+ from Aqueous Solution Using Hydrothermally Modified Circulating Fluidized Bed Fly Ash Resulting from Coal Gangue Power Plant. Journal of Cleaner Production, 172: 1918-1927. https://doi.org/10.1016/j.jclepro.2017.11.236 |
| [21] |
Rathi, B. S., Kumar, P. S., 2021. A Review on Sources, Identification and Treatment Strategies for the Removal of Toxic Arsenic from Water System. Journal of Hazardous Materials, 418: 126299. https://doi.org/10.1016/j.jhazmat.2021.126299 |
| [22] |
Rubinos, D. A., Iglesias, L., Díaz-Fierros, F., et al., 2011. Interacting Effect of pH, Phosphate and Time on the Release of Arsenic from Polluted River Sediments (Anllóns River, Spain). Aquatic Geochemistry, 17(3): 281-306. https://doi.org/10.1007/s10498-011-9135-2 |
| [23] |
Sağ, Y., Aktay, Y., 2002. Kinetic Studies on Sorption of Cr(VI) and Cu(II) Ions by Chitin, Chitosan and Rhizopus Arrhizus. Biochemical Engineering Journal, 12(2): 143-153. https://doi.org/10.1016/S1369-703X(02)00068-2 |
| [24] |
Salam, M. A., Al-Zhrani, G., Kosa, S. A., 2014. Removal of Heavy Metal Ions from Aqueous Solution by Multi-Walled Carbon Nanotubes Modified with 8-Hydroxyquinoline: Kinetic Study. Journal of Industrial and Engineering Chemistry, 20(2): 572-580. https://doi.org/10.1016/j.jiec.2013.05.016 |
| [25] |
Shen, Q. B., Wang, Z. Y., Yu, Q., et al., 2020. Removal of Tetracycline from an Aqueous Solution Using Manganese Dioxide Modified Biochar Derived from Chinese Herbal Medicine Residues. Environmental Research, 183: 109195. https://doi.org/10.1016/j.envres.2020.109195 |
| [26] |
Shen, Z. L., Guo, H. M., Xu, G., et al., 2010. Abnormal Groundwater Chemistry and Endemic Disease. Chinese Journal of Nature, 32(2): 83-89 (in Chinese with English abstract). |
| [27] |
Su, Y., Cui, H., Li, Q., et al., 2013. Strong Adsorption of Phosphate by Amorphous Zirconium Oxide Nanoparticles. Water Research, 47(14): 5018-5026. https://doi.org/10.1016/j.watres.2013.05.044 |
| [28] |
Teng, H., Hsieh, C. T., 1999. Activation Energy for Oxygen Chemisorption on Carbon at Low Temperatures. Industrial & Engineering Chemistry Research, 38(1): 292-297. https://doi.org/10.1021/ie980107j |
| [29] |
Tiwari, M. K., Bajpai, S., Dewangan, U. K., et al., 2015. Suitability of Leaching Test Methods for Fly Ash and Slag: A Review. Journal of Radiation Research and Applied Sciences, 8(4): 523-537. https://doi.org/10.1016/j.jrras.2015.06.003 |
| [30] |
Tournassat, C., Charlet, L., Bosbach, D., et al., 2002. Arsenic(III) Oxidation by Birnessite and Precipitation of Manganese(II) Arsenate. Environmental Science & Technology, 36(3): 493-500. https://doi.org/10.1021/es0109500 |
| [31] |
Wang, Y. L., Liu, H. P., Wang, S. F., et al., 2020. Simultaneous Removal and Oxidation of Arsenic from Water by δ-MnO2 Modified Activated Carbon. Journal of Environmental Sciences, 94: 147-160. https://doi.org/10.1016/j.jes.2020.03.006 |
| [32] |
Wu, D. Y., Sui, Y. M., Chen, X. C., et al., 2008. Changes of Mineralogical-Chemical Composition, Cation Exchange Capacity, and Phosphate Immobilization Capacity during the Hydrothermal Conversion Process of Coal Fly Ash into Zeolite. Fuel, 87(10-11): 2194-2200. https://doi.org/10.1016/j.fuel.2007.10.028 |
| [33] |
Wu, K., Wang, M., Li, A. Z., et al., 2021. The Enhanced As(III) Removal by Fe-Mn-Cu Ternary Oxide via Synergistic Oxidation: Performances and Mechanisms. Chemical Engineering Journal, 406: 126739. https://doi.org/10.1016/j.cej.2020.126739 |
| [34] |
Xie, X. J., Lu, C., Xu, R., et al., 2022. Arsenic Removal by Manganese-Doped Mesoporous Iron Oxides from Groundwater: Performance and Mechanism. Science of the Total Environment, 806: 150615. https://doi.org/10.1016/j.scitotenv.2021.150615 |
| [35] |
Xiyili, H., Çetintaş, S., Bingöl, D., 2017. Removal of Some Heavy Metals onto Mechanically Activated Fly Ash: Modeling Approach for Optimization, Isotherms, Kinetics and Thermodynamics. Process Safety and Environmental Protection, 109: 288-300. https://doi.org/10.1016/j.psep.2017.04.012 |
| [36] |
Zhang, G. S., Qu, J. H., Liu, H. J., et al., 2007. Removal Mechanism of As(III) by a Novel Fe-Mn Binary Oxide Adsorbent: Oxidation and Sorption. Environmental Science & Technology, 41(13): 4613-4619. https://doi.org/10.1021/es063010u |
| [37] |
Zhang, K. H., Zhang, D. X., Zhang, K., 2016. Arsenic Removal from Water Using a Novel Amorphous Adsorbent Developed from Coal Fly Ash. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 73(8): 1954-1962. https://doi.org/10.2166/wst.2016.028 |
| [38] |
Zhao, X., Zhao, H. H., Huang, X. R., et al., 2021. Effect and Mechanisms of Synthesis Conditions on the Cadmium Adsorption Capacity of Modified Fly Ash. Ecotoxicology and Environmental Safety, 223: 112550. https://doi.org/10.1016/j.ecoenv.2021.112550 |
宁夏自然科学基金项目(2020AAC03448)
国家自然科学基金面上项目(41572230;41172219)
国家自然科学基金创新研究群体项目(41521001)
/
| 〈 |
|
〉 |