辽北清原夏家堡中侏罗世侵入体岩石地球化学特征及构造意义

段东 ,  郑常青 ,  梁琛岳 ,  宋志伟 ,  陈龙 ,  李冬雪 ,  孙晓蕾 ,  耿志忠

地球科学 ›› 2024, Vol. 49 ›› Issue (03) : 868 -892.

PDF (8888KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (03) : 868 -892. DOI: 10.3799/dqkx.2022.214

辽北清原夏家堡中侏罗世侵入体岩石地球化学特征及构造意义

作者信息 +

Petrogeochemical Characteristics and Tectonic Significance of Middle Jurassic Intrusive Pluton in Xiajiabao Area, Qingyuan, Northern Liaoning

Author information +
文章历史 +
PDF (9101K)

摘要

辽北清原地区位于华北板块北缘东段,是研究古太平洋构造域的典型地区之一.研究区中生代岩浆岩的成因及构造背景对认识古太平洋构造域的演化具有重要意义.本次研究对清原夏家堡地区辉长苏长岩、石英闪长岩和花岗闪长岩进行了锆石U-Pb年代学和岩石地球化学分析.锆石U-Pb测年结果表明,辉长苏长岩形成于中侏罗世晚期((163.8±2.4) Ma),石英闪长岩形成于中侏罗世中期((169.9±2.2) Ma),花岗闪长岩形成于中侏罗世中期(169.9~167.3 Ma).岩石地球化学特征上,辉长苏长岩和石英闪长岩属于钙碱性系列岩石,具有低硅、富铝、高镁及较高的Mg#,弱富集轻稀土元素(LREEs),富集Rb、Ba、K、Sr等大离子亲石元素(LILEs),亏损Nb、Ta等高场强元素(HFSEs),Eu呈微弱的正异常或无异常;花岗闪长岩具有较高的硅、铝和全碱含量,具有高钾钙碱性I型花岗岩地球化学特征,Sr/Yb值较高,Eu具弱的负异常,富集LREEs和LILEs(Rb、K、Ba等),亏损HFSEs(Nb、Ta等).上述地球化学特征表明辉长苏长岩和石英闪长岩的原始岩浆应起源于受俯冲板片析出流体所交代的岩石圈地幔部分熔融;花岗闪长岩是俯冲背景下受流体交代的下地壳基性火成岩部分熔融的产物.结合区域构造演化史和区域岩浆活动时空分布规律,认为辽北清原夏家堡地区中侏罗世侵入体的形成与古太平洋板块的俯冲作用有关.

关键词

古太平洋 / I型花岗岩 / 岩石成因 / 中侏罗世 / 中基性侵入岩 / 岩石学 / 地球化学

Key words

paleo-Pacific / I-type granite / petrogenesis / Middle Jurassic / intermediate-mafic intrusive rock / petrology / geochemistry

引用本文

引用格式 ▾
段东,郑常青,梁琛岳,宋志伟,陈龙,李冬雪,孙晓蕾,耿志忠. 辽北清原夏家堡中侏罗世侵入体岩石地球化学特征及构造意义[J]. 地球科学, 2024, 49(03): 868-892 DOI:10.3799/dqkx.2022.214

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

华北克拉通具有极其漫长(~3.8 Ga)的演化历史(万渝生等, 2020),从其早期克拉通化之后,基本处于稳定状态,直至中生代,受环太平洋板块俯冲作用的影响,发生了“去克拉通化”(Zhao and Zhai, 2013).华北克拉通不仅记录了地球早期发展的重大构造事件,也为探讨中生代的地壳演化提供了良好依据.华北克拉通北缘东段位于中生代增生杂岩带(古亚洲洋消失后华北克拉通与东北陆块群最后拼接的位置)的南缘,晚古生代以来,先后经历了古亚洲洋的俯冲闭合和古太平洋构造域的叠加改造(Li et al., 2019; 刘永江等, 2019),期间可能还受蒙古‒鄂霍茨克洋的远程效应(Zhang et al., 2016),是欧亚大陆与古亚洲洋、古太平洋和蒙古‒鄂霍茨克洋相互作用的典型地区之一.华北板块北缘东段的辽宁地区、吉林中部地区以及中亚造山带东段中生代岩浆活动强烈(孙德有等, 2005a; Wu et al., 2011; 张超等, 2014; 刘锦等,2016; 唐杰等, 2016; Hu et al., 2019).近年来众多学者对这些岩石进行了精确的年代学和岩石地球化学分析,并探讨了其成因及构造背景,然而对古亚洲洋和古太平洋构造体系的转换时间即古太平洋的俯冲起始时间却存在不同观点.一种观点认为古太平洋板块的俯冲始于早侏罗世(Wu et al., 2011; 许文良等,2013; 郭锋, 2016);另一种观点则认为始于晚三叠世(彭玉鲸等,2012; Wilde and Zhou, 2015);还有少数学者认为古太平洋板块俯冲的起始时间为晚侏罗世‒早白垩世(唐克东等,2004)或二叠纪(Sun et al., 2015).此外,多数学者认为华北板块北缘东段辽宁地区侏罗纪岩浆活动主要受古太平洋板块俯冲影响(刘锦, 2017; 王广伟等, 2018),但仍有少数学者认为其形成受蒙古‒鄂霍茨克洋和古太平洋板块俯冲共同影响(Zhang et al., 2016).由此可见众多学者对于古太平洋构造演化历史并没有达成一致观点.现有年代学资料表明,华北克拉通北缘东段分布了大量中生代岩浆岩,主要集中于三叠纪、侏罗纪和早白垩世(刘红涛等, 2002; 路孝平等, 2003; 孙德有等, 2005b; Wu et al., 2011Song et al., 2021; 宋志伟等, 2023).这些中生代岩浆岩的岩石成因、构造背景以及岩浆活动时空分布规律对认识古太平洋构造域的演化具有重要意义.本文对华北克拉通北缘东段辽北清原地区夏家堡一带辉长苏长岩、石英闪长岩和花岗闪长岩进行了岩相学、锆石U-Pb年代学和岩石地球化学分析,确定了夏家堡侵入体的形成时代并讨论了其成因和构造背景,同时结合区域年代学资料,为华北板块北缘东段中侏罗世岩浆活动的构造背景及古太平洋的演化提供了新的约束.

1 地质背景及样品描述

研究区位于辽宁省北部,大地构造位置位于华北板块北缘东段.研究区主要由两个地质单元构成,以沙河断裂为界,北部为华北板块北缘陆缘增生带,南部为以太古宙结晶基底和盖层沉积为特征的华北克拉通.区内南部、北部分别被敦化‒密山断裂和赤峰‒开原断裂切割(图1).研究区主体地质单元为华北克拉通前寒武纪变质基底,由新太古代花岗质岩石和红透山组表壳岩系组成.新太古代花岗质岩石主要为TTG片麻岩、二长花岗岩、紫苏花岗岩.表壳岩主要为斜长角闪岩、黑云斜长变粒岩和浅粒岩互层夹条带状磁铁石英岩.前人研究表明,清原地区新太古代花岗质岩石侵位时代约2.57~2.49 Ga,新太古代变质表壳岩形成于2.56~2.51 Ga,随后两者于2.52~2.45 Ga期间发生区域高级变质作用及变形作用(万渝生等,2005, 2020; Wu et al., 2016).研究区北部分布着大量显生宙花岗质岩石,岩石类型复杂多样,具有多期次特征,主要为中生代花岗岩及一些小型基性‒超基性侵入体.近期研究表明, 这些中生代岩浆岩的形成多与华北板块与西伯利亚板块碰撞造山后的伸展作用及古太平洋板块的俯冲作用相关(刘锦,2017; 关庆彬,2018; 王广伟等,2018)(图2).研究区内有两条大型断裂构造:赤峰‒开原断裂,该断裂延伸到研究区内走向从近东西向变成北西向,被称为沙河断裂;敦密断裂,总体上呈北东向展布,其为郯庐断裂带中侏罗世晚期发生第二次左行平移扩展到东北地区的产物(孙晓猛等,2010).两大断裂之间的北东、北西向次级断裂极其发育,沿断裂带附近可见不同类型的中基性、酸性脉岩分布.

本次研究主要对清原地区夏家堡一带出露的脉岩(辉长苏长岩、石英闪长岩、花岗闪长岩)进行了野外观察与采样.样品采集自夏家堡南部(GPS:42°09′30″N, 124°41′45″E; 图2),大面积的人工揭露为野外地质现象的观察和岩石样品的采集提供了便利.通过野外观察,采样区主体岩性为TTG片麻岩,中基性脉岩为辉长苏长岩和石英闪长岩,酸性脉岩为花岗闪长岩.其中辉长苏长岩和石英闪长岩侵入到太古代TTG片麻岩中,花岗闪长岩侵入到石英闪长岩中(图3b3c).脉岩与围岩接触界线明显,在一些地方可以看到脉岩中混入围岩残块(图3b3c).采样区脆性构造发育,从野外产状可观察到断裂构造形成于伟晶岩脉侵入后、辉长苏长岩岩脉侵入之前(图3a).

辉长苏长岩(21QY01、21QY06):宏观上大致呈均一的黑色,呈脉状产出.显微镜下该岩石为细粒状自形结晶结构,块状构造,暗色矿物定向发育.矿物成分:斜长石,呈自形板状,聚片双晶发育,粒度0.2~0.5 mm,含量50%左右;紫苏辉石,具有明显的粉红色‒浅灰绿色多色性,粒度0.5~1.0 mm,含量10%~15%;普通辉石,浅灰绿色,细粒状,粒度0.5~1.0 mm,含量10%~15%;角闪石,粒度1~2 mm,含量10%~15%;少量褐色黑云母,含量约占5%左右.另外含有少量不透明矿物分布于暗色矿物中,由于该岩石以斜长石和紫苏辉石为主,因此,该岩石定名为辉长苏长岩(图3d3g).

石英闪长岩(21QY03、21QY04):样品呈灰黑色,具细粒状结构,块状构造.岩石受应力作用影响具不同强度的片麻状构造,从角闪石残斑可观察到岩石受左行剪切作用影响.由于应力挤压作用,岩石中裂隙发育且切穿矿物.石英闪长岩的矿物组成:斜长石,自形板状,聚片双晶清晰且双晶纹较宽,有时发育环带结构,轻微钠云母化,并且定向排列,粒度1~2 mm,含量约占60%~65%;角闪石,粒度0.5~2.0 mm,含量25%左右,部分角闪石呈他形碎粒状分布于斜长石中,粒度较小;黑云母较少,呈红褐色,5%~10%左右;石英呈不规则粒状,充填在斜长石及暗色矿物晶体颗粒之间,含量约占5%(图3e3h).

花岗闪长岩(21QY02、21QY05):岩石呈浅肉红色,中细粒状半自形结晶结构,块状构造,呈岩脉或岩株侵入到石英闪长岩中,有时在浅肉红色花岗闪长岩中可见黑色石英闪长岩捕掳体.岩石矿物组成:斜长石比较自形,呈板状,发育聚片双晶,有的已经钠云母化,含量70%左右;石英充填于斜长石晶体之间,呈“水泥勾缝状”文像结构,显示石英晚于斜长石结晶特点,含量20%左右;黑云母含量较少约占5%~10%,多已绿泥石化;其次有少量碱性长石,充填于斜长石晶体颗粒之间的缝隙中(图3f3i).

2 分析方法

2.1 锆石U-Pb年代学

本次研究选取4个代表性岩石样品进行锆石U-Pb年代学分析.单矿物锆石的分选在河北省廊坊市宇能矿物分选综合实验室完成.锆石的制靶、阴极发光图像的采集工作在北京锆年领航科技有限公司完成.LA-ICP-MS锆石U-Pb年龄测定在吉林大学自然资源部东北亚矿产资源评价重点实验室进行,使用的仪器是美国安捷伦公司7500A型四极杆等离子质谱和德国相干公司 (Coherent)COMPExPro型ArF准分子激光器.激光烧蚀斑的直径为32 μm,频率为 7 Hz,锆石颗粒较小的样品分析点直径为24 μm.所有的测量都是使用锆石91500作为年龄计算的外部标准.用29Si作为内标,标定了U、Th和Pb元素的浓度. 在测量过程中监测207Pb/206Pb和206Pb/ 238U比值,以排除测量范围内与包裹体、常见Pb值增加的颗粒点或不同年龄带的颗粒碎片相关的异常参数.使用Glitter软件处理原始数据,采用Isoplot(版本3.0)软件进行年龄计算和谐和图绘制,具体步骤见李冬雪等(2022).2.2 全岩元素地球化学

本次研究选取了6个样品进行全岩地球化学分析.全岩粉末样品的制备在河北省廊坊市宇能矿物分选综合实验室完成.在吉林大学自然资源部东北亚矿产资源评价重点实验室利用X射线荧光光谱仪(XRF)测定了大块岩石样品的常量元素组成,用电感耦合等离子体质谱(ICP-MS)测定包括稀土元素在内的微量元素组成.根据分析结果与国际标准参考物质(SRM)进行重复分析.微量元素和稀土元素的准确度优于10%.

3 分析结果

3.1 锆石U-Pb定年结果

本文对清原夏家堡一带出露的辉长苏长岩、石英闪长岩和花岗闪长岩进行了U-Pb年代学分析.不同岩性的代表性锆石阴极发光图像(CL)见图4,U-Pb谐和图见图5,U-Pb同位素分析结果见表1.

样品21QY01为辉长苏长岩.锆石CL图像见图4,多数锆石颗粒呈自形‒半自形板柱状,部分锆石破碎不完整,粒径在80~120 μm之间.在CL图像上显示明显的岩浆振荡环带,且Th/U比值介于0.35~0.74,为典型岩浆锆石.对样品中25颗锆石进行了U-Pb年龄分析,其中21个有效分析点落在谐和线上及谐和线附近区域,表面年龄集中分布在156~170 Ma之间,加权平均年龄为(163.8±2.4) Ma(MSWD=0.56, n=21)(图5a),代表了辉长苏长岩的结晶年龄,即中侏罗世晚期.

样品21QY04为石英闪长岩.大部分锆石自形程度较好,呈柱状.CL图像中呈现典型的岩浆振荡环带(图4).分析结果显示Th/U比值在1.04~2.00之间,均大于0.4,暗示其为岩浆成因.在样品中共挑选25颗锆石进行了U-Pb同位素测试,其中一个分析点误差较大,其余24个有效分析点均在谐和线附近较小范围内.206Pb/238U年龄值介于163~176 Ma,加权平均年龄为(169.9±2.2) Ma(MSWD=0.39, n=24)(图5c),代表了石英闪长岩的结晶年龄,即中侏罗世中期.

样品21QY02、21QY05为花岗闪长岩.21QY02样品锆石颗粒多呈自形‒半自形长柱状,粒径100~150 μm之间,晶轴比在2~3之间.锆石具有清晰的振荡环带(图4),Th/U比值介于0.68~2.77,变化范围较大但比值较高,暗示其为岩浆结晶成因.在U-Pb谐和图中,25个分析点均落在谐和线上及附近区域,206Pb/238U年龄值介于166~ 175 Ma,加权平均年龄为(169.9±2.2) Ma(MSWD=0.22, n=25)(图5b).21QY05样品锆石呈现两种形态,第一种呈半自形短柱状,长径在80~120 μm之间,长短径比值1.5~2.0,部分锆石遭受溶蚀作用.锆石岩浆振荡环带明显,Th/U比值介于0.44~1.07,大于0.4,表现岩浆锆石特征(图4).对此类锆石进行了13个分析点测试,其中12个有效分析点落在谐和线附近,表面年龄介于2 489~2 511 Ma,不一致线与谐和线上交点年龄为(2 506±41) Ma(MSWD=0.03, n=12),加权平均年龄为(2 503±12) Ma(MSWD=0.102, n=12)(图5d).另一种锆石呈自形‒半自形长柱状,部分破碎不完整,粒径在100~ 130 μm之间.锆石CL图像中岩浆振荡环带明显,Th/U比值在1.58~1.92之间,暗示其为岩浆成因.对此类锆石共测试分析了12个点,谐和图上12个分析点均落在谐和线附近.206Pb/238U年龄值介于161~173 Ma,加权平均年龄为(167.3±3.0) Ma(MSWD=0.102, n=12)(图5c).前人研究表明,华北克拉通北缘东段清原地区太古代TTG片麻岩主要形成于约2.5 Ga.从宏观上可见花岗闪长岩岩脉分布于太古代TTG片麻中,且此样品(2 506±41) Ma的峰值年龄、锆石形态与区域上太古代TTG片麻岩的形成年龄、锆石形态相似,故笔者推测此阶段的年龄为捕获的太古代TTG片麻岩锆石年龄.综上所述,两个花岗闪长岩样品的结晶年龄分别为(169.9±2.2) Ma和(167.3±3.0) Ma,即中侏罗世中期.

3.2 元素地球化学特征

本文对清原地区夏家堡一带6件样品进行了全岩地球化学分析.主量元素、微量元素分析数据及主要参数列于表2.

辽宁北部清原地区夏家堡一带出露的中基性脉岩主要为辉长苏长岩和石英闪长岩.其中辉长苏长岩SiO2含量较低(53.5%~54.45%,质量分数,后同),样品TAS图解中分布于辉长岩‒闪长岩区域(图6a).主量元素含量:TFe2O3(9.60%~10.64%)、CaO(6.98%~8.69%)、K2O(0.85%)、Na2O(3.07%~3.90%)、Al2O3(16.04%~18.14%)和MgO(5.38%~6.25%),Mg#值为55~56,属于钙碱性系列岩石(图6c6d).稀土元素球粒陨石标准化配分图中稀土元素分布较为平滑,略微向右倾斜(图7a).稀土元素总量在67.40×10-6~95.97×10-6,相对富集轻稀土元素(LREEs),贫重稀土元素(HREEs)(LREE/HREE=7.43~7.86,(La/Yb)N=8.26~9.54),重稀土分布较平缓((Gd/Yb)N=2.13~2.44).δEu值为1.01~1.12,具微弱的正异常或无异常.微量元素原始地幔标准化蛛网图(图7b)显示样品亏损Nb、Ta、Ti、Zr和Hf等高场强元素(HFSEs),富集Rb、Ba、K、Sr等大离子亲石元素(LILEs).石英闪长岩样品主微量元素含量与辉长苏长岩相似:SiO2(53.64%~54.33%)、TFe2O3(9.17%~9.38%)、CaO(7.3%~7.56%)、MgO(3.61%~3.69%)、Na2O(0.80%~1.07%)和K2O(4.37%~4.53%),Na2O/K2O=4.07~5.69,Mg#值为47,在TAS图解中样品落入辉长岩‒闪长岩区域,Si-K图解中落入钙碱性系列范围内.稀土元素球粒陨石标准化配分图中稀土元素配分模式右倾(图7a),Eu具弱的正异常和无异常(δEu=1.02~1.09).稀土元素总量为101.59×10-6~113.57×10-6,轻重稀土分馏较强(LREE/HREE=6.84~6.92, (La/Yb)N=7.64~7.89).微量元素原始地幔标准化蛛网图(图7b)显示样品亏损Nb、Ta等高场强元素,富集Ba、K、Sr等大离子亲石元素.

酸性脉岩主要为花岗闪长岩,样品SiO2含量为66.08%~70.10%,TFe2O3含量为2.63%~4.02%,CaO含量为2.23%~2.85%,Na2O含量为3.94%~4.72%,K2O含量为3.50%~4.43%,Al2O3含量为15.39%~17.05%,MgO含量为0.76%~1.18%,Na2O/K2O=0.89~1.35,Mg#值为38,在TAS图中分布于石英二长岩和花岗岩区域,属于高钾钙碱性系列(图6c).ACNK图解中落入过铝质区域.稀土元素球粒陨石标准化配分图显示样品轻重稀土分馏较强(LREE/HREE=11.83~13.57, (La/Yb)N=14.68~17.37)(图7a), 稀土总量为97.11×10-6~175.71×10-6,Eu具弱的负异常(δEu=0.82~0.86).微量元素原始地幔标准化蛛网图(图7b)显示样品亏损高场强元素(Nb、Ta、P、Ti等),富集大离子亲石元素(Rb、K、Ba等),其中Zr、Hf具弱的正异常,Sr具负异常.

4 讨论

4.1 中侏罗世岩浆活动

LA-ICP-MS锆石U-Pb定年法是确定岩浆岩结晶年龄的最佳方法之一.本次工作对辽北清原夏家堡一带出露的辉长苏长岩、石英闪长岩和花岗闪长岩进行了高精度测年.4件岩石样品中锆石均具明显的岩浆振荡环带及高的Th/U值(0.35~2.77),指示其为岩浆成因锆石, 锆石U-Pb测年结果代表了岩石的形成时代,分别为(163.8±2.4) Ma、(169.9±2.2) Ma、(169.9±2.2) Ma、(167.3± 3.0) Ma,表明它们形成于中侏罗世.从图1可以看出,研究区北部辽源地体发育有大量中生代侵入体.三叠纪(251~224 Ma)侵入体主要分布于辽北法库、清河断裂两侧;侏罗纪(193~156 Ma)侵入体主要分布于辽源地体中及华北克拉通北缘;早白垩世侵入体(~117 Ma)主要分布于辽源地体中.研究区内岩浆活动属侏罗纪时期最为强烈,其中早侏罗世岩浆活动主要集中在西丰县房木镇‒和隆镇、梅河口市山城镇;中侏罗世岩浆活动集中在开原市八棵树镇、昌图县东部、公主岭市东南部、清原县北部黄泥岭地区、舒兰市叶赫‒莲花‒威远堡一带;晚侏罗世的岩浆活动较弱,见于营厂镇‒巨德村一带(Zhang et al., 2016; 顾承串等, 2016; 刘锦, 2017; Gu et al., 2018; 王广伟等, 2018).而从整个中国东北地区上看,不仅在辽源地体分布了大量的侏罗纪侵入体,而且在额尔古纳地块、兴安地块中东部、张广才岭区域南部,佳木斯地块以及那丹哈达岭地体同样可见侏罗纪岩浆活动(Wu et al., 2002, 2011; 孙德有等, 2005a; Ge et al., 2007).在华北板块东北缘东段,一系列中侏罗世岩浆活动也相继被发现,包括冀东牛心山岩体(罗镇宽等, 2001),胶东石岚村岩体(周珊等, 2021),辽宁东部地区的小黑山岩体、韩家岭岩体等(Wu et al., 2005),吉林中部松辽盆地基底花岗岩(Gao et al., 2007),吉林南部荒沟山地区梨树沟岩体(孙德有等, 2005b),吉林东部延边地区和龙市高岭岩体(张超等, 2014).锆石U-Pb年龄表明,上述岩体形成时代主要集中在164~174 Ma之间,表明华北地台北缘东段中侏罗世正处于一期重大的构造‒岩浆事件中.

4.2 中侏罗世侵入岩成因

4.2.1 中侏罗世中基性侵入岩与酸性侵入岩的成因关系

研究区中侏罗世岩浆岩主要由中基性侵入岩和酸性侵入岩组成.截至目前,人们对于本区同时期两类岩石的成因关系尚不明确.本文从野外关系和地球化学特征等方面对这些问题进行了探讨. 第一,虽然中侏罗世中基性侵入岩和酸性侵入岩在相同位置产出,但从野外产状上可以看出花岗闪长岩侵入到石英闪长岩中,两者接触界限清晰(图3b),并非渐变过度接触关系,表明这些花岗岩不是由同时期基性熔体分离结晶形成的;第二,区域上可见酸性岩体比同期中基性岩体的分布面积大得多(图2),中基性侵入岩多以岩脉的形式产出,而附近同期花岗岩多以较大的岩体形式出露,通常由基性岩浆演化而来的花岗质岩石体积小于同时代的基性岩石,表明研究区酸性侵入体并非由中基性岩浆演化而来;第三,若酸性岩是基性岩浆结晶分离的产物,则酸性岩石极少含或基本不含任何地壳物质,然而研究区部分花岗闪长岩样品中含有近一半含量的捕获锆石,说明其经历了强烈的地壳混染作用,暗示两者并非同源演化关系(Bacon and Druit, 1988);第四,花岗岩的重稀土元素丰度与中基性岩相似,这与基性熔体中斜方辉石和角闪石的分离结晶现象不一致(Boynton, 1984).综上所述,认为本区中侏罗世中基性岩和酸性岩的原始岩浆应具有不同的岩浆源区.

4.2.2 中侏罗世晚期辉长苏长岩成因

辉长苏长岩的SiO2含量为52.50%~53.22%,属于中基性岩石.实验岩石学研究表明,下地壳玄武质岩石脱水部分熔融可以形成中基性成分的熔体,但需要达到40%以上的熔融,一般条件很难实现其大比例的熔融(Rapp and Watson, 1995).同时,辉长苏长岩的SiO2质量分数低于下地壳的SiO2平均含量(Gao et al., 1998),且辉长苏长岩具有较高的Cr(27.02×10-6~136.20×10-6)、Ni(29.12×10-6~53.16×10-6)含量及Mg#值(55~56),表明其原始岩浆应起源于上地幔(Sun and McDonough, 1989).辉长苏长岩的Zr/Hf平均值为48.25,较接近原始地幔值37(Green, 1995);Ti/Y值为282~355,Ti/Zr值为45~54,不在壳源岩浆的范围内(Pearce, 1983);Rb/Sr比值为0.07~0.15(平均值为0.11),介于上地幔值平均值(0.034)和地壳值平均值(0.5)之间(Taylor and Mclennan, 1995).上述特征暗示了岩浆在演化过程中可能有陆壳物质的涉入.研究表明,高的La/Sm(>4.5)值常指示地壳物质的混染(屈翠侠, 2015).辉长苏长岩La/Sm为4.41~4.36,表明受地壳混染程度较低.从稀土元素配分图和微量元素蛛网图上看,辉长苏长岩无明显Eu异常且Sr相对富集说明辉长苏长岩中斜长石的分离结晶作用不明显.样品富集轻稀土元素及大离子亲石元素(Rb、Ba、K、Sr等),亏损高场强元素(Nb、Ta等)(图7b),并且具有高的La/Nb(3.09~4.16)、Ba/Nb(61.65~115.68)和Zr/Nb(19.86~23.91)比值,低的Ce/Pb(1.90~6.23)比值,这些特征与全球范围内与火山弧相关的岩浆岩地球化学特征相似(Stern, 2002; Martin et al., 2005).同时,在La/Yb-Ba/Nb图解中,样品落入弧火山范围内(图8c);在La/Yb-Nb/Y图解中,样品落在流体交代作用范围附近(图8d),同样表明其具有活动大陆边缘环境的特点.综上所述,研究区辉长苏长岩的原始岩浆起源于受俯冲流体交代的岩石圈地幔部分熔融,岩浆在运移过程中经历了较小程度的地壳混染.

4.2.3 中侏罗世中期石英闪长岩成因

石英闪长岩的地化特征与辉长苏长岩相似,SiO2含量相对较低(52.89%~53.55%).Mg#值较辉长苏长岩低(47),但仍低于下地壳部分熔融产生的Mg#值(Atherton and Petford, 1993).样品Rb/Sr平均比值为0.02,接近上地幔值平均值0.034;Nb/U平均比值51,处于MORB和OIB值(47±10)范围内(Taylor and Mclennan, 1995);Zr/Hf比值平均值为39.44,接近原始地幔平均值(37)(Green, 1995);Ti/Y的平均值316,Ti/Zr的平均值为70,不在壳源岩浆范围内(Pearce, 1983).上述特征暗示石英闪长岩的原始岩浆应起源于上地幔物质.样品的La/Sm(3.68~3.72)比值<4.5,指示岩浆没有遭受地壳物质的混染.Cr(6.65×10-6~7.94×10-6)和Ni(5×10-6)丰度远低于辉长苏长岩样品,这可能与岩浆早期矿物的分离结晶相关.在La/Yb-Ba/Nb和La/Yb-Nb/Y图解(图8c8d)上,样品分别落在弧火山和流体交代作用的范围内及附近.微量元素方面石英闪长岩与辉长苏长岩的配分模式相似,都具有活动大陆边缘环境的特征.岩石无明显Eu异常且Sr相对富集说明石英闪长岩形成过程中斜长石的分离结晶作用不明显.综上所述,石英闪长岩成因与苏长辉长岩相似,原始岩浆均起源于受俯冲流体交代的岩石圈地幔部分熔融,在运移过程中基本没遭受地壳的混染.

4.2.4 中侏罗世中期花岗闪长岩成因

研究区中侏罗世中期花岗闪长岩SiO2(66.07%~70.10%)和Na2O(3.94%~4.72%)含量较高,A/CNK=1.00~1.02(<1.1),N2O/K2O=1.35(样品21QY05除外).从微量元素蛛网图上看(图7),两个样品的配分曲线相似,但个别元素存在明显差异,笔者推断21QY05样品在岩浆运移过程中遭受了同化混染,这点从21QY05样品有近一半含量的新太古代捕获锆石可以看出,并且在Na2O-K2O岩石成因图解上(图9e)两个样品落入了不同区域也说明了此样品受混染作用影响导致了元素含量上的差异变化.在10 000×Ga/Al和Zr+Nb+Ce+Y系列岩石成因判别图解中(图9a~9d),样品分别落入I、S型花岗岩类和未分异的I、S、M型花岗岩类分布区(样品21QY02落入与A型花岗岩分界处).典型的A型花岗岩,其重要的标志是富SiO2、K2O、Nb和Zr,贫Al2O3、Sr、Ba和Eu,REE分布具明显的负Eu异常(吴福元等, 2007; 张旗等, 2012).夏家堡一带的花岗闪长岩地化特征明显不同于A型花岗岩,同时在I、S和A型花岗岩的判别图解中(图9e),QY2102样品落入I型花岗岩分布区,该样品也具有I型花岗岩的地球化学特征(Na2O含量较高,Al2O3/(Cao+Na2O+K2O)<1.1、Fe2O3/FeO>0.4)(陈建林等, 2004; 吴福元等, 2007),综合表明研究区花岗闪长岩属于I型花岗岩.

对于I型花岗岩的成因,人们起初认为是下地壳基性火成岩部分熔融产物,后来通过对I型花岗岩中存在的暗色包体进行研究,结果表明其形成可能有幔源物质的参与(Hawkesworth and Kemp, 2006).研究区花岗闪长岩中可见暗色包裹体(图3b),但其岩性与围岩相同,且呈棱角状,与围岩界限清晰,表明其应为捕获的破碎围岩.样品Nb/U值(24.09)接近下地壳值(25)(Taylor and Mclennan, 1995); Rb/Sr值(0.16)较地壳平均值偏小,同样暗示其为下地壳成因(无幔源物质参与).根据Miller(2003)锆饱和温度计算公式获得该花岗闪长岩熔融温度为694 ℃,说明其形成温度较低,属于冷花岗质岩浆.一般认为由外来热源引起的部分熔融作用形成的岩浆温度较高,而冷花岗质岩浆的形成可能与流体交代作用有关,反映了一种与俯冲作用有关的构造背景(隋振民和陈跃军, 2011).张旗等(2006)根据Sr和Yb的含量将花岗岩分为4个压力等级,其中高Sr、低Yb型花岗岩形成于高压环境,样品21QY02具有较高的Sr和较低的Yb含量,属于高Sr、低Yb型花岗岩(图9f),暗示岩浆形成于较高的压力环境下,且LREE富集,HREE相对平坦,Eu无异常,暗示源区可能残留石榴石、辉石和角闪石(张旗等, 2006).Jiang et al.(2007)通过对华北克拉通北缘太古宙麻粒岩地质体中中生代侵入体的研究,发现具有太古代继承锆石的中生代侵入体的形成可能与古老下地壳(TTG)部分熔融有关,且在非高压环境下TTG岩石部分熔融会形成具有与埃达克质岩石类似的地球化学特征(Moyen, 2009Ma et al., 2015).研究区中侏罗世花岗闪长岩同样侵入于新太古代TTG片麻岩中,且岩石中存在大量新太古代岩浆锆石,但其较低的Sr/Y(11.7~22.9)比值与太古代TTG岩系部分熔融形成的典型埃达克质岩石地化特征不同(张旗等, 2002; Yu et al., 2017).同时前人研究表明异常热源的介入可能是埃达克质岩石形成的必要条件(朱弟成等, 2003),而研究区花岗闪长岩属冷花岗质岩石,其形成温度较低,综上表明研究区花岗闪长岩并非典型的埃达克质岩石,其形成可能与古老下地壳的部分熔融无关.岩石弱的Eu负异常和弱的Sr负异常,说明岩浆经历了少量的斜长石分离结晶作用或源区残留少量斜长石.孙晓猛等(2010)研究密山县知一镇韧性剪切带时发现,中侏罗世晚期古太平洋板块向欧亚大陆俯冲(NNW向),导致郯庐断裂发生左旋走滑,且扩展到东北地区并形成敦密断裂.研究区位于敦密断裂的西北侧,且岩浆活动时期与敦密断裂形成时期基本相同,在野外同样可观察到岩脉沿断裂侵位,笔者推测可能在古太平洋板块的持续俯冲下,导致敦密断裂形成,应力得到释放,岩浆沿着构造断裂处上涌侵位.综上所述,研究区中侏罗世中期的花岗闪长岩可能是俯冲背景下受流体交代的下地壳基性火成岩部分熔融的产物,其空间分布可能受断裂构造控制.源区残留相为石榴石、辉石和角闪石,或有少量斜长石存在.在运移过程中部分岩浆遭受到了强烈的地壳岩石混染.

4.3 构造背景及意义

研究区大地构造位置处于华北克拉通北缘东段,中生代以来主要受古亚洲洋和古太平洋构造体系控制,可能还有蒙古‒鄂霍茨克洋俯冲作用的影响.对于古亚洲洋构造体系的作用时间人们还存在不同观点,但多数学者认为古亚洲洋的闭合时间为晚二叠世‒早三叠世时期.例如,曹花花(2013)认为吉中地区古亚洲洋的最终闭合时间为早三叠世,晚三叠世处于造山后伸展环境;Wu et al.(2011)指出古亚洲洋最终闭合时间为250 Ma,碰撞后阶段持续到210 Ma.可以看出古亚洲洋构造体系的演化在晚三叠世期间已经结束,研究区中侏罗世岩浆活动与古亚洲洋构造体系无关,可能与古太平洋板块的俯冲作用相关.Wu et al.(2011)根据中国东北地区显生宙花岗岩年代学资料指出中国东北地区东部的侏罗纪I型花岗岩主要受古太平洋俯冲作用的控制,且呈向西年轻化趋势;而东北地区西北部的侏罗纪岩浆活动则受蒙古‒鄂霍茨克洋的影响(Liang et al., 2019; 陈龙等, 2022);许文良等(2013)通过分析中国东北地区中生代火山岩的年代学、岩石组合及其时空分布规律,指出中生代古太平洋构造体系对东北亚大陆的影响空间范围主要在松辽盆地及以东地区,而蒙古‒鄂霍茨克构造体系影响的空间范围主要在松辽盆地以西、华北板块北缘及以北区域.研究区位于中国东北地区东南缘,松辽盆地东南侧,距蒙古‒鄂霍茨克洋闭合位置有数百千米的距离,因此研究区内中侏罗世岩浆活动可能受蒙古‒鄂霍茨克洋俯冲影响较弱,主要受控于古太平洋板块的俯冲作用.近年来的研究资料显示,中国东北地区分布了一系列近NE走向且具有活动陆缘特征的中侏罗世岩浆岩.例如辽宁北部大黑山地区花岗闪长岩(175~170 Ma),吉林中部后倒木地区花岗岩(175~171 Ma),大西山地区二长花岗岩(173 Ma),延边地区二长花岗岩(175~172 Ma)、黑河新生地区二长花岗岩(164 Ma),兴安地块东南缘龙镇地区二长花岗岩(187~169 Ma),大兴安岭东北部花岗闪长岩‒二长花岗岩(190~171 Ma)、张广才岭南段地区花岗岩(182~166 Ma),这些岩石多属于高钾钙碱性系列I型花岗岩,其形成与古太平洋板块的俯冲作用相关(隋振民等, 2007; Ge et al., 2007; 张彦龙等, 2010; 张超等, 2014; 任永健, 2019; 王聚胜等, 2019; 张立仕等, 2021).本次研究通过收集区域年代学数据,总结了华北克拉通北缘东段清原‒绥芬河一带侏罗纪岩浆活动的时空分布规律(图10),这些侏罗纪岩浆岩多具有活动大陆边缘环境特征(Wu et al., 2011; 张超等, 2014; 刘锦, 2017; 张笑鸣, 2021).图10可以看出早侏罗世岩浆活动全区均有分布,年龄从东至西有明显年轻的趋势;中侏罗世岩浆活动主要集中在西部清原‒舒兰一带,和龙地区少量分布;晚侏罗世岩浆活动主要集中在西部清原‒长春一带,敦化地区少量分布.可以看出,华北克拉通北缘东段清原‒绥芬河一带侏罗纪岩浆活动具有明显的时空分带特征,呈自东向西逐渐年轻的趋势,岩浆活动整体呈北东向展布,暗示侏罗纪时期古太平洋的北西向俯冲.研究区位于华北克拉通北缘东段的辽北清原地区,处于中侏罗世岩浆活动分布带中(图10),指示研究区中侏罗时期的地球动力学背景受控于古太平洋的俯冲.

研究区中侏罗世侵入体为辉长苏长岩、石英闪长岩和花岗闪长岩组合,属于钙碱性系列岩石,样品富集大离子亲石元素,亏损高场强元素,具有俯冲环境下活动大陆边缘环境的特征.其中花岗闪长岩属于冷花岗岩质岩浆,研究表明拉张环境下形成的花岗质岩浆温度较高,而冷的花岗岩质岩浆可能形成于挤压环境下(Miller et al., 2003; 隋振民和陈跃军, 2011).此外,研究区花岗闪长岩与附近清原黄泥岭石英二长岩和开原李家台花岗闪长岩形成时代相同,并且地球化学特征相似,研究表明这些岩体均起源于受俯冲作用影响的下地壳部分熔融(刘锦, 2017; 王广伟等, 2018).在岩石构造判别图解中,所有样品均落入火山弧和活动大陆边缘环境范围内(图8a8b图11a11b),表明研究区中侏罗世岩浆活动具有活动大陆边缘环境的特征.结合该时期区域构造演化史和岩浆活动的时空分布规律,笔者推断辽北清原地区夏家堡一带中侏罗世岩浆活动主要受古太平洋俯冲作用影响.

5 结论

通过对辽北清原夏家堡侵入体的岩相学、锆石U-Pb年代学、岩石地球化学分析,可以得出以下结论:

(1)辽北清原夏家堡地区出露的中基性、酸性侵入体岩石组合为辉长苏长岩、石英闪长岩和花岗闪长岩.锆石U-Pb年代学分析结果表明,辉长苏长岩形成于中侏罗世晚期((163.8±2.4) Ma),石英闪长岩形成于中侏罗世中期((169.9±2.2) Ma),花岗闪长岩形成于中侏罗世中期(167.3~169.9 Ma).

(2)岩石地球化学分析表明,辉长苏长岩和石英闪长岩的原始岩浆起源于受流体交代的岩石圈地幔部分熔融.而花岗闪长岩具有高钾钙碱性I型花岗岩特征,是俯冲背景下受流体交代的下地壳基性火成岩部分熔融的产物.三种岩石的地球化学特征均具有活动大陆边缘环境的特点,结合区域构造演化史和侏罗纪岩浆活动时空分布规律,笔者认为辽北清原地区中侏罗世岩浆活动形成于古太平洋俯冲背景下.

参考文献

[1]

Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0

[2]

Bacon, C. R., Druitt, T. H., 1988. Compositional Evolution of the Zoned Calcalkaline Magma Chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98(2): 224-256. https://doi.org/10.1007/BF00402114

[3]

Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, R., ed., Rare Earth Element Geochemistry, Elsevier Amsterdam. https://doi.org/10.1016/b978-0-444-42148-7.50008-3

[4]

Cao, H. H., 2013. Geochronology and Geochemistry of the Late Paleozoic-Early Mesozoic Igneous Rocks in the Eastern Segment of the Northern Margin of the North China Block (Dissertation). Jilin University, Changchun (in Chinese with English abstract).

[5]

Chen, J. L., Guo, Y. S., Fu, S. M., 2004. The Research Headway to Granitiod-Classification Review and Synthesis of Isma Granitiod. Acta Geologica Gansu, 13(1): 67-73 (in Chinese with English abstract).

[6]

Chen, L., Liang, C. Y., Liu, Y. J., et al., 2022. Geochronology and Provenance Analysis of the Xiufeng Formation in Mohe Basin: Implications for the Evolution of the Eastern Mongol-Okhotsk Ocean. Earth Science, 47(9): 3334-3353 (in Chinese with English abstract).

[7]

Chen, Y. J., Peng, Y. J., Liu, Y. W., et al., 2006. Progress in the Study of Chronostratigraphy of the “Qinghezhen Group”. Geological Review, 52(2): 170-177 (in Chinese with English abstract).

[8]

Gao, F. H., Xu, W. L., Yang, D. B., et al., 2007. LA-ICP-MS Zircon U-Pb Dating from Granitoids in Southern Basement of Songliao Basin: Constraints on Ages of the Basin Basement. Science in China: Earth Sciences, 50(7): 995-1004. https://doi.org/10.1007/s11430-007-0019-7

[9]

Gao, S., Luo, T. C., Zhang, B. R., et al., 1998. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959-1975. https://doi.org/10.1016/S0016-7037(98)00121-5

[10]

Ge, W. C., Wu, F. Y., Zhou, C. Y., et al., 2007. Porphyry Cu-Mo Deposits in the Eastern Xing’an-Mongolian Orogenic Belt: Mineralization Ages and Their Geodynamic Implications. Chinese Science Bulletin, 52(24): 3416-3427. https://doi.org/10.1007/s11434-007-0466-8

[11]

Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3-4): 347-359. https://doi.org/10.1016/0009-2541(94)00145-X

[12]

Gu, C. C., Zhu, G., Li, Y. J., et al., 2018. Timing of Deformation and Location of the Eastern Liaoyuan Terrane, NE China: Constraints on the Final Closure Time of the Paleo-Asian Ocean. Gondwana Research, 60: 194-212. https://doi.org/10.1016/j.gr.2018.04.012

[13]

Gu, C. C., Zhu, G., Zhai, M. J., et al., 2016. Features and Origin Time of Mesozoic Strike-Slip Structures in the Yilan-Yitong Fault Zone. Science in China (Series D), 46(12): 1579-1601 (in Chinese with English abstract).

[14]

Guan, Q. B., 2018. Permian-Early Jurassic Tectonic Evolution of Kaiyuan-Yanji Area in the Eastern Segment of the Northern Margin of the North China Block (Dissertation).Jilin University, Changchun (in Chinese with English abstract).

[15]

Guo, F., 2016. Geological Records of the Pacific Plate Subduction in the Northeast Asian Continental Margin: an Overview. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6): 1082-1089, 1071 (in Chinese with English abstract).

[16]

Hawkesworth, C. J., Kemp, A. I. S., 2006. Using Hafnium and Oxygen Isotopes in Zircons to Unravel the Record of Crustal Evolution. Chemical Geology, 226(3-4): 144-162. https://doi.org/10.1016/j.chemgeo.2005.09.018

[17]

Hu, P. Y., Liang, C. Y., Zheng, C. Q., et al., 2019. Tectonic Transformation and Metallogenesis of the Yanshan Movement during the Late Jurassic Period: Evidence from Geochemistry and Zircon U-Pb Geochronology of the Adamellites in Xingcheng, Western Liaoning, China. Minerals, 9(9): 518. https://doi.org/10.3390/min9090518

[18]

Jia, S. J., Zheng, C. Q., Liang, C. Y., et al., 2022. Metamorphism of the Yilan Amphibolites from the Heilongjiang Complex and Deformation of the Granodioritic Mylonites from the Jiamusi Massif, Northeastern China. Geological Journal, 57(8): 3368-3394. https://doi.org/10.1002/gj.4481

[19]

Jiang, N., Liu, Y. S., Zhou, W. G., et al., 2007. Derivation of Mesozoic Adakitic Magmas from Ancient Lower Crust in the North China Craton. Geochimica et Cosmochimica Acta, 71(10): 2591-2608. https://doi.org/10.1016/j.gca.2007.02.018

[20]

Li, D. X., Zheng, C. Q., Liang, C. Y., et al., 2022. Genesis and Geological Significance of Granitic Mylonites in Southern Zhalantun, Central Xing’an Range. Earth Science, 47(9): 3354-3370 (in Chinese with English abstract).

[21]

Li, S. Z., Suo, Y. H., Li, X. Y., et al., 2019. Mesozoic Tectono-Magmatic Response in the East Asian Ocean-Continent Connection Zone to Subduction of the Paleo-Pacific Plate. Earth-Science Reviews, 192: 91-137. https://doi.org/10.1016/j.earscirev.2019.03.003

[22]

Liang, C. Y., Liu, Y. J., Zheng, C. Q., et al., 2019. Deformation Patterns and Timing of the Thrust-Nappe Structures in the Mohe Formation in Mohe Basin, Northeast China: Implication of the Closure Timing of Mongol-Okhotsk Ocean. Geological Journal, 54(2): 746-769. https://doi.org/10.1002/gj.3502

[23]

Liu, H. T., Zhai, M. G., Liu, J. M., et al., 2002. The Mesozoic Granitoids in the Northern Marginal Region of North China Craton: Evolution from Post-Collisional to Ano Rogenic Settings. Acta Petrologica Sinica, 18(4): 433-448 (in Chinese with English abstract).

[24]

Liu, J., 2017. The Mesozoic Tectonic Evolution of Kaiyuan Area in the Eastern Segment of Northern Margin of the North China Block (Dissertation).Jilin University, Changchun (in Chinese with English abstract).

[25]

Liu, J., Liu, Z. H., Li, S. C., et al., 2016. Geochronology and Geochemistry of Triassic Intrusive Rocks in Kaiyuan Area of the Eastern Section of the Northern Margin of North China. Acta Petrologica Sinica, 32(9): 2739-2756 (in Chinese with English abstract).

[26]

Liu, Y. J., Feng, Z. Q., Jiang, L. W., et al., 2019. Ophiolite in the Eastern Central Asian Orogenic Belt, NE China. Acta Petrologica Sinica, 35(10): 3017-3047 (in Chinese with English abstract).

[27]

Lu, X. P., Wu, F. Y., Zhao, C. B., et al., 2003. Zircon U-Pb Ages of the Indosinian Granites in the Tonghua Region, and Response of Liaoji Region to the Dabie-Sulu Ultrahigh-Pressure Collisional Orogenesis. Chinese Science Bulletin, 48 (8): 843-849 (in Chinese).

[28]

Luo, Z. K., Qiu, Y. S., Guan, K., et al., 2001. SHRIMP U-Pb Dating on Zircon from Yu’erya and Niuxinshan Granite Intrusions in Eastern Hebei Provence. Bulletin of Mineralogy Petrology and Geochemistry, 20(4): 278-285 (in Chinese with English abstract).

[29]

Ma, Q., Zheng, J. P., Xu, Y. G., et al., 2015. Are Continental “Adakites” Derived from Thickened or Foundered Lower Crust? Earth and Planetary Science Letters, 419: 125-133. https://doi.org/10.1016/j.epsl.2015.02.036

[30]

Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and some Implications for Crustal Evolution. Lithos, 79(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.048

[31]

Miao, L. C., Qiu, Y. M., Fan, W. M., et al., 2005. Geology, Geochronology, and Tectonic Setting of the Jiapigou Gold Deposits, Southern Jilin Province, China. Ore Geology Reviews, 26(1-2): 137-165. https://doi.org/10.1016/j.oregeorev.2004.10.004

[32]

Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529-532. https://doi.org/10.1130/0091-7613(2003)0310529: hacgio>2.0.co;2

[33]

Moyen, J. F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the “Adakitic Signature”. Lithos, 112(3-4): 556-574. https://doi.org/10.1016/j.lithos.2009.04.001

[34]

Pearce, J. A., 1983. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. In: Hawkesworth, C. J., Norry, M. J., eds., Continental Basalts and Mantle Xenoliths. Shiva Publications, Nantwich.

[35]

Pearce, J. A., Gale, G. H., 1977. Identification of Ore-Deposition Environment from Trace-Element Geochemistry of Associated Igneous Host Rocks. Geological Society, London, Special Publications, 7(1): 14-24. https://doi.org/10.1144/gsl.sp.1977.007.01.03

[36]

Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956

[37]

Pearce, T. H., Gorman, B. E., Birkett, T. C., 1975. The TiO2-K2O-P2O5 Diagram: a Method of Discriminating between Oceanic and Non-Oceanic Basalts. Earth and Planetary Science Letters, 24(3): 419-426. https://doi.org/10.1016/0012-821X(75)90149-1

[38]

Peng, Y. J., Qi, C. D., Zhou, X. D., et al., 2012. Transition from Paleo-Asian Ocean Domain to Circum-Pacific Ocean Domain for the Ji-Hei Composite Orogenic Belt: Time Mark and Relationship to Global Tectonics. Geology and Resources, 21(3): 261-265 (in Chinese with English abstract).

[39]

Qu, C. X., 2015. The Cause Evolution and Tectonic Implications of the Late Carboniferous-Early Permian Intermediate-Mafic Magmatic Rocks in the East Tianshan and Its Adjacent Area, Xinjiang (Dissertation). Chang’an University, Xi’an (in Chinese with English abstract).

[40]

Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891

[41]

Ren, Y. J., 2019. Early-Middle Jurassic Granitic Magmatism and Tectonic Evolution in the Southern Part of Zhangguangcailing. Acta Geologica Sinica, 93(11): 2813-2831 (in Chinese with English abstract).

[42]

Song, Z. W., Zheng, C. Q., Liang, C. Y., et al., 2021. Identification and Geological Significance of Early Jurassic Adakitic Volcanic Rocks in Xintaimen Area, Western Liaoning. Minerals, 11(3): 331. https://doi.org/10.3390/min11030331

[43]

Song, Z. W., Zheng, C. Q., Lin, B., et al., 2023. Geological Characteristics of Late Jurassic Volcanic Rocks in Sierbao-Baita Basin, West Liaoning Province and Its Response to Yanshan Movement. Earth Science, 48(10): 3689-3706 (in Chinese with English abstract).

[44]

Stern, R. J., 2002. Subduction Zones. Reviews of Geophysics, 40(4): 1012. https://doi.org/10.1029/2001rg000108

[45]

Sui, Z. M., Chen, Y. J., 2011. Zircon Saturation Temperatures of Granites in Eastern Great Xing’an Range, and Its Geological Signification. Global Geology, 30(2): 162-172 (in Chinese with English abstract).

[46]

Sui, Z. M., Ge, W. C., Wu, F. Y., et al., 2007. Zircon U-Pb Ages, Geochemistry and Its Petrogenesis of Jurassic Granites in Northeastern Part of the Da Hinggan-Mts. Acta Petrologica Sinica, 23(2): 461-480 (in Chinese with English abstract).

[47]

Sun, D. Y., SUZUKI, K., Wu, F. Y., et al., 2005b. CHIME Dating and Its Application for Mesozoic Granites of Huanggoushan, Jilin Province. Geochimica, 34(4): 305-314 (in Chinese with English abstract).

[48]

Sun, D. Y., Wu, F. Y., Gao, S., et al., 2005a. Confirmation of Two Episodes of A-Type Granite Emplacement during Late Triassic and Early Jurassic in the Central Jilin Province, and Their Constraints on the Structural Pattern of Eastern Jilin-Heilongjiang Area, China. Earth Science Frontiers, 12 (2): 263-275 (in Chinese with English abstract).

[49]

Sun, M. D., Xu, Y. G., Wilde, S. A., et al., 2015. The Permian Dongfanghong Island-Arc Gabbro of the Wandashan Orogen, NE China: Implications for Paleo-Pacific Subduction. Tectonophysics, 659: 122-136. https://doi.org/10.1016/j.tecto.2015.07.034

[50]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

[51]

Sun, X. M., Wang, S. Q., Wang, Y. D., et al., 2010. The Structural Feature and Evolutionary Series in the Northern Segment of Tancheng-Lujiang Fault Zone. Acta Petrologica Sinica, 26(1): 165-176 (in Chinese with English abstract).

[52]

Tang, J., Xu, W. L., Wang, F., 2016. Rock Associations and Their Spatial-Temporal Variations of the Early Mesozoic Igneous Rocks in the NE Asia: Constraints on the Initial Subduction Timing of the Paleo-Pacific Plate. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6): 1181-1194 (in Chinese with English abstract).

[53]

Tang, K. D., Shao, J. A., Li, J. C., et al., 2004. Nature of Yanbian Suture Zone in Jilin Province and Northeast Asia Structure. Geological Bulletin of China, 23(S2): 885-891 (in Chinese with English abstract).

[54]

Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241-265. https://doi.org/10.1029/95rg00262

[55]

Wan, Y. S., Song, B., Yang, C., et al., 2005. Zircon SHRIMP U-Pb Geochronology of Archaean Rocks from the Fushun-Qingyuan Area, Liaoning Province and Its Geological Significance. Acta Geologica Sinica, 79(1): 78-87 (in Chinese with English abstract).

[56]

Wan, Y. S., Xie, H. Q., Dong, C. Y., et al., 2020. Timing of Tectonothermal Events in Archean Basement of the North China Craton. Earth Science, 45(9): 3119-3160 (in Chinese with English abstract).

[57]

Wang, C., Liu, Z. H., Song, J., et al., 2016. Chronology, Geochemical Characteristics of Granodiorite-Quartz Diorite Pluton in Kaishantun,Yanbian Area and Its Constrains to the Beginning of Paleo-Pacific Plate Subduction. Acta Petrologica Sinica, 32(9): 2856-2866 (in Chinese with English abstract).

[58]

Wang, G. W., Sun, G. S., Yu, C., et al., 2018. Zircon U- Pb Geochronology, Petrogeochemistry and Petrogenesis of Adamellite in Huangniling Area, Eastern Liaoning. Global Geology, 37(4): 1033-1046 (in Chinese with English abstract).

[59]

Wang, J. S., Sun, Y. G., Zhao, C. J., et al., 2019. U-Pb Geochronology, Geochemical Feature and Tectonic Evolution of Monzonitic Granites from Daxi Mountain, Central Jilin Province. Journal of Heilongjiang University of Science and Technology, 29(6): 653-662 (in Chinese with English abstract).

[60]

Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202

[61]

Wilde, S. A., Zhou, J. B., 2015. The Late Paleozoic to Mesozoic Evolution of the Eastern Margin of the Central Asian Orogenic Belt in China. Journal of Asian Earth Sciences, 113: 909-921. https://doi.org/10.1016/j.jseaes.2015.05.005

[62]

Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract).

[63]

Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014

[64]

Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9

[65]

Wu, F. Y., Yang, J. H., Wilde, S. A., et al., 2005. Geochronology, Petrogenesis and Tectonic Implications of Jurassic Granites in the Liaodong Peninsula, NE China. Chemical Geology, 221(1-2): 127-156. https://doi.org/10.1016/j.chemgeo.2005.04.010

[66]

Wu, M. L., Lin, S. F., Wan, Y. S., et al., 2016. Crustal Evolution of the Eastern Block in the North China Craton: Constraints from Zircon U-Pb Geochronology and Lu-Hf Isotopes of the Northern Liaoning Complex. Precambrian Research, 275: 35-47. https://doi.org/10.1016/j.precamres.2015.12.013

[67]

Wu, P. F., Sun, D. Y., Wang, T. H., et al., 2013. Chronology, Geochemical Characteristic and Petrogenesis Analysis of Diorite in Helong of Yanbian Area, NE China. Geological Journal of China Universities, 19(4): 600-610 (in Chinese with English abstract).

[68]

Xu, W. L., Pei, F. P., Gao, F. H., et al., 2008. Zircon U-Pb Age from Basement Granites in Yishu Graben and Its Tectonic Implications. Earth Science, 33(2): 145-150 (in Chinese with English abstract).

[69]

Xu, W. L., Wang, F., Pei, F. P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2): 339-353 (in Chinese with English abstract).

[70]

Yu, S. Y., Li, S. Z., Zhang, J. X., et al., 2017. Adakitic Rocks Resulting from Partial Melting of Metabasite at High-Pressure Granulite-Facies Condition during Continental Collision. Acta Geologica Sinica, 91(3): 1157-1158. https://doi.org/10.1111/1755-6724.13341

[71]

Yuan, L. L., Zhang, X. H., Xue, F. H., et al., 2016. Late Permian High-Mg Andesite and Basalt Association from Northern Liaoning, North China: Insights into the Final Closure of the Paleo-Asian Ocean and the Orogen- Craton Boundary. Lithos, 258-259: 58-76. https://doi.org/10.1016/j.lithos.2016.04.024

[72]

Zhang, C., Guo, W., Xu, Z. Y., et al., 2014. Study on Geochronology, Petrogenesis and Tectonic Implications of Monzogranite from the Yanbian Area, Eastern Jilin Province. Acta Petrologica Sinica, 30(2): 512-526 (in Chinese with English abstract).

[73]

Zhang, C., Wang, L. Y., Geng, R., et al., 2020. Paleo- Pacific Subduction in Early Jurassic: Geochronological and Geochemical Evidences of Gabbros in Helong Area of Yanbian, Jilin, China. Journal of Earth Sciences and Environment, 42(6): 819-832 (in Chinese with English abstract).

[74]

Zhang, C. Y., Zhang, X. Z., Qiu, D. M., 2007. Zircon U-Pb Isotopic Ages of Amphibolite of Qinglongcun Group in Yanbian Area and Its Geological Significance. Journal of Jilin University (Earth Science Edition), 37(4): 672-677 (in Chinese with English abstract).

[75]

Zhang, H. H., Wang, F., Xu, W. L., et al., 2016. Petrogenesis of Early-Middle Jurassic Intrusive Rocks in Northern Liaoning and Central Jilin Provinces, Northeast China: Implications for the Extent of Spatial- Temporal Overprinting of the Mongol-Okhotsk and Paleo-Pacific Tectonic Regimes. Lithos, 256/257: 132-147. https://doi.org/10.1016/j.lithos.2016.04.004

[76]

Zhang, L. S., Sun, F. Y., Qian, Y., et al., 2021. Petrogenesis of Middle Jurassic Granitoids in Houdaomu, Central Jilin Province: Implications for the Growth of Proterozoic Continental Crust in the Eastern CAOB. Acta Petrologica Sinica, 37(7): 2051-2072 (in Chinese with English abstract).

[77]

Zhang, Q., Ran, H., Li, C.D., 2012. A-Type Granite: What is the Essence? Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract).

[78]

Zhang, Q., Wang, Y., Li, C. D., et al.,2006. Granite Classification on the Basis of Sr and Yb contents and Its Implications. Acta Petrologica Sinica, 22(9): 2249-2269 (in Chinese with English abstract).

[79]

Zhang, Q., Wang, Y., Liu, W., et al., 2002. Adakite: Its Characteristics and Implications. Regional Geology of China, 21(7): 431-435 (in Chinese with English abstract).

[80]

Zhang, X. H., Su, W. J., Wang, H., 2005. Zircon SHRIMP Geochronology of the Faku Tectonites in the Northern Liaoning Province: Implications for the Northern Boundary of the North China Craton. Acta Petrologica Sinica, 21(1): 135-142 (in Chinese with English abstract).

[81]

Zhang, X. H., Wang, H., Li, T. S., 2005. 40Ar/39Ar Geochronology of the Faku Tectonites: Implications for the Tectonothermal Evolution of the Faku Block, Northern Liaoning. Science China: Earth Sciences, 48(5): 601-612. https://doi.org/10.1360/03yd0208

[82]

Zhang, X. H., Zhang, H. F., Wilde, S. A., et al., 2010. Late Permian to Early Triassic Mafic to Felsic Intrusive Rocks from North Liaoning, North China: Petrogenesis and Implications for Phanerozoic Continental Crustal Growth. Lithos, 117(1-4): 283-306. https://doi.org/10.1016/j.lithos.2010.03.005

[83]

Zhang, X. H., Zhang, H. F., Zhai, M. G., et al., 2009. Geochemistry of Middle Triassic Gabbros from Northern Liaoning, North China: Origin and Tectonic Implications. Geological Magazine, 146(4): 540-551. https://doi.org/10.1017/s0016756808005530

[84]

Zhang, X. M., 2021. Mesozoic Magmatic Events in the Northeastern Margin of the North China Craton: Constraints on the Evolution of the Multiple Tectonic Regimes (Dissertation). Jilin University, Changchun (in Chinese with English abstract).

[85]

Zhang, Y. B., Wu, F. Y., Li, H. M., et al., 2002. Single Grain Zircon U-Pb Ages of the Huangniling Granite in Jilin Province. Acta Petrologica Sinica, 18(4): 475-481 (in Chinese with English abstract).

[86]

Zhang, Y. L., Ge, W. C., Gao, Y., et al., 2010. Zircon U-Pb Ages and Hf Isotopes of Granites in Longzhen Area and Their Geological Implications. Acta Petrologica Sinica, 26(4): 1059-1073 (in Chinese with English abstract).

[87]

Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207-1240. https://doi.org/10.1016/j.gr.2012.08.016

[88]

Zhao, Y. D., Chi, X. G., Che, J. Y., et al., 2009. Geochemical Characteristics and Tectonic Setting of Late Triassic Granites in Yanbian-Dongning Area. Journal of Jilin University (Earth Science Edition), 39(3): 425-434 (in Chinese with English abstract).

[89]

Zhou, S., Meng, F. X., Xie, S. W., 2021. Genesis of Jurassic Granites in Jiaobei Terrane and Its Tectonic Implications. Acta Petrologica et Mineralogica, 40(5): 874-896 (in Chinese with English abstract).

[90]

Zhu, D. C., Pan, G. T., Duan, L. P., et al., 2003. Some Problems in the Research of Adakite. Northwestern Geology, 36(2): 13-19 (in Chinese with English abstract).

基金资助

国家重点研发计划专题(2017YFC0601401)

国家自然科学基金项目(42172213)

AI Summary AI Mindmap
PDF (8888KB)

168

访问

0

被引

详细

导航
相关文章

AI思维导图

/