边坡勘察钻孔信息价值评价及优化布置方法
Value of Information Assessment and Optimization of Slope Boreholes
,
,
为了解决现有边坡勘察试验钻孔布置的优化方法概念复杂、计算量大,需要预先定量估计边坡失稳损失,在实际应用中不方便的问题,利用边坡响应面机器学习模型提出了一种边坡勘察方案的信息价值量化指标,进而给出了边坡钻孔布置方案优化方法.利用边坡部分特征响应面模型建立了安全系数与勘察数据之间的关系.利用随机模拟样本即可实现对边坡勘察钻孔方案的信息价值量化指标计算,分析不同勘察方案时不需要额外重复计算安全系数,大幅提高了分析效率.基于提出的方法,对不排水边坡案例进行了分析,分析结果与文献中相似,算法复杂度和计算量大幅降低.本方法可以快速评价和对比边坡勘察方案的信息价值,进而实现钻孔布置方案优化,具有概念清晰、算法简单、计算方便的特点,计算量也相比传统方法大幅降低,易于工程勘察设计人员接受和采用.
边坡安全系数 / 钻孔 / 空间变异性 / 勘察方案优化 / 岩土工程 / 工程地质
safety factor of slope / borehole / spatial variability / optimization of site investigation program / geotechnical engineering / engineering geology
| [1] |
Au, S. K., Beck, J. L., 2001. Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation. Probabilistic Engineering Mechanics, 16(4): 263-277. |
| [2] |
Blitzstein, J. K., Hwang, J., 2019. Introduction to Probability (2nd Edition). Chapman and Hall/CRC, New York. |
| [3] |
Cho, S.E., 2010. Probabilistic Assessment of Slope Stability That Considers the Spatial Variability of Soil Properties. Journal of Geotechnical and Geoenvironmental Engineering, 136(7): 975-984. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000309 |
| [4] |
Fu, F.Y., Zheng, X.Y., Lü, Q., et al., 2014. Second Order Reliability Analysis of Slope Stability Using Response Surface Method. Rock and Soil Mechanics, 35(12): 3460-3466 (in Chinese with English abstract). |
| [5] |
Goldsworthy, J.S., Jaksa, M.B., Fenton, G.A., et al., 2007. Effect of Sample Location on the Reliability Based Design of Pad Foundations. Georisk, 1(3): 155-166. |
| [6] |
Gong, W., Juang, C.H., Wasowski, J., 2021. Geohazards and Human Settlements: Lessons Learned from Multiple Relocation Events in Badong, China: Engineering Geologist’s Perspective. Engineering Geology, 285: 106051. |
| [7] |
Gong, W., Luo, Z., Juang, C.H., et al., 2014. Optimization of Site Exploration Program for Improved Prediction of Tunneling-Induced Ground Settlement in Clays. Computers and Geotechnics, 56: 69-79. https://doi.org/10.1016/j.compgeo.2013.10.008 |
| [8] |
Green, S.B., 1991. How Many Subjects does It Take to do a Regression Analysis. Multivariate Behavioral Research, 26(3): 499-510. https://doi.org/10.1207/s15327906mbr2603_7 |
| [9] |
He, C., Tang, H. M., Shen, P. W. , et al., 2021. Progressive Failure Mode and Stability Reliability of Strain-Softening Slope. Earth Science, 46(2): 697-707 (in Chinese with English abstract). |
| [10] |
Hu, J.Z., Zhang, J., Huang, H.W., et al., 2021. Value of Information Analysis of Site Investigation Program for Slope Design. Computers and Geotechnics, 131: 103938. https://doi.org/10.1016/j.compgeo.2020.103938 |
| [11] |
Itasca Consulting Group, 2019. FLAC3D-Fast Lagrangian Analysis of Continua in Three-Dimensions, Ver. 7.0. Itasca, Minneapolis. |
| [12] |
Jiang, S.H., Li, D.Q., Cao, Z.J., et al., 2015. Multiple Response Surfaces Method for Probabilistic Analysis and Reliability Sensitivity Analysis of Slopes Considering Spatially Varying Soil Properties. Journal of Disaster Prevention and Mitigation Engineering, 35(5): 592-598 (in Chinese with English abstract). |
| [13] |
Jiang, S.H., Liu, X., Yao, R.Z., et al., 2018. Optimization Design Approach for Layout Scheme of Slope Boreholes Based on Bayesian Updating and Value of Information Analysis. Chinese Journal of Geotechnical Engineering, 40(10): 1871-1879 (in Chinese with English abstract). |
| [14] |
Jiang, S.H., Papaioannou, I., Straub, D., 2018. Bayesian Updating of Slope Reliability in Spatially Variable Soils with In-Situ Measurements. Engineering Geology, 239: 310-320. https://doi.org/10.1016/j.enggeo.2018.03.021 |
| [15] |
Jiang, S.H., Papaioannou, I., Straub, D., 2020. Optimization of Site-Exploration Programs for Slope-Reliability Assessment. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 6(1): 04020004. https://doi.org/10.1061/AJRUA6.0001042 |
| [16] |
Liu, G.X., Xi, J.C., Dai, E.F., et al., 2014. Loss Risk Assessment of the Hazard-Affectted Body of Landslides in China. Journal of Natural Disasters, 23(2): 39-46 (in Chinese with English abstract). |
| [17] |
Miotto, R., Wang, F., Wang, S., et al., 2018. Deep Learning for Healthcare: Review, Opportunities and Challenges. Briefings in Bioinformatics, 19(6): 1236-1246. |
| [18] |
Papaioannou, I., Straub, D., 2017. Learning Soil Parameters and Updating Geotechnical Reliability Estimates Under Spatial Variability-Theory and Application to Shallow Foundations. Georisk, 11(1): 116-128. https://doi.org/10.1080/17499518.2016.1250280 |
| [19] |
Phoon, K.K., Kulhawy, F.H., 1999. Characterization of Geotechnical Variability. Canadian Geotechnical Journal, 36(4): 612-624. https://doi.org/10.1139/t99-038 |
| [20] |
Straub, D., 2014. Value of Information Analysis with Structural Reliability Methods. Structural Safety, 49: 75-85. https://doi.org/10.1016/j.strusafe.2013.08.006 |
| [21] |
Tang, Z.H., Chai, B., Liu, Z.C., et al., 2013. Reliability Analysis of Stability of Fill Slope. Earth Science, 38(3): 616-624 (in Chinese with English abstract). |
| [22] |
Tang, Z.H., Yu, X.L., Chai, B., et al., 2021. Energetic Criterion of Entering Acceleration in Progressive Failure Process of Bedding Rockslide: A Case Study for Shanshucao Landslide. Earth Science, 46(11): 4033-4042 (in Chinese with English abstract). |
| [23] |
Terbrugge, P.J., Wesseloo, J., Venter, J., et al., 2006. A Risk Consequence Approach to Open Pit Slope Design. Journal of the South African Institute of Mining and Metallurgy, 106(7): 503-511. |
| [24] |
Wang, W., Chen, G. Q., Zhu, J., et al., 2018. Slope Stability Calculated with Strength Reduction Method Considering Tensile and Shear Progressive Failure. Chinese Journal of Rock Mechanics and Engineering, 37(9): 2064-2074 (in Chinese with English abstract). |
| [25] |
Yang, R., Huang, J., Griffiths, D.V., et al., 2019. Optimal Geotechnical Site Investigations for Slope Design. Computers and Geotechnics, 114: 103111. https://doi.org/10.1016/j.compgeo.2019.103111 |
| [26] |
Yang, R., Huang, J., Griffiths, D.V., et al., 2021. Optimal Geotechnical Site Investigations for Slope Reliability Assessment Considering Measurement Errors. Engineering Geology, 297: 106497. |
| [27] |
Yoshida, I., Tasaki, Y., Otake, Y., et al., 2018. Optimal Sampling Placement in a Gaussian Random Field Based on Value of Information. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 4(3): 04018018. |
| [28] |
Zhang, J., Chen, H.Z., Huang, H.W., et al., 2015. Efficient Response Surface Method for Practical Geotechnical Reliability Analysis. Computers and Geotechnics, 69:496-505. |
| [29] |
Zhang, S., Tang, H.M., Liu, X., et al., 2018. Seepage and Instability Characteristics of Slope Based on Spatial Variation Structure of Saturated Hydraulic Conductivity. Earth Science, 43(2): 622-634 (in Chinese with English abstract). |
| [30] |
Zhang, W.G., Wang, Q., Chen, F.Y., 2021. Reliability Analysis of Slope and Random Response of Anti-Sliding Pile Considering Spatial Variability of Rock Mass Properties. Rock and Soil Mechanics, 42(11): 3157-3168 (in Chinese with English abstract). |
| [31] |
Zhao, J. X., Duan, L., Ma, J., et al., 2021. Importance Sampling for System Reliability Analysis of Soil Slopes Based on Shear Strength Reduction. Georisk, 15(4): 287-298. |
| [32] |
Zhao, T., Wang, Y., 2020. Determination of Efficient Sampling Locations in Geotechnical Site Characterization Using Information Entropy and Bayesian Compressive Sampling. Canadian Geotechnical Journal, 56(11): 1622-1637. https://doi.org/10.1139/cgj-2018-0286 |
| [33] |
Zheng, Y.R., Zhao, S.Y., 2004. Application of Strength Reduction FEM in Soil and Rock Slope. Chinese Journal of Rock Mechanics and Engineering, 23(19): 3381-3388 (in Chinese with English abstract). |
| [34] |
Zhou, Z., Li, D.Q., Xiao, T., et al., 2021. Response Surface Guided Adaptive Slope Reliability Analysis in Spatially Varying Soils. Computers and Geotechnics, 132: 103966. https://doi.org/10.1016/j.compgeo.2020.103966 |
| [35] |
傅方煜, 郑小瑶, 吕庆,等,2014.基于响应面法的边坡稳定二阶可靠度分析.岩土力学, 35(12): 3460-3466. |
| [36] |
何成, 唐辉明, 申培武, 等, 2021. 应变软化边坡渐进破坏模式及稳定性可靠度. 地球科学, 46(2): 697-707. |
| [37] |
蒋水华, 李典庆, 曹子君, 等, 2015. 考虑参数空间变异性的边坡可靠度及其敏感性分析多重响应面法.防灾减灾工程学报, 35(5): 592-598. |
| [38] |
蒋水华, 刘贤, 尧睿智, 等, 2018. 基于贝叶斯更新和信息量分析的边坡钻孔布置方案优化设计方法. 岩土工程学报, 40(10): 1871-1879. |
| [39] |
刘光旭, 席建超, 戴尔阜, 等, 2014. 中国滑坡灾害承灾体损失风险定量评估. 自然灾害学报, 23(2): 39-46. |
| [40] |
唐朝晖, 柴波, 刘忠臣, 等, 2013. 填土边坡稳定性的可靠度分析. 地球科学, 38(3): 616-624. |
| [41] |
唐朝晖, 余小龙, 柴波, 等, 2021. 顺层岩质滑坡渐进破坏进入加速的能量学判据. 地球科学, 46(11): 4033-4042. |
| [42] |
王伟,陈国庆,朱静,等, 2018. 考虑张拉‒剪切渐进破坏的边坡强度折减法研究. 岩石力学与工程学报, 37(9): 2064-2074. |
| [43] |
张抒, 唐辉明, 刘晓, 等, 2018. 基于饱和渗透系数空间变异结构的斜坡渗流及失稳特征. 地球科学, 43(2): 622-634. |
| [44] |
仉文岗, 王琦, 陈福勇, 等, 2021. 考虑岩体空间变异性的边坡可靠度分析及抗滑桩随机响应研究. 岩土力学, 42(11): 3157-316. |
| [45] |
郑颖人, 赵尚毅, 2004. 有限元强度折减法在土坡与岩坡中的应用.岩石力学与工程学报, 23(19): 3381-3388. |
国家自然科学基金资助项目(42072302;41672276)
/
| 〈 |
|
〉 |