广东神灶海上温泉的流体地球化学特征及循环模式
Geochemical Characteristics and Circulation Conceptual Model of Geothermal Fluid in the Shenzao Coastal Hot Springs in Guangdong Province
,
广东神灶温泉出露于海水之中,揭示其流体循环机制对地热资源的可持续开发利用具有重要意义.通过采集神灶温泉区地热水、地热气体和海水样品,测试其流体地球化学组成及主要同位素组成,得到以下认识:神灶温泉水化学类型为Cl-Na∙Ca型,主要由大气降水补给;水中盐分主要来自硅酸盐矿物溶解和现代海水混入,海水混入比例为29%~32%.利用化学温度计估算热储温度为130 °C,地热水循环深度约4 km.地热气体以大气起源N2为主要组分,CO2、CH4为壳内有机沉积物的热变质产物.此外,He同位素指示幔源组分占比不足5%,研究区大地热流值为67~69 mW/m2.综上,神灶温泉区是以壳内放射性生热为主要热源的中温对流型地热系统.
海上温泉 / 温泉水化学 / 地热气体化学 / 地热流体循环模型 / 热储温度 / 地球化学
hot springs in the sea / hydrochemistry of hot spring / chemistry of geothermal gas / circulation model of geothermal fluid / reservoir temperature / geochemistry
| [1] |
Arnórsson, S., Gunnlaugsson, E., Svavarsson, H., 1983. The Chemistry of Geothermal Waters in Iceland. II. Mineral Equilibria and Independent Variables Controlling Water Compositions. Geochimica et Cosmochimica Acta, 47(3): 547-566 |
| [2] |
Chen, L.Z., Ma, T., Du, Y., et al., 2016. Hydrochemical and Isotopic (2H, 18O and 37Cl) Constraints on Evolution of Geothermal Water in Coastal Plain of Southwestern Guangdong Province, China. Journal of Volcanology and Geothermal Research, 318: 45-54. https://doi.org/10.1016/j.jvolgeores.2016.03.003 |
| [3] |
Chen, M. X., 1992. A New Map of Hot Springs in China and Its Explanation. Chinese Journal of Geology, 27(S1): 322-332 (in Chinese with English abstract). |
| [4] |
Dai, J. X., Dai, C. S., Song, Y., et al., 1994. Geochemical Characteristics and Carbon and Helium Isotopic Composition of Natural Gas in Hot Springs in some Areas of China. Science in China (Series B), 24(4): 426-433 (in Chinese). |
| [5] |
Duchkov, A. D., Rychkova, K. M., Lebedev, V. I., et al., 2010. Estimation of Heat Flow in Tuva from Data on Helium Isotopes in Thermal Mineral Springs. Russian Geology and Geophysics, 51(2): 209-219. https://doi.org/10.1016/j.rgg.2009.12.023 |
| [6] |
Fournier, R. O., 1977. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 5(1-4): 41-50. https://doi.org/10.1016/0375-6505(77)90007-4 |
| [7] |
Fournier, R. O., Truesdell, A. H., 1973. An Empirical Na-K-Ca Geothermometer for Natural Waters. Geochimica et Cosmochimica Acta, 37(5): 1255-1275. https://doi.org/10.1016/0016-7037(73)90060-4 |
| [8] |
Fournier, R. O., Potter, R. W., 1979. Magnesium Correction to the Na-K-Ca Chemical Geothermometer. Geochimica et Cosmochimica Acta, 43(9): 1543-1550. https://doi.org/10.1016/0016-7037(79)90147-9 |
| [9] |
Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3 |
| [10] |
Goldberg, E. D., Koide, M., Schmitt, R. A., et al., 1963. Rare-Earth Distributions in the Marine Environment. Journal of Geophysical Research, 68(14): 4209-4217. https://doi.org/10.1029/jz068i014p04209 |
| [11] |
Guo, H.M., Zhang, B., Wang, G.C., et al., 2010. Geochemical Controls on Arsenic and Rare Earth Elements Approximately along a Groundwater Flow Path in the Shallow Aquifer of the Hetao Basin, Inner Mongolia. Chemical Geology, 270(1-4): 117-125. https://doi.org/10.1016/j.chemgeo.2009.11.010 |
| [12] |
Hao, Y. L., Pang, Z. H., Kong, Y. L., et al., 2020. Chemical and Isotopic Constraints on the Origin of Saline Waters from a Hot Spring in the Eastern Coastal Area of China. Hydrogeology Journal, 28(7): 2457-2475. https://doi.org/10.1007/s10040-020-02199-7 |
| [13] |
Hu, S. B., He, L. J., Wang, J. Y., 2000. Heat Flow in the Continental Area of China: A New Data Set. Earth and Planetary Science Letters, 179(2): 407-419. https://doi.org/10.1016/S0012-821X(00)00126-6 |
| [14] |
Jiang, G. Z., Hu, S. B., Shi, Y. Z., et al., 2019. Terrestrial Heat Flow of Continental China: Updated Dataset and Tectonic Implications. Tectonophysics, 753: 36-48. https://doi.org/10.1016/j.tecto.2019.01.006 |
| [15] |
Karakuş, H., 2015. Helium and Carbon Isotope Composition of Gas Discharges in the Simav Geothermal Field, Turkey: Implications for the Heat Source. Geothermics, 57: 213-223. https://doi.org/10.1016/j.geothermics.2015.07.005 |
| [16] |
Kuang, J., Qi, S. H., Wang, S., et al., 2020. Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications. Earth Science, 45(4): 1466-1480 (in Chinese with English abstract). |
| [17] |
Li, J. X., Guo, Q. H., Yu, Z. Y., 2017. Impact of Clay Mineral Formation in High-Temperature Geothermal System on Accuracy of Na-K and K-Mg Geothermometers. Earth Science, 42(1): 142-154 (in Chinese with English abstract). |
| [18] |
Ling, H. F., Shen, W. Z., Sun, T., et al., 2006. Genesis and Source Characteristics of 22 Yanshanian Granites in Guangdong Province: Study of Element and Nd-Sr Isotopes. Acta Petrologica Sinica, 22(11): 2687-2703 (in Chinese with English abstract). |
| [19] |
Luo, J., Li, Y.M., Tian, J., et al., 2022. Geochemistry of Geothermal Fluid with Implications on Circulation and Evolution in Fengshun-Tangkeng Geothermal Field, South China. Geothermics, 100: 102323. https://doi.org/10.1016/j.geothermics.2021.102323 |
| [20] |
Marty, B., Gunnlaugsson, E., Jambon, A., et al., 1991. Gas Geochemistry of Geothermal Fluids, the Hengill Area, Southwest Rift Zone of Iceland. Chemical Geology, 91(3): 207-225. https://doi.org/10.1016/0009-2541(91)90001-8 |
| [21] |
O’Nions, R. K., Oxburgh, E. R., 1983. Heat and Helium in the Earth. Nature, 306(5942): 429-431. https://doi.org/10.1038/306429a0 |
| [22] |
Pang Z. H., 1987. The Geothermal System of Zhangzhou Basin-Studies about the Genesis Model, Geothermal Potential and Distribution of Geothermal Water (Dissertation). Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (in Chinese with English abstract). |
| [23] |
Pang, Z. H., Reed, M., 1998. Theoretical Chemical Thermometry on Geothermal Waters: Problems and Methods. Geochimica et Cosmochimica Acta, 62(6): 1083-1091 https://doi.org/10.1016/0016-7037(84)90404-6 |
| [24] |
Polyak, B., Tolstikhin, I., Yakutseni, V., 1979. The Isotopic Composition of Helium and Heat-Flow-Geochemical and Geophysical Aspects of Tectogenesis. Geotectonics, 13(5): 339-351. |
| [25] |
Reed, M., Spycher, N., 1984. Calculation of pH and Mineral Equilibria in Hydrothermal Waters with Application to Geothermometry and Studies of Boiling and Dilution. Geochimica et Cosmochimica Acta, 48(7): 1479-1492. https://doi.org/10.1016/0016-7037(84)90404-6 |
| [26] |
Sano, Y., Marty, B., 1995. Origin of Carbon in Fumarolic Gas from Island Arcs. Chemical Geology, 119(1-4): 265-274. https://doi.org/10.1016/0009-2541(94)00097-r |
| [27] |
Sano, Y., Wakita, H., 1985. Geographical Distribution of 3He/4He Ratios in Japan: Implications for Arc Tectonics and Incipient Magmatism. Journal of Geophysical Research: Solid Earth, 90(B10): 8729-8741. https://doi.org/10.1029/JB090iB10p08729 |
| [28] |
Sedlacek, A. R. C., Saltzman, M. R., Algeo, T. J., et al., 2014. 87Sr/86Sr Stratigraphy from the Early Triassic of Zal, Iran: Linking Temperature to Weathering Rates and the Tempo of Ecosystem Recovery. Geology, 42(9): 779-782. https://doi.org/10.1130/G35545.1 |
| [29] |
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell, Oxford. |
| [30] |
Tian, J., Pang, Z.H., Liao, D., et al., 2021. Fluid Geochemistry and Its Implications on the Role of Deep Faults in the Genesis of High Temperature Systems in the Eastern Edge of the Qinghai Tibet Plateau. Applied Geochemistry, 131: 105036. https://doi.org/10.1016/j.apgeochem.2021.105036 |
| [31] |
Tonani, F. B., 1980. Some Remarks on the Application of Geochemical Techniques in Geothermal Exploration. Advances in European Geothermal Research. Springer, Dordrecht, 428-443. |
| [32] |
Truesdell, A., 1976. Summary of Section III Geochemical Techniques in Exploration. The 2nd UN Symposium on the Development and Use of Geothermal Resources, San Francisco. |
| [33] |
Ueno, Y., Yamada, K., Yoshida, N., et al., 2006. Evidence from Fluid Inclusions for Microbial Methanogenesis in the Early Archaean Era. Nature, 440(7083): 516-519. https://doi.org/10.1038/nature04584 |
| [34] |
Wang, J. Y., Xiong, L. P., Huang, S. P., 1996. Heat Transfer and Groundwater Activity in Sedimentary Basins. Quaternary Sciences, 16(2): 147-158 (in Chinese with English abstract). |
| [35] |
Wang, X., 2018. Formation Conditions and Hydrogeochemical Characteristics of the Geothermal Water in Typical Coastal Geothermal Field with Deep Faults, Guangdong Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [36] |
Wang, X., Lu, G., Hu, B. X., 2018. Hydrogeochemical Characteristics and Geothermometry Applications of Thermal Waters in Coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China. Geofluids, 2018: 1-24. https://doi.org/10.1155/2018/8715080 |
| [37] |
Wang, Y., 1999. A Study on Mantle Heat Flow of Continental Area of China by Helium Isotope Ratio of the Underground Fluid. Acta Geoscientia Sinica, 20(Suppl.): 48-50 (in Chinese with English abstract). |
| [38] |
Wang, Y., 2000. Estimations of the Ratio of Crust/Mantle Heat Flow Using Helium Isotope Ratio of Underground Fluid. Chinese Journal of Geophysics, 43(6): 762-770 (in Chinese with English abstract). |
| [39] |
Wang, Y. C., Li, L., Wen, H. G., et al., 2022. Geochemical Evidence for the Nonexistence of Supercritical Geothermal Fluids at the Yangbajing Geothermal Field, Southern Tibet. Journal of Hydrology, 604: 127243. https://doi.org/10.1016/j.jhydrol.2021.127243 |
| [40] |
Waples, D. W., 2001. A New Model for Heat Flow in Extensional Basins: Radiogenic Heat, Asthenospheric Heat, and the McKenzie Model. Natural Resources Research, 10(3): 227-238. https://doi.org/10.1023/A: 1012521309181 |
| [41] |
Yuan, J. F., 2013. Study of the Hydrochemical Characteristics of the Coastal Geothermal Systmes in Guangdong Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [42] |
Zhang, Z. J., Wang, Y. H., 2007. Crustal Structure and Contact Relationship Revealed from Deep Seismic Sounding Data in South China. Physics of the Earth and Planetary Interiors, 165(1-2): 114-126. https://doi.org/10.1016/j.pepi.2007.08.005 |
| [43] |
Zhao, P., Wang, J. Y., Wang, J. A., et al., 1995. Characteristics of Heat Production Distribution in SE China. Acta Petrologica Sinica, 11(3): 292-305 (in Chinese with English abstract). |
| [44] |
陈墨香, 1992. 新编中国温泉图及其说明. 地质科学, 27(S1): 322-332. |
| [45] |
戴金星, 戴春森, 宋岩, 等, 1994. 中国一些地区温泉中天然气的地球化学特征及碳、氦同位素组成. 中国科学(B辑), 24(4): 426-433. |
| [46] |
旷健, 祁士华, 王帅, 等, 2020. 广东惠州花岗岩体及其地热意义. 地球科学, 45(4): 1466-1480. |
| [47] |
李洁祥, 郭清海, 余正艳, 2017. 高温地热系统中粘土矿物形成对Na-K和K-Mg地球化学温标准确性的影响. 地球科学, 42(1): 142-154. |
| [48] |
凌洪飞, 沈渭洲, 孙涛, 等, 2006. 广东省22个燕山期花岗岩的源区特征及成因: 元素及Nd-Sr同位素研究. 岩石学报, 22(11): 2687-2703. |
| [49] |
庞忠和,1987. 漳州盆地地热系统——成因模式、热能潜力与热水分布规律的研究(博士学位论文). 北京: 中国科学院地质与地球物理研究所. |
| [50] |
汪集旸, 熊亮萍, 黄少鹏, 1996. 沉积盆地中热的传递和地下水活动. 第四纪研究, 16(2): 147-158. |
| [51] |
汪啸, 2018. 广东沿海典型深大断裂带地热水系统形成条件及水文地球化学特征(博士学位论文). 武汉:中国地质大学. |
| [52] |
汪洋, 1999. 利用地下流体He同位素比值资料研究中国大陆地幔热流. 地质学报, 20(增刊): 48-50. |
| [53] |
汪洋, 2000. 利用地下流体氦同位素比值估算大陆壳幔热流比例. 地球物理学报, 43(6): 762-770. |
| [54] |
袁建飞,2013. 广东沿海地热系统水文地球化学研究(博士学位论文). 武汉:中国地质大学. |
| [55] |
赵平, 汪集旸, 汪缉安, 等, 1995. 中国东南地区岩石生热率分布特征. 岩石学报, 11(3): 292-305 |
国家重点研发计划项目课题(2019YFC0604901)
国家自然科学基金项目(41902252)
/
| 〈 |
|
〉 |