库车坳陷博孜X区块超深储层有效裂缝分布规律及对天然气产能的影响
徐珂 , 张辉 , 鞠玮 , 尹国庆 , 王海应 , 王志民 , 王朝辉 , 李超 , 袁芳 , 赵崴
地球科学 ›› 2023, Vol. 48 ›› Issue (07) : 2489 -2505.
库车坳陷博孜X区块超深储层有效裂缝分布规律及对天然气产能的影响
Effective Fracture Distribution and Its Influence on Natural Gas Productivity of Ultra-Deep Reservoir in Bozi-X Block of Kuqa Depression
,
为明确库车坳陷超深致密砂岩储层有效裂缝分布特征,基于古应力产生裂缝、现今应力影响裂缝有效性的原理,根据岩心资料和成像测井数据查明裂缝力学性质并拾取裂缝参数,通过构造恢复反演等效古应力、有限元方法预测现今应力场,并结合DFN离散裂缝网格建模,对库车坳陷克拉苏构造带博孜X区块超深致密砂岩储层裂缝进行预测.结果表明,博孜X气藏构造裂缝以未充填‒半充填的高角度剪切缝为主,局部发育小规模的张性裂缝,大多数裂缝形成于喜马拉雅晚期的快速强烈挤压作用;博孜地区地应力场从白垩纪到新近纪,随着北部力源传导的持续往南推进,应力高值呈现由北向南迁移的特点;博孜X气藏构造裂缝发育分布的非均质性极强,在北东部位的X104井区发育程度高,在南西部位的X103井区周围密度低,现今地应力对裂缝有效性影响显著,进而影响气井产能.博孜X区块裂缝形成受断层和褶皱共同控制,单从构造特征难以准确预测裂缝分布,而通过地质力学原理和方法预测裂缝具有较好的吻合度.在超深层储层,不能只通过孔隙度、储层厚度等因素来评价并预测气井产能的高低.
超深致密砂岩储层 / 裂缝预测 / 裂缝有效性 / 地质力学 / 库车坳陷 / 石油地质学
ultra-deep tight sandstone reservoir / fracture prediction / fracture effectiveness / geomechanics / Kuqa Depression / petroleum geology
| [1] |
Barton, C. A., Zoback, M. D., Moos, D., 1995. Fluid Flow along Potentially Active Faults in Crystalline Rock. Geology, 23(8): 683. https://doi.org/10.1130/0091-7613(1995)0230683: ffapaf>2.3.co;2 |
| [2] |
Dai, J. S., Shang, L., Wang, T. D., et al., 2014. Numerical Simulation of Current In-Situ Stress Field of Fengshan Formation and Distribution Prediction of Effective Fracture in Futai Buried Hill. Petroleum Geology and Recovery Efficiency, 21(6): 33-36, 113 (in Chinese with English abstract). |
| [3] |
Ding, W. L., Li, C., Li, C. Y., et al., 2012. Dominant Factor of Fracture Development in Shale and Its Relationship to Gas Accumulation. Earth Science Frontiers, 19(2): 212-220 (in Chinese with English abstract). |
| [4] |
Dong, S. Q., Lyu, W. Y., Xia, D. L., et al., 2020. An Approach to 3D Geological Modeling of Multi-Scaled Fractures in Tight Sandstone Reservoirs. Oil & Gas Geology, 41(3): 627-637 (in Chinese with English abstract). |
| [5] |
Feng, J. W., Dai, J. S., Ma, Z. R., et al., 2011. The Theoretical Model between Fracture Parameters and Stress Field of Low-Permeability Sandstones. Acta Petrolei Sinica, 32(4): 664-671 (in Chinese with English abstract). |
| [6] |
Feng, X. K., Liu, J., Liu, Y. L., et al., 2015. Development Characteristics of Pop-Up Structure in Kuqa Foreland Thrust Belt, Northern Tarim Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 42(3): 296-302 (in Chinese with English abstract). |
| [7] |
Gao, L., Wang, X., Rao, G., 2020. Two-Dimensional Balanced Restoration of Salt Structures and Analysis of Restored Cross Sections in the Western Kuqa Depression. Acta Geologica Sinica, 94(6): 1727-1739 (in Chinese with English abstract). |
| [8] |
Guan, S. W., He, D.F., 2011. Theories and Technical Frameworks of Complex Structural Modeling. Acta Petrolei Sinica, 32(6): 991-1000 (in Chinese with English abstract). |
| [9] |
Guan, S. W., Li, B. L., He, D. F., et al., 2007. Late Cenozoic Active Fold-and-Thrust Belts in the Southern and Northern Flanks of Tianshan. Acta Geologica Sinica, 81(6): 725-744 (in Chinese with English abstract). |
| [10] |
Gong, L., Gao, M. Z., Zeng, L. B., et al., 2017. Controlling Factors on Fracture Development in the Tight Sandstone Reservoirs: A Case Study of Jurassic-Neogene in the Kuqa Foreland Basin. Natural Gas Geoscience, 28(2): 199-208 (in Chinese with English abstract). |
| [11] |
Ji, Z. Z., Dai, J. S., Wang, B.F., 2010. Quantitative Relationship between Crustal Stress and Parameters of Tectonic Fracture. Acta Petrolei Sinica, 31(1): 68-72 (in Chinese with English abstract). |
| [12] |
Jiang, T. W., Zhang, H., Xu, K., et al., 2021. Technology and Practice of Quantitative Optimization of Borehole Trajectory in Ultra-Deep Fractured Reservoir: A Case Study of Bozi A Gas Reservoir in Kelasu Structural Belt, Tarim Basin. China Petroleum Exploration, 26(4): 149-161 (in Chinese with English abstract). |
| [13] |
Ju, W., Hou, G. T., Huang, S. Y., et al., 2013. Structural Fracture Distribution and Prediction of the Lower Jurassic Ahe Formation Sandstone in the Yinan-Tuzi Area, Kuqa Depression. Geotectonica et Metallogenia, 37(4): 592-602 (in Chinese with English abstract). |
| [14] |
Ju, W., Shen, J. A., Qin, Y., et al., 2021. Stress Distribution in the Upper Shihezi Formation from 1D Mechanical Earth Model and 3D Heterogeneous Geomechanical Model, Linxing Region, Eastern Ordos Basin, Central China. Acta Geologica Sinica (English Edition), 95(3): 976-987. https://doi.org/10.1111/1755-6724.14411 |
| [15] |
Ju, W., Wang, J. L., Fang, H. H., et al., 2019. Paleotectonic Stress Field Modeling and Prediction of Natural Fractures in the Lower Silurian Longmaxi Shale Reservoirs, Nanchuan Region, South China. Marine and Petroleum Geology, 100: 20-30. https://doi.org/10.1016/j.marpetgeo.2018.10.052 |
| [16] |
Liu, J. S., Ding, W. L., Wang, R. Y., et al., 2017a. Simulation of Paleotectonic Stress Fields and Quantitative Prediction of Multi-Period Fractures in Shale Reservoirs: A Case Study of the Niutitang Formation in the Lower Cambrian in the Cen’gong Block, South China. Marine and Petroleum Geology, 84: 289-310. https://doi.org/10.1016/j.marpetgeo.2017.04.004 |
| [17] |
Liu, J. S., Ding, W. L., Yang, H. M., et al., 2017b.3D Geomechanical Modeling and Numerical Simulation of In-Situ Stress Fields in Shale Reservoirs: A Case Study of the Lower Cambrian Niutitang Formation in the Cen’gong Block, South China. Tectonophysics, 712-713: 663-683. https://doi.org/10.1016/j.tecto.2017.06.030 |
| [18] |
Liu, J. S., Ding, W. L., Xiao, Z. K., et al., 2019. Advances in Comprehensive Characterization and Prediction of Reservoir Fractures. Progress in Geophysics, 34(6): 2283-2300 (in Chinese with English abstract). |
| [19] |
Liu, Z. F., Liu, Z.Q., Guo, Y. L., et al., 2021. Concept and Geological Model of Fault-Fracture Reservoir and Their Application in Seismic Fracture Prediction: A Case Study on the Xu 2 Member Tight Sandstone Gas Pool in Xinchang Area, Western Sichuan Depression in Sichuan Basin. Oil & Gas Geology, 42(4): 973-980 (in Chinese with English abstract). |
| [20] |
Lyu, W. Y., Miao, F. B., Zhang, B. J., et al., 2020. Fracture Characteristics and Their Influence on Natural Gas Production: A Case Study of the Tight Conglomerate Reservoir in the Upper Triassic Xujiahe Formation in Jian’ge Area, Sichuan Basin. Oil & Gas Geology, 41(3): 484-491, 557 (in Chinese with English abstract). |
| [21] |
Mao, Z., Zeng, L. B., Liu, G. P., et al., 2020. Characterization and Effectiveness of Natural Fractures in Deep Tight Sandstones at the South Margin of the Junggar Basin, Northwestern China. Oil & Gas Geology, 41(6): 1212-1221 (in Chinese with English abstract). |
| [22] |
Qiu, N.S., Liu, Y.F., Liu, W., et al., 2020. Quantitative Reconstruction of Formation Paleo-Pressure in Sedimentary Basins and Case Studies. Scientia Sinica Terrae, 50(6): 793-806 (in Chinese). |
| [23] |
Ren, Q. Q., Jin, Q., Feng, Z. D., et al., 2020. Prediction of Key Period Fractures of Ordovician Carbonate Reservoir in Hetianhe Gas Field. Journal of China University of Petroleum (Edition of Natural Science), 44(6): 1-13 (in Chinese with English abstract). |
| [24] |
Wang, B., Yang, Y., Cao, Z. C., et al., 2021. U-Pb Dating of Calcite Veins Developed in the Middle-Lower Ordovician Reservoirs in Tahe Oilfield and Its Petroleum Geologic Significance in Tahe Oilfield. Earth Science, 46(9): 3203-3216 (in Chinese with English abstract). |
| [25] |
Wang, B.F., 2007. Description and Quantitative Predication of Reservoir Structural Fractures (Dissertation).China University of Petroleum, Qingdao (in Chinese with English abstract). |
| [26] |
Wang, K., 2014. Quantitative Description of Reservoir Fracture in Clastic Rocks of Keshen Gasfield (Dissertation). China University of Petroleum, Qingdao (in Chinese with English abstract). |
| [27] |
Wang, K., Yang, H. J., Li, Y., et al., 2020. Formation Sequence and Distribution of Structural Fractures in Compact Sandstone Reservoir of Keshen Gas Field in Kuqa Depression, Tarim Basin. Geotectonica et Metallogenia, 44(1): 30-46 (in Chinese with English abstract). |
| [28] |
Wang, K., Zhang, H. L., Zhang, R. H., et al., 2015. Comprehensive Assessment of Reservoir Structural Fracture with Multiple Methods in Keshen-2 Gas Field, Tarim Basin. Acta Petrolei Sinica, 36(6): 673-687 (in Chinese with English abstract). |
| [29] |
Wang, W., Fu, H., Xing, L. X., et al., 2021. Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method. Earth Science, 46(10): 3509-3519 (in Chinese with English abstract). |
| [30] |
Wang, Z.M., Li, Y., Xie, H.W., et al., 2016. Geological Understanding on the Formation of Large-Scale Ultra-Deep Oil-Gas Field in Kuqa Foreland Basin. China Petroleum Exploration, 21(1): 37-43 (in Chinese with English abstract). |
| [31] |
Xie, H. W., Li, Y., Qi, J. F., et al., 2012. Differential Structural Deformation and Tectonic Evolution in the Middle Part of Kuqa Depression, Tarim Basin. Geoscience, 26(4): 682-690 (in Chinese with English abstract). |
| [32] |
Xu, Z. P., Xie, H. W., Li, Y., et al., 2012. Characteristics and Controlling Factors of the Subsalt Differential Structure in the Kelasu Structural Belt, Kuqa Depression. Natural Gas Geoscience, 23(6): 1034-1038 (in Chinese with English abstract). |
| [33] |
Yang, H. J., Li, Y., Tang, Y. G., et al., 2021. Accumulation Conditions, Key Exploration and Development Technologies for Keshen Gas Field in Tarim Basin. Acta Petrolei Sinica, 42(3): 399-414 (in Chinese with English abstract). |
| [34] |
Yang, H. J., Sun, X. W., Pan, Y. Y., et al., 2020. Structural Deformation Laws and Oil & Gas Exploration Direction in the Western Kelasu Tectonic Zone of the Tarim Basin. Natural Gas Industry, 40(1): 31-37 (in Chinese with English abstract). |
| [35] |
Yang, Y., Wang, B., Cao, Z. C., et al., 2021. Genesis and Formation Time of Calcite Veins of Middle-Lower Ordovician Reservoirs in Northern Shuntuoguole Low- Uplift, Tarim Basin. Earth Science, 46(6): 2246-2257 (in Chinese with English abstract). |
| [36] |
Yu, X., Hou, G. T., Neng, Y., et al., 2016. Development and Distribution Characteristics of Tectonic Fractures in Kuqa Depression. Geological Journal of China Universities, 22(4): 644-656 (in Chinese with English abstract). |
| [37] |
Yuan, J., Yang, X. J., Yuan, L. R., et al., 2015. Cementation and Its Relationship with Tectonic Fractures of Cretaceous Sandstones in DB Gas Field of Kuqa Sub-Basin. Acta Sedimentologica Sinica, 33(4): 754-763 (in Chinese with English abstract). |
| [38] |
Zeng, L. B., Lyu, P., Qu, X. F., et al., 2020. Multi-Scale Fractures in Tight Sandstone Reservoirs with Low Permeability and Geological Conditions of Their Development. Oil & Gas Geology, 41(3): 449-454 (in Chinese with English abstract). |
| [39] |
Zeng, L.B., Tan, C.X., Zhang, M.L., 2004. Mesozoic and Cenozoic Tectonic Stress Field and Its Hydrocarbon Migration and Accumulation Effect in Kuqa Depression, Tarim Basin. Scientia Sinica Terrae, 34(S1): 98-106 (in Chinese). |
| [40] |
Zhang, B., Zhang, F. Q., Zhuo, Q. G., et al., 2022. Distribution Prediction of Tectonic Fractures in the Upper Member of Xiaganchaigou Formation in Yingxi Area, Qaidam Basin. Progress in Geophysics, 37(2): 709-720 (in Chinese with English abstract). |
| [41] |
Zhang, H., Yang, H. J., Yin, G. Q., et al., 2020. Application Practice of Key Technologies of Geology- Engineering Integration in Efficient Development in Kelasu Structural Belt. China Petroleum Exploration, 25(2): 120-132 (in Chinese with English abstract). |
| [42] |
Zheng, M. J., Chen, K. L., Cai, J. S., et al., 2022. Application of Shale Gas Fracture Prediction Based on Amplitude Gradient Messy Detection Algorithm in Changning Area. Progress in Geophysics, 37(5): 2110-2117 (in Chinese with English abstract). |
| [43] |
Zhou, X. G., Zhang, L. Y., Qu, X. F., et al., 2009. Characteristics and Quantitative Prediction of Distribution Laws of Tectonic Fractures of Low-Permeability Reservoirs in Yanhewan Area. Acta Petrolei Sinica, 30(2): 195-200 (in Chinese with English abstract). |
| [44] |
Zoback, M. D., 2007. Reservoir Geomechanics. Cambridge University Press, Cambridge, 206-265. |
| [45] |
Zoback, M.D., Peska, P., 2019. In-Situ Stress and Rock Strength in the GBRN/DOE Pathfinder Well, South Eugene Island, Gulf of Mexico. Journal of Petroleum Technology, 47(7): 582-585. |
| [46] |
戴俊生, 商琳, 王彤达, 等, 2014. 富台潜山凤山组现今地应力场数值模拟及有效裂缝分布预测. 油气地质与采收率, 21(6): 33-36, 113. |
| [47] |
丁文龙, 李超, 李春燕, 等, 2012. 页岩裂缝发育主控因素及其对含气性的影响. 地学前缘, 19(2): 212-220. |
| [48] |
董少群, 吕文雅, 夏东领, 等, 2020. 致密砂岩储层多尺度裂缝三维地质建模方法. 石油与天然气地质, 41(3): 627-637. |
| [49] |
冯建伟, 戴俊生, 马占荣, 等, 2011. 低渗透砂岩裂缝参数与应力场关系理论模型. 石油学报, 32(4): 664-671. |
| [50] |
冯许魁, 刘军, 刘永雷, 等, 2015. 库车前陆冲断带突发构造发育特点. 成都理工大学学报(自然科学版), 42(3): 296-302. |
| [51] |
高麟, 汪新, 饶刚, 2020. 库车坳陷西段盐构造二维平衡恢复与复原构造剖面分析. 地质学报, 94(6): 1727-1739. |
| [52] |
管树巍, 何登发, 2011. 复杂构造建模的理论与技术架构. 石油学报, 32(6): 991-1000. |
| [53] |
管树巍, 李本亮, 何登发, 等, 2007. 晚新生代以来天山南、北麓冲断作用的定量分析. 地质学报, 81(6): 725-744. |
| [54] |
巩磊, 高铭泽, 曾联波, 等, 2017. 影响致密砂岩储层裂缝分布的主控因素分析——以库车前陆盆地侏罗系‒新近系为例. 天然气地球科学, 28(2): 199-208. |
| [55] |
季宗镇, 戴俊生, 汪必峰, 2010. 地应力与构造裂缝参数间的定量关系. 石油学报, 31(1): 68-72. |
| [56] |
江同文, 张辉, 徐珂, 等, 2021. 超深层裂缝型储层最佳井眼轨迹量化优选技术与实践——以克拉苏构造带博孜A气藏为例. 中国石油勘探, 26(4): 149-161. |
| [57] |
鞠玮, 侯贵廷, 黄少英, 等, 2013. 库车坳陷依南‒吐孜地区下侏罗统阿合组砂岩构造裂缝分布预测. 大地构造与成矿学, 37(4): 592-602. |
| [58] |
刘敬寿, 丁文龙, 肖子亢, 等, 2019. 储层裂缝综合表征与预测研究进展. 地球物理学进展, 34(6): 2283-2300. |
| [59] |
刘振峰, 刘忠群, 郭元岭, 等, 2021. “断缝体”概念、地质模式及其在裂缝预测中的应用——以四川盆地川西坳陷新场地区须家河组二段致密砂岩气藏为例. 石油与天然气地质, 42(4): 973-980. |
| [60] |
吕文雅, 苗凤彬, 张本键, 等, 2020. 四川盆地剑阁地区须家河组致密砾岩储层裂缝特征及对天然气产能的影响. 石油与天然气地质, 41(3): 484-491, 557. |
| [61] |
毛哲, 曾联波, 刘国平, 等, 2020. 准噶尔盆地南缘侏罗系深层致密砂岩储层裂缝及其有效性. 石油与天然气地质, 41(6): 1212-1221. |
| [62] |
邱楠生, 刘一锋, 刘雯, 等, 2020. 沉积盆地地层古压力定量重建方法与研究实例. 中国科学: 地球科学, 50(6): 793-806. |
| [63] |
任启强, 金强, 冯振东, 等, 2020. 和田河气田奥陶系碳酸盐岩储层关键期构造裂缝预测. 中国石油大学学报(自然科学版), 44(6): 1-13. |
| [64] |
王斌, 杨毅, 曹自成, 等, 2021. 塔河油田中下奥陶统储层裂缝方解石脉U-Pb同位素年龄及油气地质意义. 地球科学, 46(9): 3203-3216. |
| [65] |
汪必峰, 2007. 储集层构造裂缝描述与定量预测(博士学位论文).青岛: 中国石油大学. |
| [66] |
王珂, 2014.克深气田碎屑岩储层裂缝定量描述(博士学位论文).青岛:中国石油大学. |
| [67] |
王珂, 杨海军, 李勇, 等, 2020. 库车坳陷克深气田致密砂岩储层构造裂缝形成序列与分布规律. 大地构造与成矿学, 44(1): 30-46. |
| [68] |
王珂, 张惠良, 张荣虎, 等, 2015. 塔里木盆地克深2气田储层构造裂缝多方法综合评价. 石油学报, 36(6): 673-687. |
| [69] |
王伟, 付豪, 邢林啸, 等, 2021. 基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为. 地球科学, 46(10): 3509-3519. |
| [70] |
王招明, 李勇, 谢会文, 等, 2016. 库车前陆盆地超深层大油气田形成的地质认识. 中国石油勘探, 21(1): 37-43. |
| [71] |
谢会文, 李勇, 漆家福, 等, 2012. 库车坳陷中部构造分层差异变形特征和构造演化. 现代地质, 26(4): 682-690. |
| [72] |
徐振平, 谢会文, 李勇, 等, 2012. 库车坳陷克拉苏构造带盐下差异构造变形特征及控制因素. 天然气地球科学, 23(6): 1034-1038. |
| [73] |
杨海军, 李勇, 唐雁刚, 等, 2021. 塔里木盆地克深气田成藏条件及勘探开发关键技术. 石油学报, 42(3): 399-414. |
| [74] |
杨海军, 孙雄伟, 潘杨勇, 等, 2020. 塔里木盆地克拉苏构造带西部构造变形规律与油气勘探方向. 天然气工业, 40(1): 31-37. |
| [75] |
杨毅, 王斌, 曹自成, 等, 2021. 塔里木盆地顺托果勒低隆起北部中下奥陶统储层方解石脉成因及形成时间. 地球科学, 46(6): 2246-2257. |
| [76] |
于璇, 侯贵廷, 能源, 等, 2016. 库车坳陷构造裂缝发育特征及分布规律. 高校地质学报, 22(4): 644-656. |
| [77] |
袁静, 杨学君, 袁凌荣, 等, 2015. 库车坳陷DB气田白垩系砂岩胶结作用及其与构造裂缝关系. 沉积学报, 33(4): 754-763. |
| [78] |
曾联波, 吕鹏, 屈雪峰, 等, 2020. 致密低渗透储层多尺度裂缝及其形成地质条件. 石油与天然气地质, 41(3): 449-454. |
| [79] |
曾联波, 谭成轩, 张明利, 2004. 塔里木盆地库车坳陷中新生代构造应力场及其油气运聚效应. 中国科学: 地球科学, 34(S1): 98-106. |
| [80] |
张博, 张凤奇, 卓勤功, 等, 2022. 柴达木盆地英西地区下干柴沟组上段构造裂缝的分布预测. 地球物理学进展, 37(2): 709-720. |
| [81] |
张辉, 杨海军, 尹国庆, 等, 2020. 地质工程一体化关键技术在克拉苏构造带高效开发中的应用实践. 中国石油勘探, 25(2): 120-132. |
| [82] |
郑马嘉, 陈珂磷, 蔡景顺, 等, 2022. 基于振幅梯度凌乱性检测算法的页岩气裂缝预测在长宁地区的应用. 地球物理学进展, 37(5): 2110-2117. |
| [83] |
周新桂, 张林炎, 屈雪峰, 等, 2009. 沿河湾探区低渗透储层构造裂缝特征及分布规律定量预测. 石油学报, 30(2): 195-200. |
国家重大科技专项(2016ZX05051)
中国石油天然气股份有限公司重大科技专项(2018E-1803)
中国博士后科学基金项目(2019M660269)
/
| 〈 |
|
〉 |