基于模拟月壤的贯入模块化试验
Penetration Modular Test Based on Lunar Soil Simulant
,
,
为了解采样机具与模拟月壤间的相互作用,同时验证月壤采样机具模块化建模的可行性.基于中国地质大学(武汉)研制的CUG-1A型模拟月壤,开展不同条件下机具贯入力载的试验研究,并依据试验结果建立理论模型进行验证.各机具在浅层模拟月壤贯入阻力平均增长率为19.9%,次浅层提升至38.18%,深层出现陡增达到63.43%;贯入速度对贯入阻力的平均误差为2.5%;不同入土角度下贯入阻力的平均增长率为62.85%;不同截面机具贯入阻力随截面面积增长而增长,值近似为1∶2∶3∶4.同时进行了机具结构模块化验证,理论模型与试验结果吻合度在85%以上.采样机具所受贯入阻力与贯入深度、方式和机具结构明显相关,可建立模块化理论模型准确预估不同条件机具的贯入阻力.
表层贯入 / 模块化 / 贯入阻力 / 机土作用 / 模拟月壤 / 土力学 / 工程地质
surface penetration / modularization / penetration resistance / mechanical soil action / simulated lunar soil / soil mechanics / engineering geology
| [1] |
Agui, J. H., Bucek, M., DeGennaro, A., et al., 2013. Lunar Excavation Experiments in Simulant Soil Test Beds: Revisiting the Surveyor Geotechnical Data. Journal of Aerospace Engineering, 26(1): 117-133. https://doi.org/10.1061/(asce)as.1943-5525.0000249 |
| [2] |
Cai, H. H., Peng, Z. B., 2015. Taking the Moon Drilling as an Example to Explore Exoplanet Drilling Technology. Science & Technology Vision, (16): 6-7 (in Chinese with English abstract). |
| [3] |
Chen, T., Zhao, Z., Wang, Q., et al., 2019. Modeling and Experimental Investigation of Drilling into Lunar Soils. Applied Mathematics and Mechanics, 40(1): 153-166. https://doi.org/10.1007/s10483-019-2410-8 |
| [4] |
Gao, H., Duan, L. C., Li, Q., et al., 2014. Surface Sampling Experiment for Lunar Soil Simulant. Geological Science and Technology Information, 33(6): 175-179 (in Chinese with English abstract). |
| [5] |
Green, A., Zacny, K., 2014. Effect of Mars Atmospheric Pressure on Percussive Excavation Forces. Journal of Terramechanics, 51: 43-52. https://doi.org/10.1016/j.jterra.2013.11.001 |
| [6] |
Gu, Y., Sun, J. Y., Xiao, Q., et al., 2022. Morphology of Lunar Soil Returned by Chang’E-5 Mission and Implications for Space Weathering. Earth Science, 47(11): 4145-4160 (in Chinese with English abstract). |
| [7] |
Johnson, L. L., King, R. H., 2010. Measurement of Force to Excavate Extraterrestrial Regolith with a Small Bucket-Wheel Device. Journal of Terramechanics, 47(2): 87-95. https://doi.org/10.1016/j.jterra.2009.08.002 |
| [8] |
King, R. H., Van Susante, P., Gefreh, M. A., 2011. Analytical Models and Laboratory Measurements of the Soil-Tool Interaction Force to Push a Narrow Tool through JSC-1A Lunar Simulant and Ottawa Sand at Different Cutting Depths. Journal of Terramechanics, 48(1): 85-95. https://doi.org/10.1016/j.jterra.2010.07.003 |
| [9] |
Li, Q., Xie, L. L., Li, J. P., 2019. Modular Motion- Structure Design Model for Planetary Surface Sampling. International Journal of Aerospace Engineering, 2019: 5987306. https://doi.org/10.1155/2019/5987306 |
| [10] |
Li, Q., Gao, H., Xie, L. L., et al., 2021. Review of Research about Lunar Drilling Technology. Drilling Engineering, 48(1): 15-34 (in Chinese with English abstract). |
| [11] |
Liu, D. Y., Wang, L. S., Sun, Q. C., et al., 2018. Drilling Experiment of Simulated Icy Soil of Lunar Polar Region. Science Technology and Engineering, 18(25): 256-261 (in Chinese with English abstract). |
| [12] |
Maciejewski, J., Jarzębowski, A., Tra̧mpczyński, W., 2003. Study on the Efficiency of the Digging Process Using the Model of Excavator Bucket. Journal of Terramechanics, 40(4): 221-233. https://doi.org/10.1016/j.jterra.2003.12.003 |
| [13] |
Obermayr, M., Dressler, K., Vrettos, C., et al., 2011. Prediction of Draft Forces in Cohesionless Soil with the Discrete Element Method. Journal of Terramechanics, 48(5): 347-358. https://doi.org/10.1016/j.jterra.2011.08.003 |
| [14] |
Pan, Y. X., Wang, C., 2021. Developing the Planetary Science Research for the Sustainable Deep Space Exploration of China. Bulletin of National Natural Science Foundation of China, 35(2): 181-185 (in Chinese with English abstract). |
| [15] |
Pang, Y., Feng, Y.J., Sun, Q.C., et al., 2019. Simulation and Experimental Study on the Effect of Large Granular Rocks in Lunar Soil on Drilling Load. Acta Scientiarum Naturalium Universitatis Pekinensis, 55(3): 397-404 (in Chinese with English abstract). |
| [16] |
Quan, Q. Q., Tang, J. Y., Yuan, F. P., et al., 2017. Drilling Load Modeling and Validation Based on the Filling Rate of Auger Flute in Planetary Sampling. Chinese Journal of Aeronautics, 30(1): 434-446. https://doi.org/10.1016/j.cja.2016.05.003 |
| [17] |
Tang, J. Y., 2020. Research on the Characteristics of Adaptive Drilling and Coring into High Compacted Lunar Regolith Simulant (Dissertation). Harbin Institute of Technology, Harbin (in Chinese with English abstract). |
| [18] |
Tian, Y., Deng, Z. Q., Tang, D. W., et al., 2012. Structure Parameters Optimization and Simulation Experiment of Auger in Lunar Soil Drill-Sampling Device. Journal of Mechanical Engineering, 48(23): 10-15 (in Chinese with English abstract). |
| [19] |
Wu, W. R., Yu, D. Y., 2014. Development of Deep Space Exploration and Its Future Key Technologies. Journal of Deep Space Exploration, 1(1): 5-17 (in Chinese with English abstract). |
| [20] |
Xiao, L., He, X. X., Wu, T., et al., 2009. Properties and Simulation of Lunar Soil CUG-1A. Seventh Annual Conference of the Society of Space Science, Dalian (in Chinese with English abstract). |
| [21] |
Zhang, T., Ding, X. L., 2017. Drilling Forces Model for Lunar Regolith Exploration and Experimental Validation. Acta Astronautica, 131: 190-203. https://doi.org/10.1016/j.actaastro.2016.11.035 |
| [22] |
Zhao, Z., Chen, T., Pang, Y., 2019. Optimum Parameter Matching Obtained by Experiments for Coring Drilling into Lunar Simulant. Advances in Space Research, 63(7): 2239-2244. https://doi.org/10.1016/j.asr.2018.12.025 |
| [23] |
Zhao, Z. J., 2014. Lunar Surface Sampling Study on Mechanical Characteristics of Tool-Soil Interaction (Dissertation). Jilin University, Changchun (in Chinese with English abstract). |
| [24] |
Zhu, Y. O., 2014. Mechanical Model on Interaction between Drill Bit and Lunar Soil and Finite Analysis (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). |
国家自然科学基金项目(11502034;42072344)
四川省自然科学基金项目(2022NSFSC0991)
/
| 〈 |
|
〉 |