东天山星星峡‒红柳井地区二叠纪A型花岗质岩石成因及构造意义

贺昕宇 ,  方同辉 ,  杨自安 ,  杜海超 ,  刘海鹏 ,  王京 ,  贾润幸 ,  郑文皓

地球科学 ›› 2024, Vol. 49 ›› Issue (09) : 3089 -3105.

PDF (10723KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (09) : 3089 -3105. DOI: 10.3799/dqkx.2022.241

东天山星星峡‒红柳井地区二叠纪A型花岗质岩石成因及构造意义

作者信息 +

Petrogenesis and Tectonic Implications of A-Type Granitoids in the Xingxingxia-Hongliujing Area, Eastern Tianshan

Author information +
文章历史 +
PDF (10980K)

摘要

中亚造山带南缘的最终缝合时间目前还存在多种不同认识,而A型花岗岩能够为增生造山作用的终止时限提供关键约束.目前东天山南缘的A型花岗岩研究较为薄弱,本文以东天山星星峡‒红柳井地区新识别出的二长花岗岩、石英闪长岩和正长花岗岩3种二叠纪A型花岗质岩石为研究对象,进行了锆石U-Pb年代学、微量元素和岩石地球化学分析.所有二叠纪花岗质岩石都具有高硅(71.32%~76.35%)、富碱(Na2O+K2O=5.67%~9.18%)、弱过铝质(A/CNK=0.85~0.98)和铁质(FeOT/MgO=5.52~21.28)的特征.较为富集Pb、Hf、Zr、Sm,亏损P、Ti、Nb,Ga含量较高(18.2×10‒6~31.1×10‒6),Ga/Al>2.6.稀土元素总量较低(∑REE=77.67×10‒6~271.82×10‒6),轻稀土较重稀土富集(LREE/HREE=2.82~16.26),其中二长花岗岩、正长花岗岩呈现出较明显的Eu负异常(δEu=0.16~0.84),石英闪长岩呈弱Eu负异常或正异常(δEu=0.85~1.20).二长花岗岩LA-ICP-MS锆石U-Pb年龄为(273.3±1.9) Ma和(273.4±3.4) Ma. A型花岗质岩石成岩物质主要来源于星星峡岩群,有少量的地幔物质贡献,二长花岗岩与正长花岗岩经历了斜长石分离结晶作用,而石英闪长岩斜长石分离结晶较弱.与正长花岗岩、石英闪长岩共生的二长花岗岩还经历了锆石分离结晶作用,锆石δEu负异常受氧逸度影响较大,独立产出的二长花岗岩还经历了榍石、磷灰石的分离结晶作用.在东天山地区307~284 Ma和273 Ma两期A型花岗岩分别形成于前缘挤压而后缘滞后拉张的背景以及后碰撞拉张环境.中亚造山带南缘的东段于~273 Ma已进入后碰撞伸展阶段,最终碰撞作用应早于273 Ma.

关键词

东天山 / A型花岗岩 / 中亚造山带 / 中天山 / 星星峡 / 古亚洲洋 / 地球化学 / 岩石学.

Key words

eastern Tianshan / A-type granite, CAOB / central Tianshan Orogen / Xingxingxia / Paleo-Asian Ocean / geochemistry / petrology

引用本文

引用格式 ▾
贺昕宇,方同辉,杨自安,杜海超,刘海鹏,王京,贾润幸,郑文皓. 东天山星星峡‒红柳井地区二叠纪A型花岗质岩石成因及构造意义[J]. 地球科学, 2024, 49(09): 3089-3105 DOI:10.3799/dqkx.2022.241

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

造山带研究一直是国内外学者关注的焦点(Bagas et al., 2010Wang et al., 2017, 2020Deng et al., 2017Xiao et al., 2018;计文化等,2020;方维萱等,2021).中亚造山带(CAOB)是全球最大规模的增生型造山带和显生宙大陆地壳生长最显著的地区,多块体‒小洋盆的演变格局使得侧向增生过程比环太平洋型造山带更复杂,多块体拼合后地壳的垂向增生也比阿尔卑斯‒喜马拉雅型造山带更显著(秦克章等,2017).中亚造山带是研究大陆动力学与成矿作用的天然实验室,长期受到各国地质学家密切关注(Xiao et al., 2020)(图1a).

中国境内的天山造山带北接准噶尔盆地,南邻塔里木板块和北山造山带,是南部中亚造山带的重要组成部分(Xiao et al., 2013).地理上通常将乌鲁木齐‒库尔勒一线以东的天山地区称为东天山(Xiao et al., 2013Ma et al., 2015),大地构造上自北向南又可被进一步划分为北天山增生造山带、中天山地块和南天山增生造山带(Charvet et al., 2011Xiao et al., 2013)(图1b).南天山洋洋盆在早奥陶世打开(Wang et al., 2022),洋壳于早志留世已经向中天山地块俯冲,并形成同期侵入岩和火山岩(Wang et al., 2016a, 2018b),南天山蛇绿混杂岩中亦可见早泥盆世斜长花岗岩与OIB型玄武岩报道(Jiang et al., 2015Abuduxun et al., 2022);北天山洋洋壳则在早奥陶世开始南向俯冲于中天山地块之下,中天山地块提供物源形成雅满苏以北增生楔中的泥盆纪‒石炭纪沉积岩(Chen et al., 2019),同时伴随热点移动形成的海山最终也呈岩块卷入增生楔中(Yang et al., 2018).中亚造山带与塔里木地块的碰撞时间一直存在争议,主要有(1)晚泥盆世‒早石炭世(Charvet et al., 2007)、(2)早石炭世(Dong et al., 2011)、(3)晚石炭世(高俊等,2006;王居里等,2009;Gao et al., 2009Han et al., 2010Gou et al.,2012;秦克章等,2017)、(4)晚石炭世‒早二叠世(Allen et al., 1993Xiao et al., 2018Charvet et al., 2011Ma et al., 2015Zhang et al., 2016a;杜龙,2018;温定军,2019)、(5)晚二叠世(Li et al., 2002;张进等,2023)(6)晚二叠世‒中三叠世(李曰俊等,2009; Xiao et al., 2018),可见对于中亚造山带南缘的最终缝合时间还存在多种不同认识.

A型花岗岩通常需要高温熔融作用产生,多产于陆内裂谷、后碰撞张性环境(Whalen et al., 1987Eby, 1992Frost et al., 2001),亦可见于俯冲背景下的张性环境,是一种重要的地球动力学指标,为揭示造山带地球动力学过程提供了重要信息(Abuduxun et al., 2022).天山造山带与塔里木、华北板块沿南天山‒索伦缝合线完成最终拼合(Xiao et al.,2020),而塔里木板块北缘‒天山造山带南缘之间发育一条二叠纪A型花岗岩带(刘楚雄等,2004;Long et al., 2008),能够为中亚造山带南缘增生造山作用的终止时限提供关键约束.前人对天山造山带南缘西段及塔里木板块北缘的二叠纪A型花岗岩进行了较为深入的研究(刘楚雄等,2004;Konopelko et al., 2007Long et al., 2008Gao et al., 2009;王居里等,2009;Dong et al., 2011Zhang and Zou, 2013Ma et al., 2015Abuduxun et al., 2022),而东段的研究工作除红土堡地区A型花岗岩外(杜龙,2018),相关报道以及研究工作较少,制约了对中亚造山带南缘二叠纪构造演化机制及其缝合时限的认识.

本文基于红柳井‒星星峡地区1∶5万区域地质调查工作,以二长花岗岩、正长花岗岩、石英闪长岩3种新识别出的A型花岗岩为研究对象,进行锆石U-Pb定年、微量元素分析与岩石地球化学分析,结合前人研究成果,对成岩年龄、岩石成因、构造背景等方面进行讨论,并与西天山二叠纪构造演化进行对比研究,尝试约束中亚造山带南缘东段的碰撞时限.

1 地质背景

研究区所在的东天山星星峡‒红柳井地区位于中天山地块,夹持于北天山造山带南缘的阿奇山‒雅满苏岛弧带和南天山造山带之间,南北分别以阿齐克库都克‒沙泉子断裂和库米什断裂、卡瓦布拉克断裂为界(图1).区内主要出露前寒武系变质‒火山沉积岩系和古生代‒早中生代花岗质岩石.前寒武系主要包括新太古界‒古元古界天湖岩群、中元古界长城系星星峡岩群和蓟县系卡瓦布拉克岩群.天湖岩群主要是一套黑云斜长片麻岩、斜长角闪岩、浅粒岩、二云片岩、白云质大理岩与石英岩组合;星星峡岩群以石英岩、黑云斜长变粒岩、浅粒岩为主;卡瓦布拉克岩群主要由变砂岩和变灰岩组成.同时基于区域调查工作将原属天湖岩群的英云闪长质片麻岩和星星峡岩群的变质花岗岩解体出来,划分为古元古代和新元古代花岗岩(图2).古生代花岗质岩石主要包括泥盆纪石英闪长岩、花岗闪长岩,二叠纪二长花岗岩、花岗闪长岩、石英闪长岩、正长花岗岩以及三叠纪天河石花岗岩.

2 岩石学特征

研究区二叠纪花岗质岩石主要出露于星星峡镇西北的红柳井地区,出露面积约19 km2,岩性主要是二长花岗岩,东北部局部出露正长花岗岩、石英闪长岩(图2).岩体与天湖岩群和卡瓦布拉克岩群呈侵入接触关系,二长花岗岩中可见天湖岩群黑云斜长片麻岩残留体(图3b),二者接触界线截然,二长花岗岩切穿黑云斜长片麻岩片麻理(图3a),局部二长花岗岩岩脉切穿石英闪长岩.正长花岗岩局部沿天湖岩群、星星峡岩群的接触部位侵入(图3c),局部与二长花岗岩呈脉动型侵入接触.石英闪长岩中可见深灰色‒灰绿色镁铁质包体,二者接触界线截然,包体直径几厘米到几十厘米不等,局部被同化混染(图3d).

二长花岗岩呈肉红色,具半自形‒他形细粒结构,块状构造(图4a).岩石主要由斜长石、钾长石、石英和黑云母组成.其中斜长石呈半自形柱状或粒状,粒径0.4~2.0 mm,发育细密的卡钠复合双晶,含量约30%~35%;钾长石呈他形粒状,粒径0.3~1.5 mm,发育格子双晶,主要为微斜长石,含量约43%~48%;石英呈他形粒状,粒径0.5~1.6 mm,含量约20%;黑云母片径0.16~0.56 mm,含量约1%~2%(图4b).

石英闪长岩呈浅灰色‒灰白色,具半自形细粒结构,块状构造(图4c).岩石主要由斜长石、石英、黑云母组成.其中斜长石呈半自形柱状或粒状,粒径0.3~1.5 mm,发育卡钠复合双晶和环带,含量约85%;石英呈他形粒状,粒径0.25~9.00 mm,含量约10%;黑云母片径0.12~0.60 mm,含量约5%(图4d).

正长花岗岩呈浅肉色,具半自形‒他形粒状结构,块状构造(图4e).岩石主要由斜长石、钾长石、石英和少量黑云母组成.斜长石呈半自形粒状,粒径0.5~1.2 mm,含量约15%;钾长石呈他形粒状,粒径0.8~3.2 mm,含量约65%;石英呈他形粒状,粒径0.4~2.0 mm,含量约20%;黑云母呈褐绿色,含量<1%(图4f).

3 样品描述与实验方法

测试用岩石样品采集自红柳井东北(二长花岗岩13-20,石英闪长岩13-33、13-35,正长花岗岩13-36)、西南(二长花岗岩23-1、23-2)、南侧(二长花岗岩26-3)三处二叠纪花岗质岩体(图2).锆石分选于河北省区域地质矿产调查研究所实验室完成,先用常规方法将样品粉碎,然后通过淘洗、电磁和重液分选进行分离,再通过双目镜挑选粒度大、裂痕与包体较少的锆石,将优选的锆石粘贴于环氧树脂内并打磨抛光,露出锆石表面并制做成靶,最后进行反射光、透射光和阴极发光(CL)图像的采集.锆石制靶和CL图像采集由北京锆年领航公司完成.参照锆石的CL图像,进行锆石LA-ICP-MS测年分析点的选择.

LA-ICP-MS锆石U-Pb定年实验于北京科荟测试技术有限公司完成,所用仪器为AnlyitikJena PQMS Elite ICP-MS和与之配套的ESI NWR 193 nm准分子激光剥蚀系统.激光剥蚀斑束直径为25 μm,频率为10 Hz,能量密度约为2.37 J/cm2,载气为He.锆石U-Pb定年以标样GJ-1为外标进行定量计算,每5~10点分析2次,并测量一个锆石Plesovice,Plesovice作为未知样品获得(337±2) Ma (2SD, n=12)的206Pb/238U结果,与(337.13± 0.37) Ma (2SD)的206Pb/238U推荐年龄一致性较好.数据处理采用ICPMSDataCal程序(Liu et al., 2010),测量过程中绝大多数分析点206Pb/204Pb> 1 000,未进行普通铅校正,204Pb含量异常高的分析点可能受包体等普通Pb的影响,对204Pb含量异常高的分析点在计算时剔除,锆石年龄谐和图用Isoplot 3.0程序获得.详细实验测试过程可参见侯可军等(2009).

全岩的主量、微量元素分析均在华北有色地质勘查局燕郊中心实验室完成.其中主量元素测试仪器为PW2404 X射线荧光光谱仪,采用X-荧光光谱法(XRF),以GSP-2做为标样,精度和准确度均优于5%;微量元素测试仪器为ELEMENT XR等离子体质谱分析仪,采用电感耦合等离子质谱法(ICP-MS),以GSP-2、BCR-2、AGV-2、RGM-2做为标样,分析精度和准确度一般优于10%.

4 实验结果

4.1 全岩主量元素

所有二叠纪花岗质岩石都具有较高的SiO2含量(71.32%~76.35%),具富碱(Na2O+K2O=5.67%~9.18%)、弱过铝质(A/CNK=0.85~0.98)、铁质(FeOT/MgO=5.52~21.28)的特征(附表1).石英闪长岩相对富钠(K2O/Na2O=0.32~0.46),分异指数略高(DI=76.57~84.78),二长花岗岩和正长花岗岩富钾(K2O/Na2O=1.01~1.72),分异指数更高(DI=93.78~95.36),从石英闪长岩、二长花岗岩到正长花岗岩碱度呈现出钙性、钙碱性到碱钙性过渡(图5a),多数落入铁质花岗岩区域(图5b).石英闪长岩、二长花岗岩、正长花岗岩在Zr/TiO2-Ce图解中分别落入英安岩、流纹岩、碱性流纹岩区域(图6a),在R1-R2图解上分别落入花岗闪长岩(流纹英安岩)、钾长花岗岩(流纹岩)、碱性花岗岩(碱性流纹岩)区域(图6b).

4.2 全岩微量元素

二叠纪花岗质岩石中较为富集Pb、Hf、Zr、Sm,亏损P、Ti、Nb,Ta亏损不明显,Ga含量较高(18.2×10-6~31.1×10-6),Ga/Al>2.6(2.81~4.22)(附表1).二长花岗岩与正长花岗岩的Co(0.77×10-6~2.68×10-6)、Ni(1.84×10-6~5.02×10-6)、V(5.03×10-6~17.20×10-6)、Cr(5.08×10-6~6.99×10-6)含量整体相对石英闪长岩(Co=4.40×10-6~6.79×10-6、Ni=4.40×10-6~6.46×10-6、V=35.80×10-6~38.4×10-6、 Cr=10.7×10-6~13.1×10-6)低.石英闪长岩富集Sr,而二长花岗岩和正长花岗岩亏损Sr(图7a).

二叠纪花岗质岩石稀土元素总量较低(∑REE=77.67×10-6~271.82×10-6),轻稀土(LREE=57.34×10-6~248.26×10-6)较重稀土(HREE=5.07×10-6~23.55×10-6)富集(LREE/HREE=2.82~16.26).所有花岗质岩石稀土配分模式曲线整体呈右倾(LaN/YbN=1.80~21.89),其中二长花岗岩、正长花岗岩呈现出较明显的Eu负异常(δEu=0.16~0.84),石英闪长岩呈弱Eu负异常或正异常(δEu=0.85~1.20)(图7b).

4.3 锆石微量元素

与石英闪长岩、正长花岗岩共生的二长花岗岩(13-20)锆石重稀土(HREE=913.45×10-6~ 2 212.17×10-6)较轻稀土(LREE=8.89×10-6~76.14×10-6)富集(LREE/HREE=0.01~0.07)(附表2),锆石稀土配分模式曲线呈明显左倾;采集自研究区西南侧独立产出的二长花岗岩(23-1)锆石重稀土(HREE=1 057.78×10-6~2 675.26×10-6)较轻稀土(LREE =159.42×10-6~1 580.60×10-6)富集不明显(LREE/HREE=0.09~0.70),锆石稀土配分模式曲线呈弱的左倾(图8a).二者整体都具有δCe正异常及δEu负异常的特征,但独立产出的二长花岗岩(23-1)中锆石δCe正异常(δCe=1.58~37.82)、δEu负异常(δEu=0.28~0.56)相对样品13-20(δCe=2.32~136.84,δEu=0.05~0.25)均较弱(图8a).独立产出二长花岗岩(23-1)δEu与Hf、δCe、Y/Dy呈正比(图8b~8d),与Sm/Yb呈反比(图8e);共生二长花岗岩(13-20)δEu与Hf呈正比(图8b),与δCe、Zr/Hf呈反比(图8c8f).

4.4 锆石U-Pb年代学

根据锆石透射光、反射光照片和锆石CL图像,将该样品锆石分为2类:第1类锆石整体呈短柱状,少量长柱状,振荡环带发育,显示出岩浆锆石特征,部分该类锆石核部可见继承锆石;第2类锆石呈短柱状‒浑圆状,锆石内部结构呈云雾状,见振荡环带残余,可能是受后期扰动所致,锆石测年分析点都避开了该类锆石(图9).

本次测试锆石所选位置多位于岩浆锆石边部振荡环带处,个别位于继承锆石处.通过LA-ICP-MS锆石U-Pb测年,获得(273.3±1.9) Ma和(273.4±3.4) Ma的加权平均年龄(图10,附表3),同时获得4个继承锆石年龄(898 Ma、878 Ma、843 Ma、711 Ma).

5 讨论

5.1 形成时代

近年来中天山地块陆续有二叠纪花岗质岩石的报道,中天山东段红柳井一带的I型花岗岩年龄集中于285~275 Ma(温定军,2019),中天山南缘的红土堡地区的A型花岗岩年龄为307~284 Ma(杜龙,2018).本次工作获得的(273.3±1.9) Ma和(273.4±3.4) Ma年龄略晚于中天山其他花岗质岩石形成时代.中天山西段以及南天山西段亦有大量二叠纪A型花岗岩年龄的报道,如库克苏河一带正长岩((275±3) Ma)(Gao et al., 2009),伊兰里克(273 Ma)、报奥孜克里克(279 Ma)、塔木西(275 Ma)碱性岩(刘楚雄等,2004),黑英山角闪黑云花岗岩((285±4) Ma)(Long et al., 2008),库米什北地区碱长花岗岩((293±3) Ma)(Dong et al., 2011),Kokshaal山地区淡色花岗岩、黑云角闪花岗岩(296~279 Ma)(Konopelko et al., 2007),巴伦台‒托克逊一带碱长花岗岩和正长岩(300~263 Ma)(Ma et al., 2015),巴伦台北天格尔地区碱长花岗岩((269.7±0.7) Ma)(王居里等,2009).总体上,中天山以及南天山二叠纪A型花岗岩年龄主要集中于300~263 Ma.

5.2 岩石成因

二叠纪花岗质岩石普遍具富碱、铁质的特征(图5b),Ga/Al>2.6,P、Ti、Co、Ni、V、Cr含量较低,稀土配分曲线整体呈右倾的海鸥式分布(图7b),具A型花岗岩特征(Whalen et al., 1987Frost et al., 2001Wang et al., 2016b).在A/I型花岗岩判别图解中,全部落入A型花岗岩区域(图11).同时考虑到矿物组合主要为碱性长石+石英+铁质暗色矿物,具铝质A型花岗岩特点(贾小辉等,2009;李小伟等,2010),因此笔者认为二叠纪花岗质岩石属于典型的A型花岗岩.

星星峡‒红柳井地区二叠纪正长花岗岩、二长花岗岩、石英闪长岩分别源于变质泥岩、变质杂砂岩、英云闪长岩的部分熔融,与红土堡二叠纪A型花岗质岩石有一定相似性(图12),表明东天山岩性相似的A型花岗质岩石物质来源可能相同.星星峡‒红柳井地区A型花岗质岩石在CaO/(MgO+TFeO)-Al2O3/(MgO+TFeO)图解中主要落入或靠近星星峡岩群与新元古代花岗岩范围(图12),考虑到花岗质岩石锆石中获得898.0~711.3 Ma的继承锆石年龄与星星峡岩群(1.0~0.8 Ga和2.0~ 1.3 Ga)(He et al., 2014)及新元古代花岗岩(950~869 Ma)(未发表)年龄基本一致,说明这些二叠纪花岗质岩石物质来源主要是星星峡岩群与新元古代花岗岩.但同时石英闪长岩Cr(10.7×10-6~13.1×10-6)、Ni(4.40~6.46)、V(35.8×10-6~38.4×10-6)含量相对较高,与尾亚钒钛磁铁矿中二叠纪幔源辉长岩含量相近(石煜,2018),表明花岗质岩石可能还有部分地幔物质贡献.

星星峡‒红柳井地区二叠纪二长花岗岩与正长花岗岩较高的分异指数(DI=92.62~95.36),以及δEu负异常、Sr亏损与Rb富集特征指示岩浆源区有斜长石的堆晶作用,而石英闪长岩相对较低的分异指数(DI=76.57~84.78)以及Sr富集、δEu弱负异常‒正异常特征表明斜长石的分离结晶较弱(图7a).值得注意的是,虽然与正长花岗岩、闪长花岗岩共生的二长花岗岩(13-20)以及研究区西南侧独立产出的二长花岗岩(23-1)中锆石的δEu负异常与Hf含量呈反比(图8b),指示岩浆的分离结晶作用(贺振宇和颜丽丽,2021),但二者演化趋势有所区别.共生二长花岗岩中锆石δEu与δCe呈正比,而独立产出二长花岗岩的则呈反比.由于高的氧逸度会促使Ce在锆石中富集,同时抑制斜长石结晶使得锆石具低δEu异常(Zhang et al.,2017),因此共生二长花岗岩δEu异常主要受氧逸度控制,独立产出二长花岗岩受氧逸度影响较小,δEu异常主要是斜长石分离结晶导致.同时,独立产出二长花岗岩的锆石中δEu与Y/Dy呈反比(图8d),与Sm/Yb呈正比(图8e),而榍石、磷灰石相对富集中稀土元素,他们的分离结晶使得中、重稀土元素比值降低,亦能够“抵消”锆石δEu异常程度(Loader et al., 2017),因此独立产出二长花岗岩母岩浆还曾经历榍石、磷灰石的分离结晶,亦使得锆石δEu负异常不明显(图8a).共生二长花岗岩中锆石δEu与Zr/Hf呈正比则指示了锆石的分离结晶(图8f).

5.3 成岩构造背景

近年来最新的年代学和地球化学证据表明北天山洋在晚石炭世已经闭合,中天山地块和准噶尔地块发生陆陆碰撞(Zhang et al., 2016bWang et al., 2018aYang et al., 2018),敦煌地块与塔里木板块之间的古亚洲洋分支——且末‒星星峡洋于晚二叠世闭合(Xu et al., 2019),因此南天山缝合带、柳园缝合带、索伦缝合带一线被认为是中亚造山带南缘的最终缝合区域(Xiao et al., 2020).

对于中亚造山带南缘最终缝合时限虽然存在较多争议,但近年来更多证据指向晚石炭世之后,如南天山蛇绿混杂岩带中放射虫、有孔虫时代为晚泥盆世‒早石炭世(舒良树等,2007;Alexeiev et al., 2019),西南天山高压‒超高压变质峰期为321~ 300 Ma(Li et al., 2016Tan et al., 2019),以及南天山西段广泛存在二叠纪磨拉石(Han et al., 2011).由于陆缘轮廓并非线状,同时两陆块不可能完全平行碰撞(李曰俊等,2009),因此不同地区获得的南天山洋最终闭合及陆‒陆碰撞起始时间可能有所差异.如侵入南天山造山带乌瓦门增生杂岩的花岗岩脉年龄为307 Ma,指示了增生作用的时间下限(Wang et al., 2022);相似的情况亦可见于西南天山阿克牙孜地区未变形的285 Ma过铝质花岗岩侵入榴辉岩相变质岩,指示榴辉岩相变质时间不晚于285 Ma(Gao et al., 2011);又如西天山科克沙尔陶山南坡273 Ma的花岗岩切穿主逆掩断层及蛇绿混杂岩,指示缝合时间应早于273 Ma(Han et al., 2011).

古地磁研究显示在晚石炭世‒晚二叠世期间,哈萨克斯坦‒伊犁板块与准噶尔、蒙古‒图瓦、西伯利亚等板块的古纬度没有较大区别,表明上述板块在早二叠世之前已经拼合成一个统一的构造板块,但与华北板块、敦煌地块仍相距较远(Xu et al., 2019).古生物研究表明南天山‒索伦缝合线以北的石炭纪‒二叠纪植物群、孢粉植物群以安加拉型为主,与塔里木板块和华北板块的华夏型亲缘关系较弱(欧阳舒等,1993),夹持于天山造山带和敦煌地块之间的北山造山带出现了安加拉型和华夏型的混生(Xiao et al., 2015),而北山造山带北部、南部分别在晚石炭世(Xiao et al., 2010bNiu et al., 2018)、晚二叠世‒早中三叠世完成洋‒陆俯冲碰撞(Tian et al., 2013;王二腾等,2022),表明二叠纪之前塔里木和华北板块距离中亚造山带较远(Xiao et al., 2015).同时,塔里木板块北缘与天山造山带南缘的二叠纪A型花岗岩并没有成因联系,塔北A型花岗岩多为指示非造山或陆内的A1型,多伴生幔源碱性基性岩,受二叠纪地幔柱活动控制,而天山造山带南缘的A型花岗岩主要为与造山活动有关的A2型,Hf-Nd同位素指示其岩浆来源与塔北A型花岗岩差异较大,亦说明早二叠世南天山造山带仍与塔里木板块分离(Abuduxun et al., 2022).因此,天山造山带与塔里木板块的碰撞作用主体应晚于早二叠世,碰撞位置应为南天山缝合带.星星峡‒红柳井一带二叠纪花岗质岩石在构造环境判别图解中主要落入后碰撞区域(图13a~13c),属于A型花岗岩的A2亚型(图13d),指示后碰撞张性背景下的产物.杜龙(2018)报道了在中天山南缘红土堡一带A型花岗岩形成于307~284 Ma,认为东天山地区在晚石炭世已经开始碰撞后的板块断离作用,但温定军(2019)又报道了中天山红柳井北地区285~275 Ma的I型花岗岩,形成于同碰撞时的大陆弧背景,表明天山造山带南缘东段~275 Ma仍有洋‒陆俯冲作用.针对天山造山带南缘西段大量二叠纪A型花岗岩的形成,Abuduxun et al.(2022)提出的早二叠世南天山洋板片回撤模型较好地解释了活动大陆边缘出现大量A型花岗岩的现象,东段仅有少量二叠纪A型花岗岩露头,与板片回撤导致的大规模软流圈上涌及长英质岩浆作用推论不符.考虑到西天山地区“钉合岩体”275~262 Ma的年龄(Han et al., 2011),位于中亚造山带南缘东段的红土堡A型花岗岩(307~284 Ma)应形成于同碰撞背景,张性环境应为板块前缘挤压而后缘滞后拉张,而星星峡‒红柳井一带A型花岗岩(273 Ma)形成于后碰撞背景,表明中亚造山带南缘的东段于~273 Ma进入后碰撞阶段,最终碰撞应早于273 Ma.

6 结论

(1)星星峡‒红柳井一带的二叠纪A型花岗质岩石年龄为273 Ma.

(2)A型花岗质岩石主要物质来源于星星峡岩群,有少量地幔物质贡献.斜长石分离结晶作用在二长花岗岩与正长花岗岩中较强,而在石英闪长岩中较弱.与正长花岗岩、闪长花岗岩共生的以及独立产出的二长花岗岩分别还经历了锆石、榍石与磷灰石的分离结晶作用.

(3)东天山地区307~284 Ma和273 Ma的A型花岗岩分别形成于前缘挤压而后缘滞后拉张的背景以及后碰撞拉张环境.

(4)中亚造山带南缘的东段于~273 Ma进入后碰撞阶段,最终碰撞应早于273 Ma.

参考文献

[1]

Abuduxun, N., Windley, B. F., Xiao, W. J., et al., 2022. Carboniferous Tectonic Incorporation of a Devonian Seamount and Oceanic Crust into the South Tianshan Accretionary Orogen in the Southern Altaids. International Journal of Earth Sciences, 111(8): 2535-2553. https://doi.org/10.1007/s00531-021-02109-6

[2]

Alexeiev, D. V., Biske, Y. S., Djenchuraeva, A. V., et al., 2019. Late Carboniferous (Kasimovian) Closure of the South Tianshan Ocean: No Triassic Subduction. Journal of Asian Earth Sciences, 173:54-60. https://doi.org/10.1016/J.JSEAES.2019.01.021

[3]

Allen, M. B., Windley, B. F., Zhang, C., 1993. Palaeozoic Collisional Tectonics and Magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics, 220(1-4): 89-115. https://doi.org/10.1016/0040-1951(93)90225-9

[4]

Altherr, R., Holl, A., Hegner, E., et al., 2000. High- Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73. https://doi.org/10.1016/S0024-4937(99)00052-3

[5]

Bagas, L., Bierlein, F. P., Anderson, J. A. C., et al., 2010. Collision-Related Granitic Magmatism in the Granites-Tanami Orogen, Western Australia. Precambrian Research, 177(1-2): 212-226. https://doi.org/10.1016/j.precamres.2009.12.002

[6]

Bian, X., Yi, Q. A., Yang, S., et al., 2016. The Geochemical Characteristics, Zircon U-Pb Dating and Protolith Restoration of Xingxingxia Rock Group in Baluntai District, Xinjiang. Xinjiang Geology, 34(1): 76-83 (in Chinese with English abstract).

[7]

Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3

[8]

Charvet, J., Shu, L. S., Laurent-Charvet, S., 2007. Paleozoic Structural and Geodynamic Evolution of Eastern Tianshan (NW China): Welding of the Tarim and Junggar Plates. Episodes, 30(3): 162-186

[9]

Charvet, J., Shu, L. S., Laurent-Charvet, S., et al., 2011. Palaeozoic Tectonic Evolution of the Tianshan Belt, NW China. Science China Earth Sciences, 54(2): 166-184. https://doi.org/10.1007/s11430-010-4138-1

[10]

Chen, Z. Y., Xiao, W. J., Windley, B. F., et al., 2019. Composition, Provenance, and Tectonic Setting of the Southern Kangurtag Accretionary Complex in the Eastern Tianshan, NW China: Implications for the Late Paleozoic Evolution of the North Tianshan Ocean. Tectonics, 38(8): 2779-2802. https://doi.org/10.1029/2018TC005385

[11]

Deng, J., Wang, Q. F., Li, G. J., 2017. Tectonic Evolution, Superimposed Orogeny, and Composite Metallogenic System in China. Gondwana Research, 50: 216-266. https://doi.org/10.1016/j.gr.2017.02.005

[12]

Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Syn- and Post-Collisional Granitoids in the Central Tianshan Orogen: Geochemistry, Geochronology and Implications for Tectonic Evolution. Gondwana Research, 20(2-3): 568-581. https://doi.org/10.1016/j.gr.2011.01.013

[13]

Du, L., 2018. Petrogenesis and Tectonic Setting of Paleozoic Felsic Intrusions in East Tianshan (Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract).

[14]

Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020&lt;0641: CSOTAT&gt;2.3.CO;2

[15]

Fang, W. X., Zheng, X. M., Fang, T. H., et al., 2021. Restoration of the Devonian-Carboniferous Limited Ocean Basin and Deep Structure of Ophiolitic Melange in the Hongshishan Area of Gansu Province. Geological Bulletin of China, 40(5): 649-673 (in Chinese with English abstract).

[16]

Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033

[17]

Gao, J., Klemd, R., Qian, Q., et al., 2011. The Collision between the Yili and Tarim Blocks of the Southwestern Altaids: Geochemical and Age Constraints of a Leucogranite Dike Crosscutting the HP-LT Metamorphic Belt in the Chinese Tianshan Orogen. Tectonophysics, 499(1-4): 118-131. https://doi.org/10.1016/j.tecto.2011.01.001

[18]

Gao, J., Long, L. L., Klemd, R., et al., 2009. Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China: Geochemical and Age Constraints of Granitoid Rocks. International Journal of Earth Sciences, 98(6): 1221-1238. https://doi.org/10.1007/s00531-008-0370-8

[19]

Gao, J., Long, L. L., Qian, Q., et al., 2006. South Tianshan: A Late Paleozoic or a Triassic Orogen? Acta Petrologica Sinica, 22(5): 1049-1061 (in Chinese with English abstract).

[20]

Gou, L. L., Zhang, L. F., Tao, R. B., et al., 2012. A Geochemical Study of Syn-Subduction and Post-Collisional Granitoids at Muzhaerte River in the Southwest Tianshan UHP Belt, NW China. Lithos, 136-139: 201-224. https://doi.org/10.1016/j.lithos.2011.10.005

[21]

Han, B. F., Guo, Z. J., Zhang, Z. C., et al., 2010. Age, Geochemistry, and Tectonic Implications of a Late Paleozoic Stitching Pluton in the North Tian Shan Suture Zone, Western China. Geological Society of America Bulletin, 122(3-4): 627-640. https://doi.org/10.1130/b26491.1

[22]

Han, B. F., He, G. Q., Wang, X. C., et al., 2011. Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth-Science Reviews, 109(3-4): 74-93. https://doi.org/10.1016/j.earscirev.2011.09.001

[23]

Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geochemical Characteristics of Collision-Zone Magmatism. Geological Society, London, Special Publications, 19(1): 67-81. https://doi.org/10.1144/gsl.sp.1986.019.01.04

[24]

He, X. Y., Fang, T. H., Liu, H. P., et al., 2021. Classification, Geochemical Characteristics and Geological Significance of the Xingxingxia Complex in Xingxingxia Area, Eastern Tianshan. Mineral Exploration, 12(7): 1519-1529 (in Chinese with English abstract).

[25]

He, Z. Y., Yan, L. L., 2021. Zircon Trace Element Geochemistry Constrains on the Silicic Volcanic System. Acta Petrologica et Mineralogica, 40(5): 939-951 (in Chinese with English abstract).

[26]

He, Z. Y., Zhang, Z. M., Zong, K. Q., et al., 2014. Zircon U-Pb and Hf Isotopic Studies of the Xingxingxia Complex from Eastern Tianshan (NW China): Significance to the Reconstruction and Tectonics of the Southern Central Asian Orogenic Belt. Lithos, 190-191: 485-499. https://doi.org/10.1016/j.lithos.2013.12.023

[27]

Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract).

[28]

Ji, W. H., Li, R. S., Chen, F. N., et al., 2020. Tectonic Reconstruction of Northwest China in the Nanhua-Paleozoic and Discussions on Key Issues. Journal of Geomechanics, 26(5): 634-655 (in Chinese with English abstract).

[29]

Jia, X. H., Wang, Q., Tang, G. J., 2009. A-Type Granites: Research Progress and Implications. Geotectonica et Metallogenia, 33(3): 465-480 (in Chinese with English abstract).

[30]

Jiang, T., Gao, J., Klemd, R., et al., 2015. Genetically and Geochronologically Contrasting Plagiogranites in South Central Tianshan Ophiolitic Mélange: Implications for the Breakup of Rodinia and Subduction Zone Processes. Journal of Asian Earth Sciences, 113: 266-281. https://doi.org/10.1016/j.jseaes.2014.10.015

[31]

Konopelko, D., Biske, G., Seltmann, R., et al., 2007. Hercynian Post-Collisional A-Type Granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan. Lithos, 97(1-2): 140-160. https://doi.org/10.1016/j.lithos.2006.12.005

[32]

Li, J. L., Gao, J., Wang, X. S., 2016. A Subduction Channel Model for Exhumation of Oceanic-Type High-Pressure to Ultrahigh-Pressure Eclogite-Facies Metamorphic Rocks in SW Tianshan, China. Science China Earth Sciences, 59(12): 2339-2354. https://doi.org/10.1007/s11430-016-5103-7

[33]

Li, X. W., Mo, X. X., Zhao, Z. D., et al., 2010. Discussion on Some Problems in the Process of Distinguishing A-Type Granite. Geological Bulletin of China, 29(S1): 278-285 (in Chinese with English abstract).

[34]

Li, Y. J., Wang, Z. M., Wu, H. R., et al., 2002. Discovery of Radiolarian Fossils from the Aiketik Group at the Western End of the South Tianshan Mountains of China and Its Implications. Acta Geologica Sinica-English Edition, 76(2): 146-154. https://doi.org/10.1111/j.1755-6724.2002.tb00081.x

[35]

Li, Y. J., Yang, H. J., Zhao, Y., et al., 2009. Tectonic Framework and Evolution of South Tianshan, NW China. Geotectonica et Metallogenia, 33(1): 94-104 (in Chinese with English abstract).

[36]

Liu, C. X., Xu, B. L., Zhou, T. R., et al., 2004. Petrochemistry and Tectonic Significance of Hercynian Alkaline Rocks along the Northern Margin of the Tarim Platform and Its Adjacent Area. Xinjiang Geology, 22(1): 43-49 (in Chinese with English abstract).

[37]

Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082

[38]

Loader, M. A., Wilkinson, J. J., Armstrong, R. N., 2017. The Effect of Titanite Crystallisation on Eu and Ce Anomalies in Zircon and Its Implications for the Assessment of Porphyry Cu Deposit Fertility. Earth and Planetary Science Letters, 472: 107-119. https://doi.org/10.1016/j.epsl.2017.05.010

[39]

Long, L. L., Gao, J., Wang, J. B., et al., 2008. Geochemistry and SHRIMP Zircon U-Pb Age of Post-Collisional Granites in the Southwest Tianshan Orogenic Belt of China: Examples from the Heiyingshan and Laohutai Plutons. Acta Geologica Sinica-English Edition, 82(2): 415-424. https://doi.org/10.1111/j.1755-6724.2008.tb00592.x

[40]

Ma, X. X., Shu, L. S., Meert, J. G., 2015. Early Permian Slab Breakoff in the Chinese Tianshan Belt Inferred from the Post-Collisional Granitoids. Gondwana Research, 27(1): 228-243. https://doi.org/10.1016/j.gr.2013.09.018

[41]

Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101&lt;0635: TDOG&gt;2.3.CO;2

[42]

Niu, Y. Z., Liu, C. Y., Shi, G. R., et al., 2018. Unconformity-Bounded Upper Paleozoic Megasequences in the Beishan Region (NW China) and Implications for the Timing of the Paleo-Asian Ocean Closure. Journal of Asian Earth Sciences, 167: 11-32. https://doi.org/10.1016/j.jseaes.2018.06.019

[43]

Ouyang, S., Wang, Z., Zhan, J. Z., et al., 1993. A Preliminary Discussion on Phytoprovincial Characters of Carboniferous: Permian Palynofloras in N. Xinjiang, NW China. Acta Micropalaeontologica Sinica, 10(3): 237-255 (in Chinese with English abstract).

[44]

Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005

[45]

Qin, K. Z., Zhai, M. G., Li, G. M., et al., 2017. Links of Collage Orogenesis of Multiblocks and Crust Evolution to Characteristic Metallogeneses in China. Acta Petrologica Sinica, 33(2): 305-325 (in Chinese with English abstract).

[46]

Roche, H. D. L., Leterrier, J., Grandclaude, P., et al., 1980. A Classification of Volcanic and Plutonic Rocks Using R 1 R 2-Diagram and Major-Element Analyses: Its Relationships with Current Nomenclature. Chemical Geology, 29(1-4): 183-210. https://doi.org/10.1016/0009-2541(80)90020-0

[47]

Shi, Y., 2018. Petrogenesis and Metallogenesis of Post-Collisional Mantle-Derived Orthomagmatic Deposits in East Tianshan, Xinjiang. China University of Geosciences, Beijing (in Chinese with Engish abstract).

[48]

Shu, L. S., Wang, B., Zhu, W. B., 2007. Age of Radiolarian Fossils from the Heiyingshan Ophiolitic Mélange, Southern Tianshan Belt, NW China, and Its Tectonic Significance. Acta Geologica Sinica, 81(9): 1161-1168. (in Chinese with English abstract)

[49]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

[50]

Tan, Z., Agard, P., Monié, P., et al., 2019. Architecture and P-T-Deformation-Time Evolution of the Chinese SW-Tianshan HP/UHP Complex: Implications for Subduction Dynamics. Earth-Science Reviews, 197: 102894. https://doi.org/10.1016/j.earscirev.2019.102894

[51]

Tian, Z. H., Xiao, W. J., Shan, Y. H., et al., 2013. Mega-Fold Interference Patterns in the Beishan Orogen (NW China) Created by Change in Plate Configuration during Permo-Triassic Termination of the Altaids. Journal of Structural Geology, 52: 119-135. https://doi.org/10.1016/j.jsg.2013.03.016

[52]

Wang, C. M., Chen, L., Bagas, L., et al., 2016b. Characterization and Origin of the Taishanmiao Aluminous A-Type Granites: Implications for Early Cretaceous Lithospheric Thinning at the Southern Margin of the North China Craton. International Journal of Earth Sciences, 105(5): 1563-1589. https://doi.org/10.1007/s00531-015-1269-9

[53]

Wang, C. M., Deng, J., Bagas, L., et al., 2017. Zircon Hf-Isotopic Mapping for Understanding Crustal Architecture and Metallogenesis in the Eastern Qinling Orogen. Gondwana Research, 50: 293-310. https://doi.org/10.1016/j.gr.2017.04.008

[54]

Wang, E. T., Wu, L., Zhai, X. W., et al., 2022. Geochronology, Petrogenesis and Tectonic Implications of Huaniushan Diorite Porphyrite from the Gansu Beishan Area in the Southern Central Asian Orogenic Belt. Earth Science, 47(9): 3285-3300 (in Chinese with Engish abstract).

[55]

Wang, J. L., Wang, S. J., Liu, X. M., 2009. Geochemistry, Geochronology and Geological Significance of Alkali-Feldspar Granite from Tianger Area, Xingjiang. Acta Petrologica Sinica, 25(4): 925-933 (in Chinese with English abstract).

[56]

Wang, J. L., Wu, C. D., Jiang, X., et al., 2018a. Age Assignment of the Upper Carboniferous Arbasay Formation in Shichang Region, North Tianshan (NW China). Journal of Palaeogeography, 7(1): 5. https://doi.org/10.1186/s42501-018-0003-5

[57]

Wang, M., Zhang, J. J., Zhang, B., et al., 2016a. Bi-Directional Subduction of the South Tianshan Ocean during the Late Silurian: Magmatic Records from both the Southern Central Tianshan Block and Northern Tarim Craton. Journal of Asian Earth Sciences, 128: 64-78. https://doi.org/10.1016/j.jseaes.2016.07.007

[58]

Wang, Q. F., Groves, D. I., Deng, J., et al., 2020. Evolution of the Miocene Ailaoshan Orogenic Gold Deposits, Southeastern Tibet, during a Complex Tectonic History of Lithosphere-Crust Interaction. Mineralium Deposita, 55(6): 1085-1104. https://doi.org/10.1007/s00126-019-00922-3

[59]

Wang, X. S., Klemd, R., Gao, J., et al., 2018b. Final Assembly of the Southwestern Central Asian Orogenic Belt as Constrained by the Evolution of the South Tianshan Orogen: Links with Gondwana and Pangea. Journal of Geophysical Research: Solid Earth, 123(9): 7361-7388. https://doi.org/10.1029/2018JB015689

[60]

Wang, X. S., Klemd, R., Li, J. L., et al., 2022. Paleozoic Subduction-Accretion in the Southern Central Asian Orogenic Belt: Insights from the Wuwamen Accretionary Complex of the Chinese South Tianshan. Tectonics, 41(2): e2021TC006965. https://doi.org/10.1029/2021TC006965

[61]

Wen, D. J., 2019. Petrogenesis and Tectonic Implications of the Late Paleozoic Granites from the Xingxingxia Area of the Central Tianshan. Chinese Academy of Geological Sciences, Beijing (in Chinese with Engish abstract).

[62]

Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202

[63]

Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2

[64]

Xiao, W. J., Huang, B. C., Han, C. M., et al., 2010a. A Review of the Western Part of the Altaids: A Key to Understanding the Architecture of Accretionary Orogens. Gondwana Research, 18(2-3): 253-273. https://doi.org/10.1016/j.gr.2010.01.007

[65]

Xiao, W. J., Mao, Q. G., Windley, B. F., et al., 2010b. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310(10): 1553-1594. https://doi.org/10.2475/10.2010.12

[66]

Xiao, W. J., Song, D. F., Windley, B. F., et al., 2020. Accretionary Processes and Metallogenesis of the Central Asian Orogenic Belt: Advances and Perspectives. Science China Earth Sciences, 63(3): 329-361. https://doi.org/10.1007/s11430-019-9524-6

[67]

Xiao, W. J., Windley, B. F., Allen, M. B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316-1341. https://doi.org/10.1016/j.gr.2012.01.012

[68]

Xiao, W. J., Windley, B. F., Han, C. M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020

[69]

Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254

[70]

Xu, W., Sun, Z. M., Shi, G. R., et al., 2019. First Report of Coupled Early Permian Paleomagnetic and Geochronologic Data from the Dunhuang Block (NW China), and Implications for the Tectonic Evolution of the Paleo-Asian Ocean. Gondwana Research, 67: 46-63. https://doi.org/10.1016/j.gr.2018.10.012

[71]

Yang, G. X., Li, Y. J., Kerr, A. C., et al., 2018. Accreted Seamounts in North Tianshan, NW China: Implications for the Evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153: 223-237. https://doi.org/10.1016/j.jseaes.2017.05.010

[72]

Zhang, C. C., Sun, W. D., Wang, J. T., et al., 2017. Oxygen Fugacity and Porphyry Mineralization: A Zircon Perspective of Dexing Porphyry Cu Deposit, China. Geochimica et Cosmochimica Acta, 206: 343-363. https://doi.org/10.1016/j.gca.2017.03.013.

[73]

Zhang, C. L., Zou, H. B., 2013. Permian A-Type Granites in Tarim and Western Part of Central Asian Orogenic Belt (CAOB): Genetically Related to a Common Permian Mantle Plume? Lithos, 172-173: 47-60. https://doi.org/10.1016/j.lithos.2013.04.001

[74]

Zhang, X. R., Zhao, G. C., Eizenhöfer, P. R., et al., 2016a. Tectonic Transition from Late Carboniferous Subduction to Early Permian Post-Collisional Extension in the Eastern Tianshan, NW China: Insights from Geochronology and Geochemistry of Mafic-Intermediate Intrusions. Lithos, 256-257: 269-281. https://doi.org/10.1016/j.lithos.2016.04.006

[75]

Zhang, X. R., Zhao, G. C., Sun, M., et al., 2016b. Tectonic Evolution from Subduction to Arc-Continent Collision of the Junggar Ocean: Constraints from U-Pb Dating and Hf Isotopes of Detrital Zircons from the North Tianshan Belt, NW China. Geological Society of America Bulletin, 128(3-4): 644-660. https://doi.org/10.1130/b31230.1

[76]

Zhang, J., Qu, J. F., Zhao, H., et al., 2023. Formation, Mechanism and Tectonic Implication of a Large Ductile Strike-Slip Duplex in the Middle Segment of Central Asian Orogenic Belt. Mineral Exploration, 14(4): 519-540 (in Chinese with English abstract).

基金资助

中国地质调查局花岗岩成岩成矿地质研究中心开放基金(PM202306)

河北省地震动力学重点实验室开放基金(FZ246101)

国务院国有资产监督管理委员会项目(295031001000210001)

中国地质调查局项目(DD20160011)

AI Summary AI Mindmap
PDF (10723KB)

172

访问

0

被引

详细

导航
相关文章

AI思维导图

/