基于自筛选深度学习的滑坡易发性预测建模及其可解释性
黄发明 , 陈彬 , 毛达雄 , 刘乐开 , 张子荷 , 朱莉
地球科学 ›› 2023, Vol. 48 ›› Issue (05) : 1696 -1710.
基于自筛选深度学习的滑坡易发性预测建模及其可解释性
Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model
,
针对滑坡易发性预测建模中滑坡-非滑坡样本可能存在误差、环境因子间非线性关系较复杂且机器学习可解释性未被关注等重要问题,拟提出一种基于自筛选的双向长短时记忆网络与条件随机场的滑坡易发性预测模型(Self-screening Bi-directional Long Short-Term Memory and Conditional Random Fields, SBiLSTM-CRF).SBiLSTM-CRF模型具有深度学习网络层数深、宽度广及可循环迭代建模的优势,能预测出环境因子间的非线性关系,并通过迭代自动筛选阈值区间外的错误滑坡样本.该模型可用于解释各环境因子之间耦合关系的内部作用机制.将SBiLSTM-CRF模型用于陕西延长县滑坡易发性预测,并与cpLSTM-CRF、随机森林、支持向量机、随机梯度下降和逻辑回归模型比较.结果表明,SBiLSTM-CRF克服了传统机器学习中存在的样本误差以及因子间复杂的非线性关系问题,具有更高的预测性能.通过该模型的可解释性能力揭示了坡度、高程和岩性等因子控制延长县的黄土滑坡发育的机制.
滑坡易发性预测 / 深度学习 / 双向长短时记忆网络 / 条件随机场 / 可解释性 / 工程地质
landslide susceptibility prediction / deep learning / Bi-directional long short-term memory / conditional random field / interpretability analysis / engineering geology
| [1] |
Alvarez-Melis, D., Jaakkola, T. S., 2018. Towards Robust Interpretability with Self-Explaining Neural Networks. Advances in Neural Information Processing Systems 31 (NeurIPS 2018). https://arxiv.org/abs/1806.07538 |
| [2] |
Bhattacharya, P., Tanwar, S., Bodke, U., et al., 2021. BinDaaS: Blockchain-Based Deep-Learning as-a-Service in Healthcare 4.0 Applications. IEEE Transactions on Network Science and Engineering, 8: 1242-1255. |
| [3] |
Cheng, K.Y., Wang, N., Shi, W. X., et al., 2020. Research Advances in the Interpretability of Deep Learning. Journal of Computer Research and Development, 57(6): 1208-1217 (in Chinese with English abstract). |
| [4] |
Eiras, C., Souza, J., Freitas, R., et al., 2021. Discriminant Analysis as an Efficient Method for Landslide Susceptibility Assessment in Cities with the Scarcity of Predisposition Data. Natural Hazards, 107: 1427-1442. |
| [5] |
Fang, R. K., Liu, Y. H., Su, Y. C., et al., 2021. A Early Warning Model of Regional Landslide in Qingchuan County, Sichuan Province Based on Logistic Regression. Hydrogeology & Engineering Geology, 48(1): 181-187 (in Chinese with English abstract). |
| [6] |
Feng, X., Wang, Y., Liu, Y., et al., 2022. Susceptibility Assessment of a Translational Rockslide Considering the Control Mechanism and Spatial Uncertainty of a Weak Interlayer: Application Study in Tiefeng Township, Wanzhou District. Bulletin of Geological Science and Technology, 41(2): 254-266 (in Chinese with English abstract). |
| [7] |
Forney, G.D., 1973. The Viterbi Algorithm. Proceedings of the IEEE, 61: 268-278. |
| [8] |
Gaur, M., Faldu, K., Sheth, A., 2020. Semantics of the Black-Box: Can Knowledge Graphs Help Make Deep Learning Systems More Interpretable and Explainable?. IEEE Internet Computing, 25: 51-59. |
| [9] |
Guo, G., Chen, Y., Li, M.H., et al., 2013. Statistic Relationship between Slope Gradient and Landslide Probability in Soil Slopes around Reservoir. Journal of Engineering Geology, 21(4): 607-612 (in Chinese with English abstract). |
| [10] |
Guo, T. S., Zhang, J. Q., Han, Y., et al., 2019. Evaluation of Landslide Susceptibility in Yanchang County Based on Particle Swarm Optimization-Based Support Vector Machine. Geological Science and Technology Information, 38(3): 236-243 (in Chinese with English abstract). |
| [11] |
Hong, H. Y., Tsangaratos, P., Ilia, I., et al., 2020. Introducing a Novel Multi-Layer Perceptron Network Based on Stochastic Gradient Descent Optimized by a Meta-Heuristic Algorithm for Landslide Susceptibility Mapping. The Science of the Total Environment, 742: 140549. https://doi.org/10.1016/j.scitotenv.2020.140549 |
| [12] |
Hu, T., Fan, X., Wang, S., et al., 2020. Landslide Susceptibility Evaluation of Sinan County Using Logistics Regression Model and 3S Technology. Bulletin of Geological Science and Technology, 39(2): 113-121 (in Chinese with English abstract). |
| [13] |
Huang, F., Cao, Z., Jiang, S.H., et al., 2020a. Landslide Susceptibility Prediction Based on a Semi-Supervised Multiple-Layer Perceptron Model. Landslides, 17: 2919-2930. |
| [14] |
Huang, F., Zhang, J., Zhou, C., et al., 2020b. A Deep Learning Algorithm Using a Fully Connected Sparse Autoencoder Neural Network for Landslide Susceptibility Prediction. Landslides, 17: 217-229. |
| [15] |
Huang, F. M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 45(12): 4535-4549 (in Chinese with English abstract). |
| [16] |
Jia, G., Gariano, S.L., Tang, Q., 2021. Advancing Rainfall-Induced Landslide Detection Using Homogeneous Slope Units and Distributed Rainfall Thresholds. EGU General Assembly Conference Abstracts, EGU21-6145. |
| [17] |
Khan, R., Yousaf, S., Haseeb, A., et al., 2021. Exploring a Design of Landslide Monitoring System. Complexity, 2021: 5552417. https://doi.org/10.1155/2021/5552417 |
| [18] |
Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract). |
| [19] |
Luo, L. G., Pei, X. J., Huang, R. Q., et al. 2021. Evaluation of Landslide Susceptibility in Jiuzhaigou Scenic Spot by CF and Logistic Regression Coupled with GIS. Journal of Engineering Geology, 29:526-535 (in Chinese with English abstract). |
| [20] |
Linardatos, P., Papastefanopoulos, V., Kotsiantis, S., 2020. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy (Basel, Switzerland), 23(1): 18. https://doi.org/10.3390/e23010018 |
| [21] |
Lipton, Z.C., 2018. In Machine Learning, the Concept of Interpretability is Both Important and Slippery. Queue, 16: 28. |
| [22] |
Moragues, S., Lenzano, M.G., Lanfri, M., et al., 2020. Analytic Hierarchy Process Applied to Landslide Susceptibility Mapping of the North Branch of Argentino Lake, Argentina. Natural Hazards, 105: 915-941. |
| [23] |
Pradhan, B., 2013. A Comparative Study on the Predictive Ability of the Decision Tree, Support Vector Machine and Neuro-Fuzzy Models in Landslide Susceptibility Mapping Using GIS-Science Direct. Computers & Geosciences, 51: 350-365. |
| [24] |
Tian, N. M., Lan, H. X., Wu, Y. M., et al., 2020. Performance Comparison of BP Artificial Neural Network and CART Decision Tree Model in Landslide Susceptibility Prediction. Journal of Geo-Information Science, 22(12): 2304-2316 (in Chinese with English abstract). |
| [25] |
Wei, Z.J., 2020. Multi-Stage Series Deep Convolutional Neural Network Medical Image Registration Method (Dissertation). Hunan University, Changsha (in Chinese with English abstract). |
| [26] |
Wu, R. Z., Hu, X. D., Mei, H. B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, (1): 321-330 (in Chinese with English abstract). |
| [27] |
Xu, M., Feng, Q., Mei, Q., et al., 2018. Deep Type: On-Device Deep Learning for Input Personalization Service with Minimal Privacy Concern. Proceedings of the ACM on Interactive Mobile Wearable and Ubiquitous Technologies, 2: 1-26. |
| [28] |
Yao, J., Qin, S., Qiao, S., et al., 2022. Application of a Two-Step Sampling Strategy Based on Deep Neural Network for Landslide Susceptibility Mapping. Bulletin of Engineering Geology and the Environment, 81: 1-20. |
| [29] |
Yao, X., Tham, L., Dai, F., 2008. Landslide Susceptibility Mapping Based on Support Vector Machine: A Case Study on Natural Slopes of Hong Kong, China. Geomorphology, 101: 572-582. |
| [30] |
Zeng, C.Y., Yan, K., Wang, Z.F., et al., 2021. Survey of Interpretability Research on Deep Learning Models. Computer Engineering and Applications, 57(8): 1-9 (in Chinese with English abstract). |
| [31] |
Zhang, Y., Tino, P., Leonardis, A., et al., 2021. A Survey on Neural Network Interpretability. IEEE Transactions on Emerging Topics in Computational Intelligence, 5: 1-17. |
| [32] |
Zhao, H. B., Liu, R., Liu, Y. H., et al., 2022. Research on Classification and Identification of Mine Microseismic Signals Based on Deep Learning Method. Journal of Mining Science and Technology, 7(2): 166-174 (in Chinese with English abstract). |
| [33] |
Zhou, T., Wu, W., Peng, L., et al., 2022. Evaluation of Urban Bus Service Reliability on Variable Time Horizons Using a Hybrid Deep Learning Method. Reliability Engineering and System Safety, 217(3):108090. |
| [34] |
Zhu, L., Huang, L. H., Fan, L. Y., et al., 2020. Landslide Susceptibility Prediction Modeling Based on Remote Sensing and a Novel Deep Learning Algorithm of a Cascade-Parallel Recurrent Neural Network. Sensors (Basel, Switzerland), 20(6): 1576. https://doi.org/10.3390/s20061576 |
| [35] |
成科扬, 王宁, 师文喜, 等, 2020. 深度学习可解释性研究进展. 计算机研究与发展, 57(6): 1208-1217. |
| [36] |
方然可, 刘艳辉, 苏永超, 等, 2021. 基于逻辑回归的四川青川县区域滑坡灾害预警模型. 水文地质工程地质, 48(1): 181-187. |
| [37] |
冯霄, 王禹, 刘洋, 等, 2022. 考虑软弱夹层控滑机制及其空间不确定性的顺层岩质滑坡易发性评价: 万州区铁峰乡应用研究. 地质科技通报, 41(2): 254-266. |
| [38] |
郭果, 陈筠, 李明惠, 等, 2013. 土质滑坡发育概率与坡度间关系研究. 工程地质学报, 21(4): 607-612. |
| [39] |
郭天颂, 张菊清, 韩煜, 等, 2019. 基于粒子群优化支持向量机的延长县滑坡易发性评价. 地质科技情报, 38(3): 236-243. |
| [40] |
胡涛, 樊鑫, 王硕, 等, 2020. 基于逻辑回归模型和3S技术的思南县滑坡易发性评价. 地质科技通报, 39(2): 113-121. |
| [41] |
黄发明, 叶舟, 姚池, 等, 2020. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 45(12): 4535-4549. |
| [42] |
李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. |
| [43] |
罗路广, 裴向军, 黄润秋, 等,2021. GIS 支持下 CF 与 Logistic 回归模型耦合的九寨沟景区滑坡易发性评价. 工程地质学报, 29:526-535. |
| [44] |
田乃满, 兰恒星, 伍宇明, 等, 2020. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比. 地球信息科学学报, 22(12): 2304-2316. |
| [45] |
魏志军,2020. 多级串联深度卷积神经网络医学图像配准方法(硕士学位论文). 长沙:湖南大学. |
| [46] |
吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. |
| [47] |
曾春艳, 严康, 王志锋, 等, 2021. 深度学习模型可解释性研究综述. 计算机工程与应用, 57(8): 1-9. |
| [48] |
赵洪宝, 刘瑞, 刘一洪, 等, 2022. 基于深度学习方法的矿山微震信号分类识别研究. 矿业科学学报, 7(2): 166-174. |
国家自然科学青年基金项目(41807285)
/
| 〈 |
|
〉 |