地热水中多种甲基硫代砷酸盐的同时定量测定
Simultaneous Quantitative Analysis of Multiple Methylthiolated Arsenates in Geothermal Water
,
地热水中的砷含量常远超过其他类型天然水体,其形态分析具有重要环境地球化学意义;甲基硫代砷酸盐在特定水环境条件下可能成为砷的一种不可忽视的形态,但其环境地球化学研究几为空白.本研究合成了甲基硫代砷酸盐标准,建立了可同时定量测试天然水中多种甲基硫代砷酸盐(包括一甲基一硫代砷酸盐、一甲基二硫代砷酸盐、一甲基三硫代砷酸盐、二甲基一硫代砷酸盐、二甲基二硫代砷酸盐)及砷的其他常见形态的离子色谱‒电感耦合等离子体质谱联用系统(IC-ICP-MS)及其方法,并分析了典型地热水样品中砷的形态分布,可为今后不同类型水环境中甲基硫代砷酸盐的地球化学研究奠定分析方法基础.
地热水 / 甲基硫代砷酸盐 / 定量分析 / IC-ICP-MS / 地下水地球化学
geothermal water / methylthiolated arsenate / quantitative analysis / IC-ICP-MS / groundwater geochemistry
| [1] |
Ackerman, A. H., Creed, P. A., Parks, A. N., et al., 2005. Comparison of a Chemical and Enzymatic Extraction of Arsenic from Rice and an Assessment of the Arsenic Absorption from Contaminated Water by Cooked Rice. Environmental Science & Technology, 39(14): 5241-5246. https://doi.org/10.1021/es048150n |
| [2] |
Burton, E. D., Johnston, S. G., Planer-Friedrich, B., 2013. Coupling of Arsenic Mobility to Sulfur Transformations during Microbial Sulfate Reduction in the Presence and Absence of Humic Acid. Chemical Geology, 343: 12-24. https://doi.org/10.1016/j.chemgeo.2013.02.005 |
| [3] |
Couture, R. M., Rose, J., Kumar, N., et al., 2013. Sorption of Arsenite, Arsenate, and Thioarsenates to Iron Oxides and Iron Sulfides: A Kinetic and Spectroscopic Investigation. Environmental Science & Technology, 47(11): 5652-5659. https://doi.org/10.1021/es3049724 |
| [4] |
Guo, Q. H., Cao, Y. W., Li, J. X., et al., 2015. Natural Attenuation of Geothermal Arsenic from Yangbajain Power Plant Discharge in the Zangbo River, Tibet, China. Applied Geochemistry, 62: 164-170. https://doi.org/10.1016/j.apgeochem.2015.01.017 |
| [5] |
Guo, Q. H., Liu, M. L., Li, J. X., 2017. Thioarsenic Species in the High‐Temperature Hot Springs from the Rehai Geothermal Field (Tengchong) and Their Geochemical Geneses. Earth Science, 42(2): 286-297 (in Chinese with English abstract). |
| [6] |
Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2017. Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System, Tengchong Volcanic Region, China. Chemical Geology, 453: 12-20. https://doi.org/10.1016/j.chemgeo.2017.02.010 |
| [7] |
Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2019. Magmatic Fluid Input Explaining the Geochemical Anomaly of very High Arsenic in Some Southern Tibetan Geothermal Waters. Chemical Geology, 513: 32-43. https://doi.org/10.1016/j.chemgeo.2019.03.008 |
| [8] |
Hansen, H. R., Raab, A., Jaspars, M., et al., 2004. Sulfur-Containing Arsenical Mistaken for Dimethylarsinous Acid [DMA(III)]and Identified as a Natural Metabolite in Urine: Major Implications for Studies on Arsenic Metabolism and Toxicity. Chemical Research in Toxicology, 17(8): 1086-1091. https://doi.org/10.1021/tx049978q |
| [9] |
Hinrichsen, S., Geist, F., Planer-Friedrich, B., 2015. Inorganic and Methylated Thioarsenates Pass the Gastrointestinal Barrier. Chemical Research in Toxicology, 28(9): 1678-1680. https://doi.org/10.1021/acs.chemrestox.5b00268 |
| [10] |
Naranmandura, H., Suzuki, N., Suzuki, K. T., 2006. Trivalent Arsenicals are Bound to Proteins during Reductive Methylation. Chemical Research in Toxicology, 19(8): 1010-1018. https://doi.org/10.1021/tx060053f |
| [11] |
Planer-Friedrich, B., London, J., McCleskey, R. B., et al., 2007. Thioarsenates in Geothermal Waters of Yellowstone National Park: Determination, Preservation, and Geochemical Importance. Environmental Science & Technology, 41(15): 5245-5251. https://doi.org/10.1021/es070273v |
| [12] |
Stauder, S., Raue, B., Sacher, F., 2005. Thioarsenates in Sulfidic Waters. Environmental Science & Technology, 39(16): 5933-5939. https://doi.org/10.1021/es048034k |
| [13] |
Styblo, M., Del Razo, L. M., Vega, L., et al., 2000. Comparative Toxicity of Trivalent and Pentavalent Inorganic and Methylated Arsenicals in Rat and Human Cells. Archives of Toxicology, 74(6): 289-299. https://doi.org/10.1007/s002040000134 |
| [14] |
Styblo, M., Serves, S. V., Cullen, W. R., et al., 1997. Comparative Inhibition of Yeast Glutathione Reductase by Arsenicals and Arsenothiols. Chemical Research in Toxicology, 10(1): 27-33. https://doi.org/10.1021/tx960139g |
| [15] |
Suess, E., Wallschläger, D., Planer-Friedrich, B., 2015. Anoxic, Ethanolic, and Cool-An Improved Method for Thioarsenate Preservation in Iron-Rich Waters. Applied Geochemistry, 62: 224-233. https://doi.org/10.1016/j.apgeochem.2014.11.017 |
| [16] |
Suess, E., Planer-Friedrich, B., 2012. Thioarsenate Formation Upon Dissolution of Orpiment and Arsenopyrite. Chemosphere, 89(11): 1390-1398. https://doi.org/10.1016/j.chemosphere.2012.05.109 |
| [17] |
Suess, E., Wallschläger, D., Planer-Friedrich, B., 2011. Stabilization of Thioarsenates in Iron-Rich Waters. Chemosphere, 83(11): 1524-1531. https://doi.org/10.1016/j.chemosphere.2011.01.045 |
| [18] |
Suzuki, K. T., Iwata, K., Naranmandura, H., Suzuki, N., 2007. Metabolic Differences between Two Dimethylthioarsenicals in Rats. Toxicology and Applied Pharmacology, 218(2): 166-173. https://doi.org/10.1016/j.taap.2006.10.027 |
| [19] |
Suzuki, K. T., Mandal, B. K., Katagiri, A., et al., 2004. Dimethylthioarsenicals as Arsenic Metabolites and Their Chemical Preparations. Chemical Research in Toxicology, 17(7): 914-921. https://doi.org/10.1021/tx049963s |
| [20] |
Ullrich, M. K., Pope, J. G., Seward, T. M., et al., 2013. Sulfur Redox Chemistry Governs Diurnal Antimony and Arsenic Cycles at Champagne Pool, Waiotapu, New Zealand. Journal of Volcanology and Geothermal Research, 262: 164-177. https://doi.org/10.1016/j.jvolgeores.2013.07.007 |
| [21] |
Wallschläger, D., London, J., 2008. Determination of Methylated Arsenic-Sulfur Compounds in Groundwater. Environmental Science & Technology, 42(1): 228-234. https://doi.org/10.1021/es0707815 |
| [22] |
Wang, M. D., Guo, Q. H., Guo, W., et al., 2016. Synthesis, Identification and Quantitative Analysis of Aqueous Thioarsenates. Chinese Journal of Analytical Chemistry, 44(11): 1715-1720 (in Chinese with English abstract). |
| [23] |
Wang, Y., Xu, L. Y., Jia, Y. F., 2015. Study on the Adsorption Behavior of Thioarsenite at the Water-Mineral Interface in an Anaerobic Environment. Journal of Jilin University (Earth Science Edition), 45 (Suppl. 1): 43 (in Chinese). |
| [24] |
Xiao, F., Jia, Y. F., 2015. Study on the Adsorption Behavior of Thioarsenate at the Water-Mineral Interface in an Anaerobic Environment. Journal of Jilin University (Earth Science Edition), 45 (Suppl. 1): 42 (in Chinese). |
| [25] |
Zhuang, Y. Q., Guo, Q. H., Liu, M. L., et al., 2016. Geochemical Simulation of Thioarsenic Speciation in High‐Temperature, Sulfide‐Rich Hot Springs: A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan. Earth Science, 41(9): 1499-1510 (in Chinese with English abstract). |
| [26] |
郭清海, 刘明亮, 李洁祥, 2017. 腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因. 地球科学, 42(2): 286-297. |
| [27] |
王敏黛, 郭清海, 郭伟, 等, 2016. 硫代砷化物的合成、鉴定和定量分析方法研究. 分析化学, 44(11): 1715-1720. |
| [28] |
王莹, 许丽英, 贾永锋, 2015. 厌氧环境中硫代亚砷在水‒矿物界面的吸附行为研究. 吉林大学学报(地球科学版), 45(Suppl.1): 43. |
| [29] |
肖翻, 贾永锋, 2015. 厌氧环境中硫代As (V) 在水‒矿物界面的吸附研究. 吉林大学学报 (地球科学版), 45 (Suppl.1): 42. |
| [30] |
庄亚芹, 郭清海, 刘明亮, 等, 2016. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟:以云南腾冲热海水热区为例. 地球科学, 41(9): 1499-1510. |
国家自然科学基金项目(42077278;41861134028)
/
| 〈 |
|
〉 |