祁连山不同草地类型区土壤有机碳组份的差异
梁冰妍 , 徐海燕 , 吴晓东 , 种碧莹 , 甘子鹏 , 薛守业
地球科学 ›› 2024, Vol. 49 ›› Issue (04) : 1487 -1497.
祁连山不同草地类型区土壤有机碳组份的差异
Differences of Soil Organic Carbon Components in Different Grassland Types of Qilian Mountain
,
为明确高寒地区土壤有机碳库的组成及稳定程度,选择祁连山地区3种草地类型区(高寒草甸、高寒草原和高寒沼泽草甸)为研究对象,分层对0~50 cm土壤中重组、轻组组分进行分离提取,测定并分析重组有机碳(heavy fraction organic carbon,HFOC)和轻组有机碳(light fraction organic carbon,LFOC)含量.结果表明,不同草地类型对土壤HFOC和LFOC含量及其分配的影响不同,HFOC、LFOC含量在土层间均具有明显的垂直变化,呈上高下低趋势,各区域间差异明显;高寒沼泽草甸LFOC含量最高,高寒草原次之,高寒草甸最低,即不同草地类型区土壤有机碳库稳定程度大小依次为:高寒草甸>高寒草原>高寒沼泽草甸;土壤pH、含水率、TC、SOC、TN含量与C/N值与土壤HFOC、LFOC含量呈极显著相关(p<0.01).综上,祁连山草地生态系统土壤有机碳库组成及稳定程度受草地类型、土壤理化性质及环境变量影响.
高寒地区 / 草地类型 / 重组有机碳 / 轻组有机碳 / 土壤理化性质 / 环境地质学
alpine area / grassland type / heavy fraction organic carbon / light fraction organic carbon / soil physical and chemical properties / environmental geology
| [1] |
Cao, H. C., Chen, R. R., Wang, L. B., et al., 2016. Soil pH, Total Phosphorus, Climate and Distance are the Major Factors Influencing Microbial Activity at a Regional Spatial Scale. Scientific Reports, 6(1): 25815. https://doi.org/10.1038/srep25815 |
| [2] |
Chaopricha, N. T., Marín-Spiotta, E., 2014. Soil Burial Contributes to Deep Soil Organic Carbon Storage. Soil Biology and Biochemistry, 69: 251-264. https://doi.org/10.1016/j.soilbio.2013.11.011 |
| [3] |
Chen, L. Y., Liang, J. Y., Qin, S. Q., et al., 2016. Determinants of Carbon Release from the Active Layer and Permafrost Deposits on the Tibetan Plateau. Nature Communications, 7: 13046. https://doi.org/10.1038/ncomms13046 |
| [4] |
Dai, G. H., Ma, T., Zhu, S. S., et al., 2018. Large-Scale Distribution of Molecular Components in Chinese Grassland Soils: The Influence of Input and Decomposition Processes. Journal of Geophysical Research: Biogeosciences, 123(1): 239-255. https://doi.org/10.1002/2017jg004233 |
| [5] |
Dixon, A. P., Faber-Langendoen, D., Josse, C., et al., 2014. Distribution Mapping of World Grassland Types. Journal of Biogeography, 41(11): 2003-2019. https://doi.org/10.1111/jbi.12381 |
| [6] |
Fang, J.Y., Geng, X.Q., Zhao, X., et al., 2018. How Many Areas of Grasslands are There in China? Chinese Science Bulletin, 63(17): 1731-1739 (in Chinese). |
| [7] |
Gao, S., Su, C.L., Xie, X.J., et al., 2022. Distribution Characteristics and Influencing Factors of Nitrogen in Unsaturated Zone in Salinized Area of Hetao Plain. Earth Science, 47(2): 568-576 (in Chinese with English abstract). |
| [8] |
Giller,G.C.,1996. Carbon Turnover (δ13C) and Nitrogen Mineralization Potential of Particulate Light Soil Organic Matter after Rainforest Clearing. Soil Biology and Biochemistry, 28(12): 1555-1567. https://doi.org/10.1016/S0038-0717(96)00264-7 |
| [9] |
Huang, D.Q., Yu, L., Zhang, Y.S., et al., 2011. Above-Ground Biomass and Its Relationship to Soil Moisture of Natural Grassland in the Northern Slopes of the Qilian Mountains. Acta Prataculturae Sinica, 20(3): 20-27 (in Chinese with English abstract). |
| [10] |
Huang, Q.M., Lü, M.K., Nie, Y.Y., et al., 2020. Characteristics of Light Fraction Organic Matter in Surface Soil of Different Altitude Forests in Wuyi Mountain. Acta Ecologica Sinica, 40(17): 6215-6222 (in Chinese with English abstract). |
| [11] |
Janzen, H. H., Campbell, C. A., Brandt, S. A., et al., 1992. Light-Fraction Organic Matter in Soils from Long-Term Crop Rotations. Soil Science Society of America Journal, 56(6): 1799-1806. https://doi.org/10.2136/sssaj1992.03615995005600060025x |
| [12] |
Jia, J., Cao, Z. J., Liu, C. Z., et al., 2019. Climate Warming Alters Subsoil But not Topsoil Carbon Dynamics in Alpine Grassland. Global Change Biology, 25(12): 4383-4393. https://doi.org/10.1111/gcb.14823 |
| [13] |
Li,N.,Wang,G.X.,Yang,Y.,et al.,2011. Plant Production, and Carbon and Nitrogen Source Pools, are Strongly Intensified by Experimental Warming in Alpine Ecosystems in the Qinghai-Tibet Plateau. Soil Biology and Biochemistry, 43(5): 942-953. https://doi.org/10.1016/j.soilbio.2011.01.009 |
| [14] |
Li,Y.Y.,Dong,S.K.,Wen,L.,et al.,2013. The Effects of Fencing on Carbon Stocks in the Degraded Alpine Grasslands of the Qinghai-Tibetan Plateau. Journal of Environmental Management, 128: 393-399. https://doi.org/10.1016/j.jenvman.2013.05.058 |
| [15] |
Li.J.,Wen,Y.C.,Li,X.H.,et al.,2018. Soil Labile Organic Carbon Fractions and Soil Organic Carbon Stocks as Affected by Long-Term Organic and Mineral Fertilization Regimes in the North China Plain. Soil and Tillage Research, 175: 281-290. https://doi.org/10.1016/j.still.2017.08.008 |
| [16] |
Liao, Y., Yang, Z.F., Xia, X.Q., et al., 2011. Research on Temperature Sensitivity of Soil Respiration and Different Active Organic Carbon Fractions of Qinghai-Tibet Plateau Permafrost. Earth Science Frontiers, 18(6): 85-93 (in Chinese with English abstract). |
| [17] |
Liu, L. L., Greaver, T. L., 2010. A Global Perspective on Belowground Carbon Dynamics under Nitrogen Enrichment. Ecology Letters, 13(7): 819-828. https://doi.org/10.1111/j.1461-0248.2010.01482.x |
| [18] |
Liu,G.M.,Zhang,X.L.,Wu,T.H.,et al.,2019. Seasonal Changes in Labile Organic Matter as a Function of Environmental Factors in a Relict Permafrost Region on the Qinghai-Tibetan Plateau. CATENA, 180: 194-202. https://doi.org/10.1016/j.catena.2019.04.026 |
| [19] |
Ma, T., Dai, G. H., Zhu, S. S., et al., 2019. Distribution and Preservation of Root- and Shoot-Derived Carbon Components in Soils across the Chinese-Mongolian Grasslands. Journal of Geophysical Research: Biogeosciences, 124(2): 420-431. https://doi.org/10.1029/2018jg004915 |
| [20] |
Mao, N., Liu, G.M., Li, L.S., et al., 2022. Methane Fluxes and Their Relationships with Methane-Related Microbes in Permafrost Regions of the Qilian Mountains. Earth Science, 47(2): 556-567 (in Chinese with English abstract). |
| [21] |
Meijboom, F.W., 1995. Density Fractionation of Soil Macroorganic Matter Using Silica Suspensions. Soil Biology and Biochemistry, 27(8): 1109-1111. https://doi.org/10.1016/0038-0717(95)00028-d |
| [22] |
Mu, C. C., Zhang, T. J., Zhao, Q., et al., 2016. Soil Organic Carbon Stabilization by Iron in Permafrost Regions of the Qinghai-Tibet Plateau. Geophysical Research Letters, 43(19): 10286-10294. https://doi.org/10.1002/2016gl070071 |
| [23] |
Shang,W.,Wu,X.D.,Zhao,L.,et al.,2016. Seasonal Variations in Labile Soil Organic Matter Fractions in Permafrost Soils with Different Vegetation Types in the Central Qinghai-Tibet Plateau. CATENA, 137: 670-678. https://doi.org/10.1016/j.catena.2015.07.012 |
| [24] |
Shi, Y., Baumann, F., Ma, Y., et al., 2012. Organic and Inorganic Carbon in the Topsoil of the Mongolian and Tibetan Grasslands: Pattern, Control and Implications. Biogeosciences, 9(6): 2287-2299. https://doi.org/10.5194/bg-9-2287-2012 |
| [25] |
Spawn, S. A., Sullivan, C. C., Lark, T. J., et al., 2020. Harmonized Global Maps of above and Belowground Biomass Carbon Density in the Year 2010. Scientific Data, 7(1): 112. https://doi.org/10.1038/s41597-020-0444-4 |
| [26] |
Tang, L., Dong, S. K., Liu, S. L., et al., 2015. The Relationship between Soil Physical Properties and Alpine Plant Diversity on Qinghai-Tibet Plateau. Eurasian Journal of Soil Science (EJSS), 4(2): 88. https://doi.org/10.18393/ejss.31228 |
| [27] |
Tao, L.H., 2016. The Dynamic of Ecological Parameters of Alpine Meadow and Its Relationship with Altitude (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract). |
| [28] |
Wang, Z. W., Wang, Q., Zhao, L., et al., 2016. Mapping the Vegetation Distribution of the Permafrost Zone on the Qinghai-Tibet Plateau.Journal of Mountain Science, 13(6): 1035-1046. https://doi.org/10.1007/s11629-015-3485-y |
| [29] |
Wu, J.G., Zhang, X.Q., Wang, Y.H., et al., 2002. The Effects of Land Use Changes on the Distribution of Soil Organic Carbon in Physical Fractionation of Soil. Scientia Silvae Sinicae, 38(4): 19-29 (in Chinese with English abstract). |
| [30] |
Wu, T.Y., Jeff, J.S., Li, F.M., et al., 2004. Influence of Cultivation and Fertilization on Total Organic Carbon and Carbon Fractions in Soils from the Loess Plateau of China. Soil and Tillage Research, 77(1): 59-68. https://doi.org/10.1016/j.still.2003.10.002 |
| [31] |
Wu, X.D., Zhao, L., Hu, G.J., et al., 2018. Permafrost and Land Cover as Controlling Factors for Light Fraction Organic Matter on the Southern Qinghai-Tibetan Plateau. Science of the Total Environment, 613/614: 1165-1174. https://doi.org/10.1016/j.scitotenv.2017.09.052 |
| [32] |
Xie,J.S.,Yang,Y.S.,Xie,M.S.,et al.,2008.Effects of Vegetation Restoration on Soil Organic Matter of Light Fraction in Eroded Deraded Red Soil in Subtropics of China. Acta Pedologica Sinica,29(4): 534-536.doi:10.1097/00005373-198904000-00024 |
| [33] |
Yang, Y. H., Fang, J. Y., Tang, Y. H., et al., 2008. Storage, Patterns and Controls of Soil Organic Carbon in the Tibetan Grasslands. Global Change Biology, 14(7): 1592-1599. https://doi.org/10.1111/j.1365-2486.2008.01591.x |
| [34] |
Yang, Y., Chen, R.S., Ji, X.B., 2007. Variations of Glaciers in the Yeniugou Watershed of Heihe River Basin from 1956 to 2003. Journal of Glaciology and Geocryology, 29(1): 100-106 (in Chinese with English abstract). |
| [35] |
Zhang, F., Fan, C.Y., Mu, C.C., et al., 2021. Influences of Snow Cover on the Thermal State of the Active Layer in the Upper Reaches of the Heihe River in the Qilian Mountains. Journal of Glaciology and Geocryology, 43(6): 1628-1640 (in Chinese with English abstract). |
| [36] |
Zhang, G., Cao, Z.P., Hu, C.J., 2011. Soil Organic Carbon Fractionation Methods and Their Applications in Farmland Ecosystem Research: A Review. Chinese Journal of Applied Ecology, 22(7): 1921-1930 (in Chinese with English abstract). |
| [37] |
Zhang, L. G., Chen, X., Xu, Y. J., et al., 2020. Soil Labile Organic Carbon Fractions and Soil Enzyme Activities after 10 Years of Continuous Fertilization and Wheat Residue Incorporation. Scientific Reports, 10: 11318. https://doi.org/10.1038/s41598-020-68163-3 |
| [38] |
Zhang, L.M., Xu, M.G., Lou, Y.L., et al., 2014. Soil Organic Carbon Fractionation Methods. Soil and Fertilizer Sciences in China, (4): 1-6 (in Chinese with English abstract). |
国家自然科学基金项目(41861011;41871060)
中国科学院西部之光项目资助
/
| 〈 |
|
〉 |