我国西部高寒山区同位素生态水文研究进展

李宗省 ,  张百娟 ,  冯起 ,  桂娟 ,  张百婷

地球科学 ›› 2023, Vol. 48 ›› Issue (03) : 1156 -1178.

PDF (3783KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (03) : 1156 -1178. DOI: 10.3799/dqkx.2022.264

我国西部高寒山区同位素生态水文研究进展

作者信息 +

A Review of Isotope Ecohydrology in the Cold Regions of Western China

Author information +
文章历史 +
PDF (3873K)

摘要

我国西部高寒山区是亚洲水塔,是重要的生态屏障区.随着环境同位素测试技术的发展和相关理论的成熟,稳定同位素技术已成为集示踪、整合和指示等多项功能于一体的技术.本文基于前人的研究结果,对我国西部高寒山区同位素生态水文研究进行了梳理和总结,表明西部高寒山区大气降水线为δD=7.44δ18O+5.23(R 2=0.86).降水稳定同位素的温度效应从南向北呈现增加趋势,而降水量效应呈现相反的变化趋势.研究区水汽来源复杂,当温度效应小于0时,水汽来源由西南季风主导;温度效应为0~0.3时,水汽来源由西南季风和西风共同主导;温度效应大于0.3时,水汽来源由西风主导.不同水体受水源补给、环境作用等的影响存在差异性,使得各水体稳定同位素局地蒸发线的斜率大小依次为:河水>冰雪融水>地下水.西部高寒山区降水中δ18O海拔效应为-1.3‰/100m,河水δ18O海拔效应为-0.17‰/100m.研究区植被水分来源主要是土壤水,对水分的利用率与植被类型及区域环境密切相关.水汽再循环已成为区域降水水汽来源的重要组成部分.然而,随着生态文明建设这一国家重大战略的纵深推进,作为国家重要生态屏障的西部高寒山区,变化环境下生态水文过程正在发生深刻而又剧烈的改变,已对区域水资源安全、生态安全和可持续发展带来极大挑战,为寒区同位素生态水文学的发展提供了广阔舞台,未来亟需从观测、采样、模型和理论4个方面全面创新.

关键词

高寒山区 / 稳定同位素 / 环境效应 / 生态水文 / 环境保护

Key words

mountainous alpine / stable isotopes / environmental effects / eco-hydrology / environmental protection

引用本文

引用格式 ▾
李宗省,张百娟,冯起,桂娟,张百婷. 我国西部高寒山区同位素生态水文研究进展[J]. 地球科学, 2023, 48(03): 1156-1178 DOI:10.3799/dqkx.2022.264

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

我国寒区特别是以青藏高原为主体的高原及周边高寒山地是世界上众多大江、大河的发源地,也是对气候变化响应极为敏感的关键地带(姚檀栋等,2013程国栋和金会军,2013).全球变化背景下,寒区水体多相态加速转换导致水文过程剧烈变化(Li et al., 2019b),进而引起水循环的结构、速度、时空过程、要素组成及其水文与生态效应发生改变.因此寒区水文过程和生态过程研究已成为近年来全球变化与区域响应研究的焦点(Chen et al., 2014秦大河等,2014).

同位素技术在水循环过程中的应用始于20世纪50年代(Dansgaard,1964).1961年,国际原子能机构(IAEA)和世界气象组织(WMO)建立了全球大气降水同位素监测网(GNIP). Craig(1961)得到全球降水线(global meteoric water line, 简称 GMWL)的线性关系:δ2H=8δ18O+10. Dansgaard (1964)最早分析了降水同位素与温度、纬度、高度、降水量和距海岸距离的关系.此后,氢氧稳定同位素技术在河川径流的研究中迅速展开(Turner et al., 1992Maurya et al., 2011Yang et al., 2011Kong and Pang, 2012Pu et al., 2013).

我国同位素水文研究历经50多年,取得了重要的进展.1966年在珠穆朗玛峰的科学考察拉开了我国降水稳定同位素研究的序幕(Zhang et al., 1973).1983年以后我国先后有20多个监测站被纳入IAEA全球观测网,2004年开始建立中国大气降水同位素网络(简称CHNIP)(宋献方等,2020).我国水体稳定同位素研究从最初的分析降水中δ18O和δD的时空变化特征(郑淑蕙等,1983田立德等,1998Yao et al., 1999Tian et al., 2007),到探究不同水体稳定同位素环境效应,讨论局地气象因子、水汽来源、局地水汽再循环等对水体稳定同位素的影响(Kong and Pang, 2012Li et al., 2014, 2015a, 2016a,, 2019a; Wang et al., 2016Gui et al., 2020, 2022),各水体稳定同位素的研究也逐渐由现象描述、成因分析转向对产生同位素环境效应的深层机制的挖掘,对于各水体同位素及其环境效应以及影响机制的认识在不断提高,已有研究还量化了中国降水同位素温度效应和降水量效应的空间范围,并提出了空间覆盖完整的中国大气降水线方程(Wang et al., 2022),同时水体稳定同位素为追踪水汽来源、反映全球和区域水循环机制与大气环流模式等研究提供了重要依据(Yao et al., 2013田立德等,2021).

作为国家重要生态屏障的西部高寒山区,变化环境下生态水文过程正在发生深刻而又剧烈的改变,已对区域水资源安全、生态安全和可持续发展带来了挑战.西部高寒山区水资源变化直接影响到河川径流和“亚洲水塔”的水源涵养功能,在我国乃至全球尺度水循环、水平衡及水资源研究中具有重要的科学价值(Kang et al., 2010汤秋鸿等,2019).目前,中国西部地区的同位素生态水文研究,已取得了不少成果,这些研究主要集中在单一的流域或单一站点(Wang et al., 2016Kong and Pang, 2016Adhikari et al., 2019Li et al., 2020).因此本文基于前人的研究结果,综述了西部高寒山区不同水体稳定同位素时空变化特征以及水体同位素影响因素,总结降水稳定同位素的温度效应、降雨量效应、海拔效应等环境效应,并从径流分割、水汽来源、植物水分利用以及局地水汽再循环方面分析水体稳定同位素生态水文效应,以期为高寒区同位素水文过程的研究提供一定的参考.

1 研究区概况

我国西部高寒山区(73.67°~107.64°E,21.01°~49.01°N)(图1)是指海拔大于1 500 m的西部地区,主要分布在青藏高原及其邻近山区,区域气候复杂且水循环过程错综多变(Li et al., 2019b),特殊的地形和气候等条件使其成为研究水循环的理想区域.西部高寒山区西起帕米尔高原,东至横断山脉,北部是阿尔泰山脉,南部为喜马拉雅山脉(Li et al., 2019b),面积约为3.36×106 km2,平均海拔超过 3 800 m,年均气温3 ℃左右,年均降水约306 mm(彭守璋,20192020).区内地势较高,积雪、冰川广布,主要分布在昆仑山山系、天山山系以及念青唐古拉山等山系,冰川数量共约48 571条,面积约51 766.08 km2,冰储量约4 494.00 ±175.93 km3刘时银等,2015),同时分布大量的多年冻土,其中青藏高原地区多年冻土面积约为1.06×106 km2Zou et al., 2017).区内植被类型丰富,垂直分带性明显,包括高寒草原、高寒草甸、高山灌丛、落叶阔叶林、荒漠和温带草原等类型(石芳忠等,2018).

2 数据来源

本文所用数据来源于国家青藏高原科学数据中心(https://data.tpdc.ac.cn/zh-hans/)和已发表文献(表1),共收集到降水同位素点124个、河水同位素点961个、地下水同位素点159个以及冰雪融水同位素点25个(图1).

3 不同水体稳定同位素的时空特征

3.1 降水稳定同位素

3.1.1 局地大气降水线(LMWL)

全球自然水体中的δ18O和δD之间存在线性关系,Craig(1961)将其定义为全球大气水线(GMWL):δD=8δ18O+10.不同区域由于气温、地形和地理位置的差异,降水线也存在不同(Liu et al., 2007Pang et al., 2011Guo et al., 2015Li et al., 2020Wu et al., 2022).西部高寒山区大气降水线为:δD=7.44δ18O+5.23(R 2=0.86,n=103)(图2),其斜率和截距均低于全球大气水线,以及我国西部地区、祁连山地区和我国一些湿润地区,但高于西北干旱区以及天山地区(表2).这反映了降水同位素的区域差异性和水汽来源的不同,此外强烈的云下二次蒸发作用也会导致LMWL的斜率及截距均偏小(Wang et al., 2016Gui et al., 2020).西部高寒山区大气水线斜率和截距的空间分布如图3所示,LMWL的斜率在空间上差异较大.整体上,LMWL的斜率从西北到东南呈减小趋势,高值主要分布在昆仑山地区,低值分布在祁连山和阿尔泰山地区.同时在季风过渡段的祁连山地区的LMWL斜率与GMWL比较接近(7.99)(Gui et al., 2020),而在非季风区的天山地区的LMWL明显低于GMWL(7.51)(孙从建等,2019).受到水汽循环和蒸发过程影响,河西走廊地区的疏勒河流域、石羊河流域、托来河流域和排露沟流域大气水线的斜率和截距较低 (Li et al., 2016dZhao et al., 2016冯芳等,2017李永格等,2018).这一现象说明:(1)水汽来源差异对西部高寒山区降水稳定同位素的影响较大;(2)蒸发作用和水汽再循环对该区域大气降水稳定同位素也产生了显著影响.

3.1.2 降水稳定同位素的时间分布特征

西部高寒山区降水稳定同位素值年际变化较大,其中降水中δ18O的变化范围为-18.6‰到-1.6‰,δD从-144.2‰变化到-5.2‰.,降水稳定同位素值较大的差异性表明研究区气候的极端性和水汽来源的复杂性.降水稳定同位素值在时间尺度上,也表现出一定的规律性.在青藏高原南部(Yao et al., 2013)、天山地区(Pang et al., 2011Wang et al., 2016)、祁连山地区(Li et al., 2016c, 2016d, Gui et al., 2020)、以及青藏高原北部(Tian et al., 2007)等地区降水稳定同位素表现为夏、秋季偏正,冬、春季偏负的特征.喜马拉雅山降水中δ18O最大值出现在5月,最小值出现在9月或10月(章新平等,2001).西南地区氢氧同位素组成则表现出夏半年偏低,冬半年偏高的特征(张贵玲等,2015).降水稳定同位素组成的季节变化反映了水汽来源和水汽运输路径的季节性变化 (田立德等,1998Tian et al., 2001, 2007Yao et al., 2013田立德等,2021Guo et al., 2022).

3.1.3 降水稳定同位素的空间分布特征

西部高寒山区降水稳定同位素整体上随着纬度的增加而增加(图4).研究表明西北内陆地区降水中的δ18O远高于青藏高原南部地区,这与中亚腹部干旱的气候条件和大陆内部的局地水汽循环有关(田立德等,1998Liu et al., 2008b).Liu et al.(2008b)发现在西部高寒区,氢氧同位素的低值区分布在青藏高原喜马拉雅山、阿尔泰山等山地,并指出这主要与显著的海拔效应有关.章新平和姚檀栋(1998)指出受到不同气团的影响,我国西北地区的大气降水中δ18O较高,而青藏高原南部的δ18O则较低,青藏高原南部地区较低的稳定同位素值一方面与海拔效应以及该地区水汽来源有关,另一方面与低纬度海洋水汽在喜马拉雅山南坡爬升过程中强烈的洗涤作用有关.因此西部高寒山区降水稳定同位素空间分布的差异性主要受到气候条件、水汽来源以及水汽再循环等因素的影响(Yao et al., 2013Kong and Pang, 2016Gui et al., 2020).但需要强调的是,造成稳定同位素空间差异的原因不是单一的水汽输送或强烈的蒸发作用等,而是多种因素共同作用的结果.

3.2 河水稳定同位素

气候变化是影响高寒山区河道径流形成过程的主导因素(常启昕等,2022).西部高寒山区河水的稳定同位素值存在区域差异性,河水δ18O的变化范围为-21.1‰到5.5‰,平均值为-10.2‰;河水中的δD从-157.4‰变化到-8.5‰,平均值为-86.7‰,在空间上由南到北、从西向东呈增加趋势(图5),高值主要分布在天山地区和祁连山地区,这些差异能够很好地解释区域气候和水文过程(Hren et al., 2009Bershaw et al., 2012).对青藏高原喜马拉雅山源头(Boral et al., 2019)、雅鲁藏布江流域(刘忠方等,2008)、风火山流域(刘光生,2012)、北麓河流域(杨玉忠,2013)、长江源流域(李宗杰,2020)、慕士塔格地区(姚檀栋等, 2009)、祁连山地区(Li et al., 2014, 2016a)、乌鲁木齐河流域(Sun et al., 2015, 2016a)等地区河水中稳定同位素的研究表明,河水稳定同位素时空异质性主要受径流补给源、水体蒸发程度、局地水文过程等因素的交互影响.

西部高寒山区河水中δ18O随着海拔升高而逐渐降低(图6),河水δ18O海拔效应为-0.17‰/100m(P<0.01),反映出河水从高海拔到低海拔汇流过程中经历了强烈的蒸发作用,而且降水径流的不断汇入对河流稳定同位素浓度有一个明显的稀释作用(李宗杰,2020).河水稳定同位素的海拔效应存在区域差异性,青藏高原地区拉萨河流域河水海拔梯度为-0.35‰/100m(余婷婷等,2010).青藏高原喜马拉雅山南麓、青藏高原中部、青藏高原北部河水海拔梯度分别为-0.33‰/100m、-0.26‰/100m、-0.09‰/100m(刘琴,2014).雅鲁藏布江流域河水海拔梯度为-0.21‰/100m(刘忠方等,2008).李宗杰(2020)研究发现长江源地区在强消融期表现出明显的海拔效应(2016年: -0.16‰/100m; 2018年:-0.14‰/100m).祁连山地区石羊河流域河水海拔梯度为-0.33‰/ 100m,黑河源区河水δ18O值随海拔升高,未展现出明显的海拔效应(Li et al., 2016c).天山吉木乃诸河河水中稳定同位素与海拔呈现正相关关系,海拔梯度为0.06‰/100m(宋梦媛等,2020).

由于收集河水稳定同位素数据主要集中在青藏高原南部地区,存在区域不均匀性,因此笔者将研究区局地蒸发线(LEL)进行区域划分(图7),得到青藏高原地区河水蒸发线为δD=8.41δ18O+15.20, (R 2=0.95,n=412),祁连山地区河水蒸发线为δD=6.43δ18O+3.31,(R 2=0.86,n=96)以及天山地区河水蒸发线为δD=5.93δ18O-5.87,(R 2=0.91,n=36),在整个区域上,河水稳定同位素蒸发线的截距和斜率随着纬度的增加呈下降趋势,最高值在青藏高原地区,而低值在天山山区,再次体现出河水稳定同位素显著的空间差异性.青藏高原地区河水蒸发线与Hren et al.(2009)研究相近(δD=8.5δ18O+17.5),表明该区域河水除了受降水补给外,还受到局地再循环水汽和蒸发作用的较大影响.昆仑山地区、天山地区、祁连山地区和青海湖流域河水蒸发线的斜率均小于该区域大气降水线(崔步礼,2011杨玉忠,2014孙从建等,2019Gui et al., 2020),表明汇流过程中河水受到蒸发作用和降水补给的稀释作用.更为重要的是,各区域LEL与LMWL交点处的氢氧稳定同位素值与降水稳定同位素值最为接近,其次是地下水,表现出降水是河水的主要补给源.

3.3 地下水稳定同位素

本文中综述的地下水主要包括冻土层上水、井水、浅层地下水以及冻土地下冰等.研究区地下水稳定同位素值在空间上由西南向东北呈增加趋势,在祁连山地区地下水同位素值最为偏正,而在青藏高原南部同位素值较为偏负,这种差异性主要受地下水补给源以及土壤植被蒸散发的区域差异性影响(Li et al., 2015a, 2016a, 2016b,, 2016c).

西部高寒山区地下水LEL为δD=6.54δ18O‒11.04,(R 2=0.86,n=296),并且存在区域差异性,其明显较低的斜率和截距值反映了水体受到强烈的蒸发影响或者非平衡动力分馏(图8).同时分析表明,冻土层上水和地下冰稳定同位素位于LMWL的右下部,反映了蒸散发过程和冻结过程中的同位素分馏效应(杨玉忠,2014Li et al., 2016a).浅层地下水、井水和泉水较为接近大气降水线,这些特征表明寒区不同水源先充分混合为地下水后再补给河道,且河水入渗补给地下水以后还受到了蒸发的影响.更为重要的是,在青藏高原地区,地下水LEL与LMWL交点处的氢氧稳定同位素值与河水稳定同位素的值最为接近,而在天山和祁连山地区与降水稳定同位素值最为接近,表现出地下水补给源的区域差异性.

3.4 冰雪融水稳定同位素

西部高寒山区冰雪融水稳定同位素呈现出显著的差异性(图9a),冰雪融水δ18O的变化范围为从-68.1‰到-6.6‰,相比其他水体值较为偏负.在空间上冰雪融水稳定同位素值从西南到东北呈增加趋势.对乌鲁木齐河源1号冰川(李小飞,2013)、玉龙雪山(Pu et al., 2020)、玉珠峰冰川、冬克玛底冰川和姜古迪如冰川(李宗杰,2020)、祁连山十一冰川(Li et al., 2015b)等冰融水的研究表明,冰雪融水稳定同位素浓度受到消融强度、消融持续时间和新雪融水的影响,同时降雨或降雪的补给使得稳定同位素浓度更加贫化.如图9b所示青藏高原南部地区冰雪融水蒸发线为δD=8.37δ18O+24.04,(R 2=0.93,n=30),祁连山地区冰雪融水蒸发线为δD=7.21δ18O+13.86,(R 2=0.96,n=8),天山地区冰雪融水蒸发线为δD=8.35δ18O+21.71,(R 2=0.91,n=10),冰雪融水稳定同位素蒸发线的截距和斜率随着纬度的增加呈下降趋势,再次体现出冰雪融水稳定同位素显著的空间差异性.各区域冰雪融水的LEL斜率和截距与河水LEL极为接近,表明在低海拔出山口的冰川末端融水径流,冰雪融水是其主要的补给源.

4 稳定同位素的环境效应

4.1 温度效应

西部高寒山区δ18O与气温的相关系数空间分布如图10所示,整个研究区降水中δ18O的温度系数自东南向西北呈增加趋势.唐古拉山以南地区与青海湖地区温度与降水同位素呈负相关,不存在温度效应,但唐古拉山以北温度系数范围为0.01~1.36,存在温度效应.已有研究根据西南季风与西风带对降水δ18O影响,将青藏高原地区分为西风区、过渡区和季风区(姚檀栋等,2009Yao et al., 2013).在青藏高原季风区的聂拉木和拉萨地区,夏季季风活动时期降水δ18O偏负,降水δ18O与气温之间不存在相关性(Tian et al., 2003, 2007);青藏高原过渡区的玉树、那曲、沱沱河、改则和狮泉河等地区,在全年尺度上,除了那曲以外,其他地区降水δ18O与气温存在一定的正相关(田立德等,19982008);西风区以西宁、德令哈、和田、慕士塔格为代表区,降水δ18O与气温存在显著的正相关关系(田立德等,2008).在天山(王圣杰,2015)和祁连山等地区(Gui, et al., 2020),降水δ18O与气温存在更为显著的正相关关系.

基于此,本文根据降水δ18O与气温的相关性大致界定了青藏高原季风向北的最大范围.当温度系数小于0时,几乎不存在温度效应,降水δ18O主要受到季风作用的影响,包括喜马拉雅山区、唐古拉山地区以及横断山脉地区等青藏高原南部地区;温度系数为0~0.3时,存在微弱的温度效应,降水δ18O主要受到季风和西风共同作用的影响,包括玉树、那曲、沱沱河等地区;温度系数大于0.3时,温度效应显著,降水δ18O主要受到西风作用的影响,包括天山、祁连山北部、阿尔泰山等地区.这一界限也是温度对降水稳定同位素分馏效应的边界.

4.2 海拔效应

西部高寒山区降水δ18O随着海拔升高而逐渐降低(图11),表现出明显的海拔效应,δ18O海拔梯度为-1.3‰/100m(P<0.01);表明一方面在西部高寒山区高海拔采样点受云下蒸发的影响相对较低,降水中δ18O值较偏负;另一方面,高海拔区受到了较强的局地再循环水汽的影响.已有研究表明除同位素递减率较高的极端纬度地区外,全球降水δ18O垂直变化梯度的平均值为-0.28‰/100m(海拔5 000 m以下地区)(Poage and Chamberlain., 2001),表3为西部高寒山区部分采样点δ18O的海拔效应,我国青藏高原地区、祁连山区、天山山区、横断山脉、喜马拉雅山脉等地降水稳定同位素总体上表现出明显的海拔效应(姚檀栋等,2009Kumar et al.,2010宋春林等,2015Gui et al., 2020Li et al., 2022).但也有研究表明,天山背风一侧δ18O与海拔之间存在0.12‰/100m的正梯度,表现出相反的变化特征,这主要是由于受到局地云下二次蒸发和水分再循环过程的影响(Kong et al., 2016).同时受到水汽来源、水汽再循环和蒸发作用的影响,不同季节降水中δ18O的海拔梯度差异很大(王圣杰,2015Li et al., 2016dGui et al., 2020).祁连山区在夏半年和冬半年δ18O的海拔效应分别为-0.17‰/100m和-0.053‰/100m;天山地区海拔效应分别为-0.12‰/100m(夏半年)和0.03‰/100m(冬半年),乌鞘岭地区北坡年均、夏季和冬季δ18O的海拔梯度分别为-0.2‰/100m、-0.14‰/100m和-0.28‰/100m,在南坡,年均、夏季和冬季的δ18O海拔梯度分别为-0.32‰/100m、-0.29‰/100m和-0.38‰/100m.

4.3 降水量效应

我国西部高寒山区水汽来源复杂,在青藏高原低纬度显著受季风降水影响区,前人发现降水同位素存在“降水量效应”(Tian et al., 2003Yao et al., 2013).如表4所示,在青藏高原南部地区,降水量效应显著,并随着纬度的增加,降水量效应逐渐减小,而逐渐表现出温度效应.西北地区降水稳定同位素在季节尺度上并未表现出明显的降水量效应(Tian et al., 2001).王宁练等(2008)在祁连山单站点尺度发现了夏季降水的降水量效应.Wu et al. (2010)研究证实祁连山黑河流域大气降水稳定同位素浓度在降水事件尺度也展现出降水量效应.同时越往西北内陆深处,如疏勒河(郭小燕,2015)、新疆天山地区(王圣杰,2015)等,事件降水的降水量效应很弱,甚至不存在.

4.4 水汽来源

西部高寒山区水汽来源复杂,南北差异较大,其总体特征为:以青藏高原季风区为界,北部地区以西风水汽为主,南部以西南季风为主.前人研究表明西南季风达到北界的位置在青藏高原唐古拉山附近(田立德等,2006).长江源区大气降水主要水汽来源为西南季风水汽(43%)、局地蒸发水汽(36%)及西风水汽(21%)(汪少勇等,2019).西北干旱区水汽来源主要受西风控制.Wang et al.(2017)指出,中亚干旱地区的水汽来源主要是欧洲和中亚地区蒸发的陆地水分.王圣杰(2015)研究表明天山地区水汽来源主要是西风水汽.李捷等(2016)发现阿勒泰地区受到西风带水汽和北冰洋水汽的双重影响.祁连山地区主要受到西风的影响,约占祁连山地区所有降水事件的78%(Gui et al., 2020).祁连山北坡中段降水的水汽来源主要为西风水汽(张百娟等,2019).石羊河流域全年基本以西风输送水汽为主,夏半年西风水汽输送约占70%左右,来自东南方向的水汽可占15%左右,来自偏北方向的水汽约占15%;而冬半年水汽运移路径基本上全部来自于西风水汽输送(袁瑞丰,2020).我国西南地区降水的水汽主要来源于低纬度海洋(章新平等,2009);贡嘎山地区雨季水汽来源较为复杂,主要有西风输送、东部季风和局地水汽内循环3个来源(宋春林,2015等).

5 稳定同位素的生态水文效应

5.1 稳定同位素径流分割

多样的下垫面条件使得西部高寒山区径流补给来源多样.在高寒山区的水文循环研究中,同位素被广泛应用于流域径流分割(Liu et al., 2008bMaurya et al., 2011; Kong and Pang, 2012; Pu et al., 2013).本文总结了高寒山区径流分割的主要成果(图12).研究区不同补给源对径流的贡献具有区域差异性,总体上在流域出山口主要以降水补给为主,但在靠近冰川末端融水中,以冰雪融水补给为主.

祁连山地区降水对径流的补给率在20%~80%间,大多都在65%以上.黑河源区、八宝河流域和葫芦沟流域降水对河水的补给率分别为65%、71.9%和68%(Li et al., 2014, 2015a2016c).黑河源区马粪沟小流域径流主要为降水、冻土层上水和冰雪融水混合转化为地下水后补给(Yang et al., 2011).大气降水和冻土层上水对安远河径流的平均补给比例分别为76%和24%(Gui et al., 2019).黑河上游海拔3 600 m以上的地区产流量占出山径流量的80.2%(王宁练等,2008).在大通河流域木里煤田聚乎更矿区,冻土层上水是河水的主要补给来源(邢剑伟等,2022).

在天山地区,地下水对径流补给率在14%~87%间.降水和冰雪融水对天山乌鲁木齐河流域的径流贡献率为17.6%和14.7%,其余均为地下水补给(Sun et al., 2015).冰雪融水和地下水对榆树沟径流的贡献率分别为63%和37%(Wang et al., 2015).阿克苏河中36.0%~44.4%的径流来自冰川雪融水(Sun et al., 2016b).Fan et al. (2015)证实提孜那甫河冰川融水对径流的贡献为43%.Kumalak河协和拉水文站出山径流中冰雪融水的贡献率为57%~64%(Kong and Pang, 2012).天山Kyrgyzstan河的径流有15%源自冰雪融水贡献,在消融季节这一贡献率将增大1.5~3倍,而且在有些冰川源头的小流域,冰雪融水的贡献量高达80%(Hagg et al., 2007).

玉龙雪山白水河流域冰雪融水对径流的贡献率为53.4%,其余来自降水(Pu et al., 2013).小海螺沟流域冰川融雪水占出口径流量的72.84%~80.30%(Xing et al., 2015).Liu et al.(2008a)在黑水河流域得出雪水和冰川融水的贡献在63.8%~92.6%之间.恒河流域冰川融雪、降水和地下水分别占径流的32%、53%和15%(Maurya et al., 2011).

5.2 植物水分来源

植物水分来源取决于植物获取水分的能力,同时也由环境中有效水的多少及其时空分布决定(刘飞等,2020).在我国西部高寒山区,应用稳定同位素技术研究植物水分来源主要集中在塔里木河下游(陈亚宁等,2018)、青海湖地区(Wu et al., 2018)、天山北麓地区(杨广等,2017)、祁连山黑河下游(Zhao et al., 2020)以及柴达木盆地等地区(陈小丽等,2014)(表5).地下水埋深是造成不同区域植被水分利用策略差异的根本原因(陈亚宁等,2018),同时与植被根系的分布有关(Fu et al., 2014).黑河下游平均地下水埋深在3 m左右,土壤浅层(1 m内)最大含水率可达29%(Fu et al., 2014),塔里木河大部分地区的平均地下水埋深仍保持在6~8 m,地下2 m内土壤最大含水率仅15%(陈亚鹏等,2011),而天山北麓地下水潜水埋深波动范围为2~4 m(杨广等,2017).植被水分来源主要是土壤水,不同土壤深度植被对水分的利用类型不同,同时植被对水分的利用率与植被类型及区域环境密切相关.

5.3 水汽再循环

气候变暖背景下,水汽再循环已成为区域降水水汽来源的重要组成部分(Cui et al., 2015Gui et al., 2022).当前人们在西部高寒山区应用稳定同位素示踪模型确定了部分地区的水汽再循环率.在青藏高原地区,崇测冰川和藏色岗日冰川水汽再循环率分别为15.0%±82.6%、24.7%±81.6%(An et al., 2017),五道梁、风火山、沱沱河和唐古拉站的水汽再循环率分别为31.6%±4.8%、18.6%±3.7%、14%±3.8%和21.7%±3.9%(Zhu et al., 2020).青海湖和纳木错湖水汽再循环率为23.42%、28.4%~31.1%(Xu et al., 2011Cui et al., 2015).整个祁连山地区,蒸发水汽、蒸腾水汽和平流输送水汽对降水的贡献分别为8%、14%和78%,水汽再循环对大气降水的贡献量相当于71 mm降水(Gui et al., 2022).在内陆河源区,生长季内水汽再循环对区域降水的贡献率为27%,相当于117 mm降水(Li et al., 2016c);石羊河流域生长季水汽再循环对降水的贡献率为23%,相当于55.6 mm降水(Li et al., 2016d);在祁连山北坡,山区生长季水汽再循环对大气降水的贡献量相当于78 mm降水,走廊平原地区相当于16 mm降水,分别占同期降水量的24%和14.5% (Li et al., 2019a).在天山乌鲁木齐市水汽再循环对降水贡献率达16.2%,而石河子市等,其贡献率为5%左右(王圣杰,2015).土壤与水体蒸发水汽对乌鲁木齐地区大气降水的贡献率可达15%左右(Kong et al., 2013).

6 总结与展望

综上,随着环境同位素测试技术的发展和相关理论的成熟,稳定同位素技术已成为集示踪、整合和指示等多项功能于一体的技术,而且具有检测快速、结果准确、无干扰等特点,使得水文学家成功地监测了诸多复杂水文过程的时空变化,目前已被广泛应用于寒区生态水文、水循环及水资源研究中,研究成果丰硕(图13).然而,随着生态文明建设这一国家重大战略的纵深推进,作为国家重要生态屏障的西部高寒山区,变化环境下生态水文过程正在发生深刻而又剧烈的变化,已对区域水资源安全、生态安全和可持续发展带来了挑战,亟待深入探索,这又为寒区同位素生态水文学的发展提供了广阔舞台,未来亟需从以下几个方面深入推进:

(1)观测方面:系统而又合理的流域尺度水文过程观测是开展生态水文研究的重要基础.当前的观测研究在水文要素变化及其水文过程方面有了良好的积累,而水体稳定同位素也随着水循环过程发生不断的分馏,其时空模态及其环境效应随之发生显著改变,使得水体稳定同位素的局地性更加凸显,进而影响示踪研究的结果.因此,亟需依托建立在高寒山区的野外观测研究站,开展与水循环协同的水体稳定同位素分馏机制观测,目前位于祁连山南坡的高寒山区同位素生态水文与国家公园观测研究站正在开展类似的观测研究工作,有望为高寒山区系统的水体同位素联网观测研究开展探索性积累.

(2)采样方面:系统、科学与合理的各类样品采集是同位素生态水文学研究的基础,20世纪80年代以来随着同位素水文学的蓬勃发展,已经积累了大量的降水样品,并据此取得了一系列创新研究成果.然而,由于水循环本身的复杂性及其驱动机制的综合性,加之水文水资源效应的不确定性,使得仅通过降水同位素来开展寒区生态水文研究已凸显出诸多不足.因此,一方面,亟需从流域生态水文过程的基本规律入手,系统采集全要素样品,包括大气水汽、大气降水、河水、地下水、植物水、土壤水、冻土层上水、冰雪融水和积雪等;另一方面,还要科学设定采样的时空周期,确保全域尺度上高时空分辨率的样品积累,以便多要素、全过程示踪区域或流域尺度的生态水文过程.

(3)模型方面:在多手段、多学科综合与多要素、多领域集成研究背景下,稳定同位素示踪技术已成为寒区生态水文学的重要研究手段,该方法不仅可突破研究区的限制并拓展到整个区域尺度,而且作为实测数据可为模型验证提供强有力的数据支持,但对复杂的多参数水文模型与稳定同位素示踪的耦合研究还较少.因此,在能量平所衡‒水量平衡的生态水文模型框架体系下,耦合稳定同位素示踪模型、陆面过程模型和植物动态生长模型等,采用径流量、蒸散发与水体稳定同位素数据等共同约束模型参数,构建基于稳定同位素示踪的生态水文新模型,实现清晰、准确地刻画生态水文过程,是寒区同位素生态水文学研究的前沿领域和难点,也是亟待解决的关键科学问题.

(4)理论方面:首先应通过对过去研究成果的梳理总结,结合系统观测研究,凝练提升各水体稳定同位素在高寒山区的分馏演化机制,构建高寒山区水体同位素的分馏理论;探究各水体稳定同位素在不同时空尺度下的演化规律及模态,构建高寒山区水体同位素的时空变异理论;深入分析各水体稳定同位素与环境要素的辩证关系及演化机理,构建高寒山区水体同位素的环境效应理论;探究水体稳定同位素在示踪生态水文过程中的时空演化及驱动机制,凝练高寒山区水体稳定同位素的示踪理论;通过构建基于稳定同位素示踪的分布式生态水文模型,实现对过去生态水文过程变化的准确模拟及对未来变化的高精度预测,进而构建高寒山区基于水体稳定同位素的模型理论;由此创建高寒山区同位素水文学,并逐步将其发展成为集理论创新、技术革新与成果应用推陈出新的新兴交叉学科,成为支撑国家西部生态屏障建设的骨干学科,以及能够支撑生态文明建设体制机制创新的引领性学科.

参考文献

[1]

Adhikari, S., Zhang, F., Zeng, C., et al., 2019. Precipitation Chemistry and Stable Isotopic Characteristics at Wengguo in the Northern Slopes of the Himalayas. Journal of Atmospheric Chemistry, 76(4): 289-313. https://doi.org/10.1007/s10874-020-09399-1

[2]

An, W. L., Hou, S. G., Zhang, Q., et al., 2017. Enhanced Recent Local Moisture Recycling on the Northwestern Tibetan Plateau Deduced from Ice Core Deuterium Excess Records. Journal of Geophysical Research: Atmospheres, 122(23): 12541-12556. https://doi.org/10.1002/2017jd027235

[3]

Bao, Y. F., 2019. The Study of Hydrochemical Characteristics and Carbon Cycles in the Yarlung Zangbo River Basin (Dissertation). China Institute of Water Resources and Hydropower Research, Beijing (in Chinese with English abstract).

[4]

Bershaw, J., Penny, S. M., Garzione, C. N., 2012. Stable Isotopes of Modern Water across the Himalaya and Eastern Tibetan Plateau: Implications for Estimates of Paleoelevation and Paleoclimate. Journal of Geophysical Research: Atmospheres, 117(D2): D02110. https://doi.org/10.1029/2011jd016132

[5]

Boral, S., Sen, I. S., Ghosal, D., et al., 2019. Stable Water Isotope Modeling Reveals Spatio-Temporal Variability of Glacier Meltwater Contributions to Ganges River Headwaters. Journal of Hydrology, 577: 123983. https://doi.org/10.1016/j.jhydrol.2019.123983

[6]

Chang, Q. X., Sun, Z. Y., Pan, Z., et al., 2022. Stream Runoff Formation and Hydrological Regulation Mechanism in Mountainous Alpine Regions: A Review. Earth Science, 47(11): 4196-4209 (in Chinese with English abstract).

[7]

Chen, F. L., 2016. Water Cycle Research in Lanzhou City Based on Stable Isotope in Precipitation (Dissertation), Northwest Normal University, Lanzhou (in Chinese with English abstract).

[8]

Chen, R. S., Song, Y. X., Kang, E. S., et al., 2014. A Cryosphere-Hydrology Observation System in a Small Alpine Watershed in the Qilian Mountains of China and Its Meteorological Gradient. Arctic, Antarctic, and Alpine Research, 46(2): 505-523. https://doi.org/10.1657/1938-4246-46.2.505

[9]

Chen, X. L., Chen, Y. N., Chen, Y. P., 2014. Relationship among Water Use of Different Plants in Heihe River Riparian Forests. Chinese Journal of Eco-Agriculture, 22(8): 972-979 (in Chinese with English abstract).

[10]

Chen, Y. N., Li, W. H., Chen, Y. P., et al., 2018. Water Use Process of Constructive Plants in Desert Riparian Forest. Arid Zone Research, 35(1): 130-136 (in Chinese with English abstract).

[11]

Chen, Y. P., Chen, Y. N., Xu, C. C., et al., 2011. Effects of Groundwater Depth on the Gas Exchange and Chlorophyll Fluorescence of Populus Euphratica in the Lower Reaches of Tarim River. Acta Ecologica Sinica, 31(2):344-353 (in Chinese with English abstract).

[12]

Cheng, G. D., Jin, H. J., 2013. Groundwater in the Permafrost Regions on the Qinghai-Tibet Plateau and it Changes. Hydrogeology & Engineering Geology, 40(1): 1-11 (in Chinese with English abstract).

[13]

Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702

[14]

Cui, B. L., 2011. Study on the Relationship between Water Cycle and Water Conversion in Qinghai Lake Basin Based on Stable Isotopes of Hydrogen and Oxygen. Beijing Normal University, Beijing (in Chinese with English abstract).

[15]

Cui, B. L., Li, X. Y., 2015. Stable Isotopes Reveal Sources of Precipitation in the Qinghai Lake Basin of the Northeastern Tibetan Plateau. Science of the Total Environment, 527-528: 26-37. https://doi.org/10.1016/j.scitotenv.2015.04.105

[16]

Dansgaard, W., 1964. Stable Isotopes in Precipitation. Tellus, 16(4): 436-468. https://doi.org/10.3402/tellusa.v16i4.8993

[17]

Ding, L., Xu, Q., Zhang, L. Y., et al., 2009. Regional Variation of River Water Oxygen Isotope and Empirical Elevation Prediction Models in Tibetan Plateau. Quaternary Sciences, 29(1): 1-12 (in Chinese with English abstract).

[18]

Ding, T. P., Gao, J. F., Shi, G. Y., et al., 2013. Spacial and Temporal Variations of H and O Isotope Compositions of the Yangtze River Water and Their Environmental Implications. Acta Geologica Sinica, 87(5): 661-676 (in Chinese with English abstract).

[19]

Fan, Y. T., Chen, Y. N., Li, X. G., et al., 2015. Characteristics of Water Isotopes and Ice-Snowmelt Quantification in the Tizinafu River, North Kunlun Mountains, Central Asia. Quaternary International, 380-381: 116-122. https://doi.org/10.1016/j.quaint.2014.05.020

[20]

Feng, F., Feng, Q., Liu, X. D., et al., 2017. Characteristics of δ18O and δD in Precipitation and Moisture Sources of Pailugou Catchment in The Qilian Mountains. Journal of Desert Research, 37(5): 997-1005 (in Chinese with English abstract).

[21]

Fu, A. H., Chen, Y. N., Li, W. H., 2014. Water Use Strategies of the Desert Riparian Forest Plant Community in the Lower Reaches of Heihe River Basin, China. Science China Earth Sciences, 57(6): 1293-1305. https://doi.org/10.1007/s11430-013-4680-8

[22]

Gao, J. F., Ding, T. P., Luo, X. R., et al., 2011. ΔD and δ18O Variations of Water in the Yellow River and Its Environmental Significance. Acta Geologica Sinica, 85(4): 596-602 (in Chinese with English abstract).

[23]

Gao, J., Masson-Delmotte, V., Risi, C., et al., 2013. What Controls Precipitation δ18O in the Southern Tibetan Plateau at Seasonal and Intra-Seasonal Scales? A Case Study at Lhasa and Nyalam. Tellus B: Chemical and Physical Meteorology, 65(1): 21043. https://doi.org/10.3402/tellusb.v65i0.21043

[24]

Gao, Z. Y., Niu, F. J., Lin, Z. J., et al., 2018. Evaluation of Thermokarst Lake Water Balance in the Qinghai-Tibet Plateau via Isotope Tracers. Science of the Total Environment, 636: 1-11. https://doi.org/10.1016/j.scitotenv.2018.04.103

[25]

Gui, J., Li, Z. J., Yuan, R. F., et al., 2019. Hydrograph Separation and the Influence from Climate Warming on Runoff in the North-Eastern Tibetan Plateau. Quaternary International, 525: 45-53. https://doi.org/10.1016/j.quaint.2019.09.002

[26]

Gui, J., Li, Z. X., Feng, Q., et al., 2020. Environmental Effect and Spatiotemporal Pattern of Stable Isotopes in Precipitation on the Transition Zone between the Tibetan Plateau and Arid Region. Science of the Total Environment, 749: 141559. https://doi.org/10.1016/j.scitotenv.2020.141559

[27]

Gui, J., Li, Z. X., Feng, Q., et al., 2022. Water Resources Significance of Moisture Recycling in the Transition Zone between Tibetan Plateau and Arid Region by Stable Isotope Tracing. Journal of Hydrology, 605: 127350. https://doi.org/10.1016/j.jhydrol.2021.127350

[28]

Guo, X. Y., 2015. Study on Hydrological Process in Shule River Basin Based on Stable Isotopes and Hydrochemistry (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).

[29]

Guo, X. Y., 2016. Water Chemistry and Stable Isotope Characteristics Analysis of Different Water Bodies in the Hutubi River Basin (Dissertation). Xinjiang University, Urumqi (in Chinese with English abstract).

[30]

Guo, X. Y., Feng, Q., Si, J. H., et al., 2022. Considerable Influences of Recycled Moistures and Summer Monsoons to Local Precipitation on the Northeastern Tibetan Plateau. Journal of Hydrology, 605: 127343. https://doi.org/10.1016/j.jhydrol.2021.127343

[31]

Guo, X. Y., Feng, Q., Wei, Y. P., et al., 2015. An Overview of Precipitation Isotopes over the Extensive Hexi Region in NW China. Arabian Journal of Geosciences, 8(7): 4365-4378. https://doi.org/10.1007/s12517-014-1521-9

[32]

Hagg, W., Braun, L. N., Kuhn, M., et al., 2007. Modelling of Hydrological Response to Climate Change in Glacierized Central Asian Catchments. Journal of Hydrology, 332(1-2): 40-53. https://doi.org/10.1016/j.jhydrol.2006.06.021

[33]

Hou, H., Hou, S. G., Pang, H. X., 2014. Stable Isotopes in Different Water Samples on the Monh Hayrhan Glacier, Altay Mountains: Spatial Distribution Features and Vapor Sources. Journal of Glaciology and Geocryology, 36(5): 1271-1279 (in Chinese with English abstract).

[34]

Hren, M. T., Bookhagen, B., Blisniuk, P. M., et al., 2009. δ18O and δD of Streamwaters across the Himalaya and Tibetan Plateau: Implications for Moisture Sources and Paleoelevation Reconstructions. Earth and Planetary Science Letters, 288(1-2): 20-32. https://doi.org/10.1016/j.epsl.2009.08.041

[35]

Huang, T. M., Nie, Z. Q., Yuan, L. J., 2008. Temperature and Geographical Effects of Hydrogen and Oxygen Isotopes in Precipitation in West of China. Journal of Arid Land Resources and Environment, 22(8): 76-81 (in Chinese with English abstract).

[36]

Kang, S. C., Qin, D. H., Yao, T. D., et al., 2000. δ18O Characteristics of Atmospheric Precipitation during the Summer Monsoon in the High Altitude Area of Dasuopu Glacier in Xixiabangma Peak. Journal of Mountain Research, 18(1): 1-6 (in Chinese with English abstract).

[37]

Kang, S. C., Xu, Y. W., You, Q. L., et al., 2010. Review of Climate and Cryospheric Change in the Tibetan Plateau. Environmental Research Letters, 5(1): 015101. https://doi.org/10.1088/1748-9326/5/1/015101

[38]

Kong, Y. L., Pang, Z. H., 2012. Evaluating the Sensitivity of Glacier Rivers to Climate Change Based on Hydrograph Separation of Discharge. Journal of Hydrology, 434-435: 121-129. https://doi.org/10.1016/j.jhydrol.2012.02.029

[39]

Kong, Y. L., Pang, Z. H., 2016. A Positive Altitude Gradient of Isotopes in the Precipitation over the Tianshan Mountains: Effects of Moisture Recycling and Sub-Cloud Evaporation. Journal of Hydrology, 542: 222-230. https://doi.org/10.1016/j.jhydrol.2016.09.007

[40]

Kong, Y. L., Pang, Z. H., Froehlich, K., 2013. Quantifying Recycled Moisture Fraction in Precipitation of an Arid Region Using Deuterium Excess. Tellus B: Chemical and Physical Meteorology, 65(1): 19251. https://doi.org/10.3402/tellusb.v65i0.19251

[41]

Kumar, U. S., Kumar, B., Rai, S. P., et al., 2010. Stable Isotope Ratios in Precipitation and Their Relationship with Meteorological Conditions in the Kumaon Himalayas, India. Journal of Hydrology, 391(1-2): 1-8. https://doi.org/10.1016/j.jhydrol.2010.06.019

[42]

Li, J., Pang Z. H., Tursun, G., et al., 2016. Identification of Moisture Sources in Junggar Basin and Its Implication for Groundwater Recharge. Science & Technology Review, 34(18): 118-124 (in Chinese with English abstract).

[43]

Li, J., Pang, Z. H., 2022. The Elevation Gradient of Stable Isotopes in Precipitation in the Eastern Margin of Tibetan Plateau. Science China Earth Sciences, 65(10): 1972-1984. https://doi.org/10.1007/s11430-021-9942-0

[44]

Li, X. F., 2013. Stable Isotopes in Different Types of Water and Their Significance during the Wet Season in the Urumqi River Basin, Eastern Tianshan Mountains (Dissertation). Northwest Normal University, Lanzhou (in Chinese with English abstract).

[45]

Li, Y. G., Li, Z. X., Feng, Q., et al., 2018. Environmental Significance of the Stable Isotopes in Precipitation at Different Altitudes in the Tuolai River Basin. Environmental Science, 39(6): 2661-2672 (in Chinese with English abstract).

[46]

Li, Z. J., 2020. Study on the Runoff Sources Based on Stable Isotope Tracing in the Source Region of the Yangtze River (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).

[47]

Li, Z. J., Li, Z. X., Song, L. L., et al., 2020a. Characteristic and Factors of Stable Isotope in Precipitation in the Source Region of the Yangtze River. Agricultural and Forest Meteorology, 281: 107825. https://doi.org/10.1016/j.agrformet.2019.107825

[48]

Li, Z. J., Li, Z. X., Song, L. L., et al., 2020b. Hydrological and Runoff Formation Processes Based on Isotope Tracing during Ablation Period in the Source Regions of Yangtze River. Hydrology and Earth System Sciences, 24(8): 4169-4187. https://doi.org/10.5194/hess-24-4169-2020

[49]

Li, Z. X., Feng, Q., Li, Z. J., et al., 2019b. Climate Background, Fact and Hydrological Effect of Multiphase Water Transformation in Cold Regions of the Western China: A Review. Earth-Science Reviews, 190: 33-57. https://doi.org/10.1016/j.earscirev.2018.12.004

[50]

Li, Z. X., Feng, Q., Liu, W., et al., 2014. Study on the Contribution of Cryosphere to Runoff in the Cold Alpine Basin: A Case Study of Hulugou River Basin in the Qilian Mountains. Global and Planetary Change, 122: 345-361. https://doi.org/10.1016/j.gloplacha.2014.10.001

[51]

Li, Z. X., Feng, Q., Liu, W., et al., 2015b. The Stable Isotope Evolution in Shiyi Glacier System during the Ablation Period in the North of Tibetan Plateau, China. Quaternary International, 380-381: 262-271. https://doi.org/10.1016/j.quaint.2015.02.013

[52]

Li, Z. X., Feng, Q., Wang, Q. J., et al., 2016a. Contribution from Frozen Soil Meltwater to Runoff in an In-Land River Basin under Water Scarcity by Isotopic Tracing in Northwestern China. Global and Planetary Change, 136: 41-51. https://doi.org/10.1016/j.gloplacha.2015.12.002

[53]

Li, Z. X., Feng, Q., Wang, Q. J., et al., 2016b. Quantitative Evaluation on the Influence from Cryosphere Meltwater on Runoff in an Inland River Basin of China. Global and Planetary Change, 143: 189-195. https://doi.org/10.1016/j.gloplacha.2016.06.005

[54]

Li, Z. X., Feng, Q., Wang, Q. J., et al., 2016c. The Influence from the Shrinking Cryosphere and Strengthening Evopotranspiration on Hydrologic Process in a Cold Basin, Qilian Mountains. Global and Planetary Change, 144: 119-128. https://doi.org/10.1016/j.gloplacha.2016.06.017

[55]

Li, Z. X., Feng, Q., Wang, Q. J., et al., 2016d. Contributions of Local Terrestrial Evaporation and Transpiration to Precipitation Using δ18O and D-Excess as a Proxy in Shiyang Inland River Basin in China. Global and Planetary Change, 146: 140-151. https://doi.org/10.1016/j.gloplacha.2016.10.003

[56]

Li, Z. X., Feng, Q., Yong, S., et al., 2016e. Stable Isotope Composition of Precipitation in the South and North Slopes of Wushaoling Mountain, Northwestern China. Atmospheric Research, 182: 87-101. https://doi.org/10.1016/j.atmosres.2016.07.023

[57]

Li, Z. X., Gui, J., Wang, X. F., et al., 2019a. Water Resources in Inland Regions of Central Asia: Evidence from Stable Isotope Tracing. Journal of Hydrology, 570: 1-16. https://doi.org/10.1016/j.jhydrol.2019.01.003

[58]

Li, Z. X., Qi, F., Li, J. G., et al., 2015a. Environmental Significance and Hydrochemical Processes at a Cold Alpine Basin in the Qilian Mountains. Environmental Earth Sciences, 73(8): 4043-4052. https://doi.org/10.1007/s12665-014-3689-4

[59]

Li, Z., Yao, T. D., Tian, L. D., et al., 2006. Variations of δ^18O in Precipitation from the Muztagata Glacier, East Pamirs. Science China Earth Sciences, 49(1): 36-42. https://doi.org/10.1007/s11430-004-5090-8

[60]

Liu, F., Li, Z. Q., Hao, J. N., et al., 2020. Study on the Hydrochemical and Stable Isotope Characteristics at the Headwaters of the Irtysh River in Spring. Journal of Glaciology and Geocryology, 42(1): 234-242 (in Chinese with English abstract).

[61]

Liu, F., Liu, P., Cao, M., et al., 2020. Review on Applications of Stable Isotope Technique in the Study of Plant and Water Relation. Ecological Science, 39(6): 224-232 (in Chinese with English abstract).

[62]

Liu, G. S., Wang, G. X., Sun, X. Y., et al., 2012. Variation Characteristics of Stable Isotopes in Precipitation and River Water in Fenghuoshan Permafrost Watershed. Advances in Water Science, 23(5): 621-627 (in Chinese with English abstract).

[63]

Liu, J. R., Song, X. F., Sun, X. M., et al., 2009. Isotopic Composition of Precipitation over Arid Northwestern China and Its Implications for the Water Vapor Origin. Journal of Geographical Sciences, 19(2): 164-174. https://doi.org/10.1007/s11442-009-0164-3

[64]

Liu, J. R., Song, X. F., Yuan, G. F., et al., 2008. Characteristics of δ18O in Precipitation over Northwest China and Its Water Vapor Sources. Acta Geographica Sinica, 63(1):12-22 (in Chinese with English abstract).

[65]

Liu, Q., 2014. Variations of River Water Stable Isotopes on the Tibetan Plaeau and Adjacent Regions (Dissertation). Southwest University, Chongqing (in Chinese with English abstract).

[66]

Liu, S. Y., Yao, X. J., Guo, W. Q., et al., 2015. The Contemporary Glaciers in China Based on the Second Chinese Glacier Inventory. Acta Geographica Sinica, 70(1): 3-16 (in Chinese with English abstract).

[67]

Liu, Y. H., Fan, N. J., An, S. Q., et al., 2008a. Characteristics of Water Isotopes and Hydrograph Separation during the Wet Season in the Heishui River, China. Journal of Hydrology, 353(3-4): 314-321. https://doi.org/10.1016/j.jhydrol.2008.02.017

[68]

Liu, Z. F., Tian, L. D., Chai, X. R., et al., 2008b. A Model-Based Determination of Spatial Variation of Precipitation δ18O over China. Chemical Geology, 249(1-2): 203-212. https://doi.org/10.1016/j.chemgeo.2007.12.011

[69]

Liu, Z. F., Tian, L. D., Yao, T. D., et al., 2007. Temporal and Spatial Variations of δ18O in Precipitation of the Yarlung Zangbo River Basin.Journal of Geographical Sciences, 17(3): 317-326. https://doi.org/10.1007/s11442-007-0317-1

[70]

Liu, Z. F., Tian, L. D., Yao, T. D., et al., 2008. The Temporal and Spatial Variations of δ18O in River Water of the Yarlung Zangbo River Basin. Journal of Glaciology and Geocryology, 30(1): 20-27 (in Chinese with English abstract).

[71]

Ma, R., Sun, Z. Y., Hu, Y. L., et al., 2017. Hydrological Connectivity from Glaciers to Rivers in the Qinghai-Tibet Plateau: Roles of Suprapermafrost and Subpermafrost Groundwater. Hydrology and Earth System Sciences, 21(9): 4803-4823. https://doi.org/10.5194/hess-21-4803-2017

[72]

Maurya, A. S., Shah, M., Deshpande, R. D., et al., 2011. Hydrograph Separation and Precipitation Source Identification Using Stable Water Isotopes and Conductivity: River Gangaat Himalayan Foothills. Hydrological Process, 25(10): 1521-1530. https://doi.org/10.1002/hyp.7912

[73]

Meng, Y. C., Liu, G. D., 2013. Stable Isotopic Information for Hydrological Investigation in Hailuogou Watershed on the Eastern Slope of Mount Gongga, China. Environmental Earth Sciences, 69(1): 29-39. https://doi.org/10.1007/s12665-012-1931-5

[74]

Pang, Z. H., Kong, Y. L., Froehlich, K., et al., 2011. Processes Affecting Isotopes in Precipitation of an Arid Region. Tellus B: Chemical and Physical Meteorology, 63(3): 352. https://doi.org/10.1111/j.1600-0889.2011.00532.x

[75]

Peng, S. Z., , 2019. 1-km Monthly Mean Temperature Dataset for China (1901-2017). National Tibetan Plateau Data Center, Beijing (in Chinese). https://doi.org/10.11888/Meteoro.tpdc.270961

[76]

Peng, S. Z., 2020. 1-km Monthly Precipitation Dataset for China (1901-2017). National Tibetan Plateau Data Center, Beijing (in Chinese). https://doi.org/10.5281/zenodo.3185722

[77]

Poage, M. A., 2001. Empirical Relationships between Elevation and the Stable Isotope Composition of Precipitation and Surface Waters: Considerations for Studies of Paleoelevation Change. American Journal of Science, 301(1): 1-15. https://doi.org/10.2475/ajs.301.1.1

[78]

Pu, T., He, Y. Q., Zhu, G. F., et al., 2013. Characteristics of Water Stable Isotopes and Hydrograph Separation in Baishui Catchment during the Wet Season in Mt.Yulong Region, South Western China. Hydrological Processes, 27(25): 3641-3648. https://doi.org/10.1002/hyp.9479

[79]

Pu, T., Kong, Y. L., Wang, S. J., et al., 2020. Modification of Stable Isotopes in Snow and Related Post-Depositional Processes on a Temperate Glacier of Mt. Yulong, Southeast Tibetan Plateau. Journal of Hydrology, 584: 124675. https://doi.org/10.1016/j.jhydrol.2020.124675

[80]

Qin, D. H., Zho, B. T., Xiao, C. D., 2014. Progress in Studies of Cryospheric Changes and Their Impacts on Climate of China. Acta Meteorologica Sinica, 72(5): 869-879 (in Chinese with English abstract).

[81]

Shi, F. Z., Li, X. Y., Wu, X. C., et al., 2018. Seasonal Divergence in the Responses of Vegetation Growth to PDO in Tibetan Plateau, China. Chinese Journal of Applied Ecology, 29(4): 1107-1116 (in Chinese with English abstract).

[82]

Shi, X. Y., 2020. The Influence Mechanisms and Simulations of Precipitation Stable Isotopes over the Southern Tibetan Plateau (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).

[83]

Song, C. L., Sun, X. Y., Wang, G. X., 2015. A Study on Precipitation Stable Isotopes Characteristics and Vapor Sources of the Subalpine Gongga Mountain, China. Resources and Environment in the Yangtze Basin, 24(11): 1860-1869 (in Chinese with English abstract).

[84]

Song, M. Y., Li, Z. Q., Jin, S., et al., 2015. Characteristics of Water Isotopes and Hydrograph Separation in the Glacier No.72 of Qingbingtan, Tomur Peak. Journal of Arid Land Resources and Environment, 29(3): 156-160 (in Chinese with English abstract).

[85]

Song, M. Y., Li, Z. Q., Wang, F. T., et al., 2020. Hydrogen and Oxygen Isotopes and Hydrochemical Parameters of Water Samples from the Jimunai River Basin, Xinjiang. Environmental Chemistry, 39(7): 1809-1820 (in Chinese with English abstract).

[86]

Song, X. F., Liu, J. R., Sun, X. M., et al., 2020. Establishment of China Network of Isotopes in Precipitation (CHNIP) Based on CERN. Advances in Earth Science, 22(7): 738-747 (in Chinese with English abstract).

[87]

Sun, C. J., Chen, W., 2017. Streamflow Components in Inland Rivers in the Tianshan Mountains, Northwest China. Arid Land Geography, 40(1): 37-44 (in Chinese with English abstract).

[88]

Sun, C. J., Chen, Y. N., Li, W. H., et al., 2016a. Isotopic Time-Series Partitioning of Streamflow Components Under Regional Climate Change in the Urumqi River, Northwest China. Hydrological Sciences Journal, 61(8): 1443-1459. https://doi.org/10.1080/02626667.2015.1031757

[89]

Sun, C. J., Chen, Y. N., Li, X. G., et al., 2016b. Analysis on the Streamflow Components of the Typical Inland River, Northwest China. Hydrological Sciences Journal, 1-12. https://doi.org/10.1080/02626667.2014.1000914

[90]

Sun, C. J., Li, W. H., Chen, Y. N., et al., 2015. Isotopic and Hydrochemical Composition of Runoff in the Urumqi River, Tianshan Mountains, China. Environmental Earth Sciences, 74(2): 1521-1537. https://doi.org/10.1007/s12665-015-4144-x

[91]

Sun, C. J., Zhang, Z. Y., Chen, W., et al., 2019. Spatial Distribution of Precipitation Stable Isotopes in the Alpine Zones in Central Asia. Arid Zone Resarch, 36(1): 19-28 (in Chinese with English abstract).

[92]

Tang, Q. H., Liu, X. C., Zhou, Y. Y., et al., 2019. Cascading Impacts of Asian Water Tower Change on Downstream Water Systems. Bulletin of Chinese Academy of Sciences, 34(11): 1306-1312 (in Chinese with English abstract).

[93]

Tian, L. D., Cai, Z. Y., Shao, L. L., et al., 2021. Review on the Study of Climatic Significance of Precipitation Isotope in Asian Monsoon Region. Quaternary Sciences, 41(3): 856-863 (in Chinese with English abstract).

[94]

Tian, L. D., Ma, L. L., Yu, W. S., et al., 2008. Seasonal Variations of Stable Isotope in Precipitation and Moisture Transport at Yushu, Eastern Tibetan Plateau. Science in China (Series D), 38(8): 986-992 (in Chinese).

[95]

Tian, L. D., Masson-Delmotte, V., Stievenard, M., et al., 2001. Tibetan Plateau Summer Monsoon Northward Extent Revealed by Measurements of Water Stable Isotopes. Journal of Geophysical Research: Atmospheres, 106(D22): 28081-28088. https://doi.org/10.1029/2001jd900186

[96]

Tian, L. D., Yao, T. D., MacClune, K., et al., 2007. Stable Isotopic Variations in West China: A Consideration of Moisture Sources. Journal of Geophysical Research: Atmospheres, 112(D10): D10112. https://doi.org/10.1029/2006jd007718

[97]

Tian, L. D., Yao, T. D., Stievenard, M., et al., 1998. A Study of Hydrogen Isotope in Precipitation in West China. Journal of Glaciolgy and Geocryology, 20(2): 175-179 (in Chinese with English abstract).

[98]

Tian, L. D., Yao, T. D., Yu, W. S., et al., 2006. Stable Isotopes of Precipitation and Ice Core on the Tibetan Plateau and Moisture Transports. Quaternary Sciences, 26(2): 145-152 (in Chinese with English abstract).

[99]

Tian, L., Yao, T., Schuster, P. F., et al., 2003. Oxygen-18 Concentrations in Recent Precipitation and Ice Cores on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 108(D9): 4293. https://doi.org/10.1029/2002jd002173

[100]

Tong, X. X., Liu, C. F., 2018. Hydrogeological Significance of Hydrogen and Oxygen Isotopes in Ice and Snow Melting Water in Northwest Arid Region. Environmental Science & Technology, 41(1): 57-63 (in Chinese with English abstract).

[101]

Turner, J. V., Bradd, J. M., Waite, T. D., 1992. Conjunctive Use of Isotopic Technique to Elucidate Solve Concentration and Flow Processes in Dryland Salinized Catchment. Isotope Techniques in Water Resources Development. Proceedings of a Symposium, IAEA, Vienna.

[102]

Wang, C. X., Dong, Z. W., Qin, X., et al., 2016. Glacier Meltwater Runoff Process Analysis Using δD and δ18O Isotope and Chemistry at the Remote Laohugou Glacier Basin in Western Qilian Mountains, China. Journal of Geographical Sciences, 26(6): 722-734. https://doi.org/10.1007/s11442-016-1295-y

[103]

Wang, N. L., Zhang, S. B., Pu, J. C., et al., 2008. Seasonal Variation of δ18O in River Water in the Upper Reaches of Heihe River Basin and Its Influence Factors. Journal of Glaciology and Geocryology, 30(6): 914-919 (in Chinese with English abstract).

[104]

Wang, S. J., 2015. Stable Hydrogen and Oxygen Isotopes in Precipitation of the Tianshan Mountains and Their Significance in Hydrological Cycle (Dissertation). Northwest Normal University, Lanzhou (in Chinese with English abstract).

[105]

Wang, S. J., Lei, S. J., Zhang, M. J., et al., 2022. Spatial and Seasonal Isotope Variability in Precipitation across China: Monthly Isoscapes Based on Regionalized Fuzzy Clustering. Journal of Climate, 35(11): 3411-3425. https://doi.org/10.1175/jcli-d-21-0451.1

[106]

Wang, S. J., Zhang, M. J., Crawford, J., et al., 2017. The Effect of Moisture Source and Synoptic Conditions on Precipitation Isotopes in Arid Central Asia. Journal of Geophysical Research: Atmospheres, 122(5): 2667-2682. https://doi.org/10.1002/2015jd024626

[107]

Wang, S. J., Zhang, M. J., Hughes, C. E., et al., 2016. Factors Controlling Stable Isotope Composition of Precipitation in Arid Conditions: An Observation Network in the Tianshan Mountains, Central Asia. Tellus B: Chemical and Physical Meteorology, 68(1): 1-14. https://doi.org/10.3402/tellusb.v68.26206

[108]

Wang, S. Y., Wang, Q. L., Wu, J. K., et al., 2019. Characteristics of Stable Isotopes in Precipitation and Moisture Sources in the Headwaters of the Yangtze River. Environmental Science, 40(6): 2615-2623 (in Chinese with English abstract).

[109]

Wang, W. H., Wu, T. H., Li, Y. N., et al., 2019. Spatial Variations and Controlling Factors of Ground Ice Isotopes in Permafrost Areas of the Central Qinghai-Tibet Plateau. Science of the Total Environment, 688: 542-554. https://doi.org/10.1016/j.scitotenv.2019.06.196

[110]

Wang, W. H., Wu, T. H., Zhao, L., et al., 2018a. Hydrochemical Characteristics of Ground Ice in Permafrost Regions of the Qinghai-Tibet Plateau. Science of the Total Environment, 626: 366-376. https://doi.org/10.1016/j.scitotenv.2018.01.097

[111]

Wang, W. H., Wu, T. H., Zhao, L., et al., 2018b. Exploring the Ground Ice Recharge near Permafrost Table on the Central Qinghai-Tibet Plateau Using Chemical and Isotopic Data. Journal of Hydrology, 560: 220-229. https://doi.org/10.1016/j.jhydrol.2018.03.032

[112]

Wang, X. Y., Li, Z. Q., Ross, E., et al., 2015. Characteristics of Water Isotopes and Hydrograph Separation during the Spring Flood Period in Yushugou River Basin, Eastern Tianshans, China. Journal of Earth System Science, 124(1): 115-124. https://doi.org/10.1007/s12040-014-0517-x

[113]

Wen, R., Tian, L. D., Weng, Y. B., et al., 2012. The Altitude Effect of δ18O in Precipitation and River Water in the Southern Himalayas. Chinese Science Bulletin, 57(12): 1693-1698 (in Chinese).

[114]

Wu, H. W., Fu, C. S., Zhang, C. C., et al., 2022. Temporal Variations of Stable Isotopes in Precipitation from Yungui Plateau: Insights from Moisture Source and Rainout Effect. Journal of Hydrometeorology, 23(1): 39-51. https://doi.org/10.1175/jhm-d-21-0098.1

[115]

Wu, H. W., Li, J., Zhang, C. C., et al., 2018. Determining Root Water Uptake of Two Alpine Crops in a Rainfed Cropland in the Qinghai Lake Watershed: First Assessment Using Stable Isotopes Analysis. Field Crops Research, 215: 113-121. https://doi.org/10.1016/j.fcr.2017.10.011

[116]

Wu, J. K., Ding, Y., Ye, B., et al., 2010. Spatio-Temporal Variation of Stable Isotopes in Precipitation in the Heihe River Basin, Northwestern China. Environmental Earth Sciences, 61(6): 1123-1134. https://doi.org/10.1007/s12665-009-0432-7

[117]

Xing, B., Liu, Z. F., Liu, G. D., et al., 2015. Determination of Runoff Components Using Path Analysis and Isotopic Measurements in a Glacier-Covered Alpine Catchment (Upper Hailuogou Valley) in Southwest China. Hydrological Processes, 29 (14), 3065-3073. https://doi.org/10.1002/hyp.10418.

[118]

Xing, J. W., Li, X. Q., Zhou, A. G., et al., 2022. Multi-Isotope Tracing of the Impact of Human Activities on the Hydrological Environment in the Muli Permafrost Region. Earth Science, Online. http://kns.cnki.net/kcms/detail/42.1874.P.20220120.1519.006.html (in Chinese with English abstract).

[119]

Xu, Q., Hoke, G. D., Jing, L. Z., et al., 2014. Stable Isotopes of Surface Water across the Longmenshan Margin of the Eastern Tibetan Plateau. Geochemistry, Geophysics, Geosystems, 15(8): 3416-3429. https://doi.org/10.1002/2014gc005252

[120]

Xu, Y. W., Kang, S. C., Zhang, Y. L., et al., 2011. A Method for Estimating the Contribution of Evaporative Vapor from Nam Co to Local Atmospheric Vapor Based on Stable Isotopes of Water Bodies.Chinese Science Bulletin, 56(14): 1511-1517. https://doi.org/10.1007/s11434-011-4467-2

[121]

Yang, G., Li, X. L., Chen, S., et al., 2017. A Study of Water Use Sources of Typical Desert Vegetations in Manasi River Basin Based on δ18O Isotope. China Rural Water and Hydropower, (11): 94-97, 103 (in Chinese with English abstract).

[122]

Yang, Y. G., Xiao, H. L., Wei, Y. P., et al., 2011. Hydrologic Processes in the Different Landscape Zones of Mafengou River Basin in the Alpine Cold Region during the Melting Period. Journal of Hydrology, 409(1-2): 149-156. https://doi.org/10.1016/j.jhydrol.2011.08.013

[123]

Yang, Y. Z., 2014. Research on Stable Isotope Hydrology in Permafrost Regions along the Qinghai-Tibet Highway (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).

[124]

Yang, Y. Z., Wu, Q. B., Jiang, G. L., et al., 2020. Ground Ice at Depths in the Tianshuihai Lake Basin on the Western Qinghai-Tibet Plateau: an Indication of Permafrost Evolution. Science of the Total Environment, 729: 138966. https://doi.org/10.1016/j.scitotenv.2020.138966

[125]

Yang, Y. Z., Wu, Q. B., Yun, H. B., 2013. Characteristic Analysis of Stable Isotope Variation in Precipitation and Rivers in Beilu River Permafrost Region. Advances in Water Science, 24(6): 778-785 (in Chinese with English abstract).

[126]

Yang, Y. Z., Wu, Q. B., Yun, H. B., 2013. Stable Isotope Variations in the Ground Ice of Beiluhe Basin on the Qinghai-Tibet Plateau. Quaternary International, 313-314: 85-91. https://doi.org/10.1016/j.quaint.2013.07.037

[127]

Yang, Y. Z., Wu, Q. B., Zhang, P., et al., 2017. Stable Isotopic Evolutions of Ground Ice in Permafrost of the Hoh Xil Regions on the Qinghai-Tibet Plateau. Quaternary International, 444: 182-190. https://doi.org/10.1016/j.quaint.2017.01.008

[128]

Yao, T. D., Masson, V., Jouzel, J., et al., 1999. Relationships between δ18O in Precipitation and Surface Air Temperature in the Urumqi River Basin, East Tianshan Mountains, China. Geophysical Research Letters, 26(23): 3473-3476. https://doi.org/10.1029/1999gl006061

[129]

Yao, T. D., Masson-Delmotte, V., Gao, J., et al., 2013. A Review of Climatic Controls on δ18O in Precipitation over the Tibetan Plateau: Observations and Simulations. Reviews of Geophysics, 51(4): 525-548. https://doi.org/10.1002/rog.20023

[130]

Yao, T. D., Qin, D. H., Shen, Y. P., et al., 2013. Cryospheric Changes and Their Impacts on Regional Water Cycle and Ecological Conditions in the Qinghai-Tibetan Plateau. Chinese Journal of Nature, 35(3): 178-186 (in Chinese with English abstract).

[131]

Yao, T. D., Zhou, H., Yang, X. X., 2009. Influence of Indian Monsoon Water Vapor on the Decline Rate of δ18O Elevation in Precipitation and River Water in Qinghai-Tibet Plateau. Chinese Science Bulletin, 54(15): 2124-2130 (in Chinese with English abstract).

[132]

Yu, T. T., Gan, Y. Q., Zhou, A. G., et al., 2010. Characteristics of Oxygen and Hydrogen Isotope Distribution of Surface Runoff in the Lhasa River Basin. Earth Science, 35(5): 873-878 (in Chinese with English abstract).

[133]

Yu, W. S., Xu, B. Q., Lai, C. T., et al., 2014. Influences of Relative Humidity and Indian Monsoon Precipitation on Leaf Water Stable Isotopes from the Southeastern Tibetan Plateau. Geophysical Research Letters, 41(21): 7746-7753. https://doi.org/10.1002/2014gl062004

[134]

Yuan, R. F., 2020. Study on Stable Isotope Characteristics and Sources of Precipitation and River Water of Shiyang River Basin (Dissertation). Northwest Normal University, Lanzhou (in Chinese with English abstract).

[135]

Zhang, B. J., Li, Z. X., Wang, Y., et al., 2019. Characteristics of Stable Isotopes and Analysis of Water Vapor Sources of Precipitation at the Northern Slope of the Qilian Mountains. Environmental Science, 40(12): 5272-5285 (in Chinese with English abstract).

[136]

Zhang, G. L., Jiao, Y. M., He, L. P., et al., 2015. Hydrogen and Oxygen Isotopes in Precipitation in Southwest China: Progress and Prospects. Journal of Glaciology and Geocryology, 37(4):1094-1103 (in Chinese with English abstract).

[137]

Zhang, J., Li, G. F., He, Y. L., et al., 2018. Water Utilization Sources of Populus Euphratica Trees of Different Ages in the Lower Reaches of Tarim River. Biodiversity Science, 26(6): 564-571 (in Chinese with English abstract).

[138]

Zhang, N. N., Cao, J. J., He, Y. Q., et al., 2014. Chemical Composition of Rainwater at Lijiang on the Southeast Tibetan Plateau: Influences from Various Air Mass Sources.Journal of Atmospheric Chemistry, 71(2): 157-174. https://doi.org/10.1007/s10874-014-9288-7

[139]

Zhang, S., Yu, W. X., Zhang, Q. L., 1973. The Distribution of Deuterium and Heavy Oxygen in Snow and Ice, in the Jolmo Lungma Regions of the Southern Tibet. Science in China (Series B), (4): 430-433.

[140]

Zhang, X. P., Liu, J. M., Nakawo, M., et al., 2009. Vapor Origins Revealed by Deuterium Excess in Precipitation in Southwest China. Journal of Glaciology and Geocryology, 31(4): 613-619 (in Chinese with English abstract).

[141]

Zhang, X. P., Masayoshi, N., Fujita, K., et al., 2001. Variation of Precipitation δ18O in Langtang Valley Himalayas. Science in China (Series D), 31(3): 206-213 (in Chinese).

[142]

Zhang, X. P., Yao, T. D., 1998. Distributional Features of δ18O in Precipitation in China. Acta Geographica Sinica, 53(4): 70-78 (in Chinese with English abstract).

[143]

Zhang, X. P., Yao, T. D., Tian, L. D., et al., 2003. Stable Oxygen Isotope in Water Mediums in Urumqi River Basin. Advances in Water Science, 14(1): 50-56 (in Chinese with English abstract).

[144]

Zhang, Z. Y., 2019. Temporal and Spatial variations of stable isotopes of precipitation in the Northwest Alpine Mountainous Area (Dissertation). Shanxi Normal University, Linfen (in Chinese with English abstract).

[145]

Zhao, L. J., Xie, C., Liu, X. H., et al., 2020. Water Sources of Major Plant Species along a Strong Climatic Gradient in the Inland Heihe River Basin. Plant and Soil, 455(1): 439-466. https://doi.org/10.1007/s11104-020-04639-5

[146]

Zhao, W., Ma, J. Z., Gu, C. J., et al., 2016. Distribution of Isotopes and Chemicals in Precipitation in Shule River Basin, Northwestern China: An Implication for Water Cycle and Groundwater Recharge. Journal of Arid Land, 8(6): 973-985. https://doi.org/10.1007/s40333-016-0091-y

[147]

Zheng, S. H., Hou, F. G., Ni, B. L, 1983. Study on Stable Isotopes of Hydrogen and Oxygen in Precipitation in China. Chinese Science Bulletin, 28(13): 801-806 (in Chinese).

[148]

Zhou, J. X., Wu, J. K., Liu, S. W., et al., 2015. Hydrograph Separation in the Headwaters of the Shule river basin: Combining Water Chemistry and Stable Isotopes. Advances in Meteorology, 2015: 830306. https://doi.org/10.1155/2015/830306.

[149]

Zhou, S. Q., Masayoshi, N., Akiko, S., et al., 2007. Water Isotope Variations in the Snow Pack and Summer Precipitation at July 1 Glacier, Qilian Mountains in Northwest China. Chinese Science Bulletin, 52(21): 2963-2972. https://doi.org/10.1007/s11434-007-0401-z

[150]

Zhou, S. Q., Wang, Z., Joswiak, D. R., 2014. From Precipitation to Runoff: Stable Isotopic Fractionation Effect of Glacier Melting on a Catchment Scale. Hydrological Processes, 28(8): 3341-3349. https://doi.org/10.1002/hyp.9911

[151]

Zhu, X. F., Wu, T. H., Hu, G. J., et al., 2020. Long-Distance Atmospheric Moisture Dominates Water Budget in Permafrost Regions of the CentralQinghai-Tibetplateau. Hydrological Processes, 34(22): 4280-4294. https://doi.org/10.1002/hyp.13871

[152]

Zou, D. F., Zhao, L., Sheng, Y., et al., 2017. A New Map of Permafrost Distribution on the Tibetan Plateau. Cryosphere, 11:2527-2542. https://doi.org/10.5194/tc-11-2527-2017

[153]

包宇飞, 2019.雅鲁藏布江水文水化学特征及流域碳循环研究(博士学位论文).北京:中国水利水电科学研究院.

[154]

常启昕, 孙自永, 潘钊, 等, 2022.高寒山区河道径流的形成与水文调节机制研究进展.地球科学, 47(11): 4196-4209.

[155]

陈粉丽, 2016.基于大气降水稳定同位素的兰州市水循环研究(博士学位论文).兰州:西北师范大学.

[156]

陈小丽,陈亚宁,陈亚鹏,2014.黑河下游荒漠河岸林植物水分利用关系研究.中国生态农业学报,22(8): 972-979.

[157]

陈亚宁,李卫红,陈亚鹏,等,2018.荒漠河岸林建群植物的水分利用过程分析.干旱区研究,35(1): 130-136.

[158]

陈亚鹏,陈亚宁,徐长春,等,2011.塔里木河下游地下水埋深对胡杨气体交换和叶绿素荧光的影响.生态学报,31(2): 344-353.

[159]

程国栋,金会军,2013.青藏高原多年冻土区地下水及其变化.水文地质工程地质,40(1): 1-11.

[160]

崔步礼,2011.基于氢氧稳定同位素的青海湖流域水循环及水量转化关系研究(博士学位论文).北京:北京师范大学.

[161]

丁林,许强,张利云,等,2009.青藏高原河流氧同位素区域变化特征与高度预测模型建立.第四纪研究, 29(1): 1-12.

[162]

丁悌平, 高建飞, 石国钰, 等, 2013.长江水氢、氧同位素组成的时空变化及其环境意义.地质学报, 87(5): 661-676.

[163]

冯芳,冯起,刘贤德,等,2017.祁连山排露沟流域降水δ18O和δD特征及水汽来源.37(5): 997-1005.

[164]

高建飞, 丁悌平, 罗续荣, 等, 2011.黄河水氢、氧同位素组成的空间变化特征及其环境意义.地质学报, 85(4): 596-602.

[165]

郭小燕, 2015.基于稳定同位素和水化学的疏勒河流域水文过程研究(博士学位论文).北京:中国科学院大学.

[166]

郭小云, 2016.呼图壁河流域不同水体的水化学和稳定同位素特征分析(硕士学位论文).乌鲁木齐:新疆大学.

[167]

侯浩, 侯书贵, 庞洪喜, 2014.阿尔泰山蒙赫海尔汗冰川不同水体稳定同位素空间分布特征及水汽来源.冰川冻土, 36(5): 1271-1279.

[168]

黄天明, 聂中青, 袁利娟, 2008.西部降水氢氧稳定同位素温度及地理效应.干旱区资源与环境, 22(8): 76-81.

[169]

康世昌, 秦大河, 姚檀栋, 等, 2000.希夏邦马峰达索普冰川高海拔区夏季风期间大气降水的δ18O特征.山地学报, 18(1): 1-6.

[170]

李捷,庞忠和,古丽波斯坦·吐逊江,等,2016.北疆大气降水水汽源识别及其对地下水补给的指示意义.科技导报,34(18): 118-124.

[171]

李小飞, 2013.乌鲁木齐河流域湿季水体中稳定同位素特征及其示踪意义(硕士学位论文).兰州:西北师范大学.

[172]

李永格,李宗省,冯起,等,2018.托来河流域不同海拔降水稳定同位素的环境意.环境科学, 39(6): 2661-2672.

[173]

李宗杰, 2020.基于稳定同位素示踪的长江源区径流源解析研究(博士学位论文).兰州:兰州大学.

[174]

刘峰, 李忠勤, 郝嘉楠, 等, 2020.额尔齐斯河源春季水化学及稳定同位素特征研究.冰川冻土, 42(1): 234-242.

[175]

刘飞, 刘攀, 曹铭, 等, 2020.稳定同位素技术在植物水分关系研究中的应用综述.生态科学, 39(6): 224-232.

[176]

刘光生, 王根绪, 孙向阳, 等, 2012.多年冻土区风火山流域降水河水稳定同位素特征分析.水科学进展, 23(5): 621-627.

[177]

柳鉴容,宋献方,袁国富,等,2008.西北地区大气降水18O的特征及水汽来源.地理学报,63(1): 12-22.

[178]

刘琴, 2014.青藏高原及其周边地区地表水氢氧稳定同位素空间变化特征(硕士学位论文).重庆:西南大学.

[179]

刘时银, 姚晓军, 郭万钦, 等, 2015.基于第二次冰川编目的中国冰川现状.地理学报, 70(1): 3-16.

[180]

刘忠方, 田立德, 姚檀栋, 等, 2008.雅鲁藏布江流域河水中氧稳定同位素的时空变化.冰川冻土, 30(1): 20-27.

[181]

彭守璋,2019.中国1km分辨率逐月平均气温数据集(1901-2017).北京:国家青藏高原科学数据中心.https://doi.org/10.11888/Meteoro.tpdc.270961

[182]

彭守璋,2020.中国1km分辨率逐月降水量数据集(1901-2017).北京:国家青藏高原科学数据中心.https://doi.org/10.5281/zenodo.3185722

[183]

秦大河, 周波涛, 效存德, 2014.冰冻圈变化及其对中国气候的影响.气象学报, 72(5): 869-879.

[184]

石芳忠, 李小雁, 吴秀臣, 等, 2018.青藏高原植被生长对PDO响应的季节分异.应用生态学报, 29(4): 1107-1116.

[185]

史晓宜, 2020.青藏高原南部降水稳定同位素影响机理及其模拟研究(博士学位论文).兰州:兰州大学.

[186]

宋春林, 孙向阳, 王根绪, 2015.贡嘎山亚高山降水稳定同位素特征及水汽来源研究.长江流域资源与环境, 24(11): 1860-1869.

[187]

宋梦媛, 李忠勤, 金爽, 等, 2015.托木尔峰青冰滩72号冰川流域同位素特征及径流分割研究.干旱区资源与环境, 29(3): 156-160.

[188]

宋梦媛, 李忠勤, 王飞腾, 等, 2020.新疆吉木乃诸河水体氢氧同位素和水化学特征.环境化学, 39(7): 1809-1820.

[189]

宋献方,柳鉴容,孙晓敏,等,2020.基于CERN的中国大气降水同位素观测网络.地球科学进展,22(7): 738-747.

[190]

孙从建, 陈伟, 2017.天山山区典型内陆河流域径流组分特征分析.干旱区地理, 40(1): 37-44.

[191]

孙从建,张子宇,陈伟,等,2019.亚洲中部高山降水稳定同位素空间分布特征.干旱区研究,36(01): 19-28.

[192]

汤秋鸿,刘星才,周园园,等,2019.“亚洲水塔”变化对下游水资源的连锁效应.中国科学院院刊,34(11): 1306-1312.

[193]

田立德,蔡忠银,邵莉莉,等,2021. 亚洲季风区降水中稳定同位素气候意义研究进展.第四纪研究,41(3): 856-863.

[194]

田立德,马凌龙,余武生,等,2008.青藏高原东部玉树降水中稳定同位素季节变化与水汽输送.中国科学(D辑),38(8): 986-992.

[195]

田立德, 姚檀栋, Stievenard, M., 等, 1998.中国西部降水中δD的初步研究.冰川冻土, 20(2): 175-179.

[196]

田立德,姚檀栋,余武生,等,2006.青藏高原水汽输送与冰芯中稳定同位素记录.第四纪研究,26(2): 145-152.

[197]

仝晓霞, 刘存富, 2018.西北干寒区冰雪融水氢氧同位素水文地质意义.环境科学与技术, 41(1): 57-63.

[198]

王宁练,张世彪,蒲健辰,等,2008.黑河上游河水中δ18O季节变化特征及其影响因素研究.冰川冻土, 30(6): 914-919.

[199]

王圣杰,2015.天山地区降水稳定氢氧同位素特征及其在水循环过程中的指示意义(博士学位论文).兰州:西北师范大学.

[200]

汪少勇,王巧丽,吴锦奎,等,2019.长江源区降水氢氧稳定同位素特征及水汽来源.环境科学,40(6): 2615-2623.

[201]

文蓉,田立德,翁永标,等,2012.喜马拉雅山南坡降水与河水中δ18O高程效应.科学通报,57(12): 1693-1698.

[202]

邢剑伟, 李小倩, 周爱国, 等,2022.人类活动对木里冻土区水文环境影响的多元同位素示踪.地球科学, 网络首发.http://kns.cnki.net/kcms/detail/42.1874.P.20220120.1519.006.html

[203]

杨广, 李小龙, 陈思, 等, 2017.基于δ18O同位素的玛纳斯河流域典型荒漠植被水分利用来源研究.中国农村水利水电, (11): 94-97, 103.

[204]

杨玉忠,2014.青藏公路沿线多年冻土区稳定同位素水文研究(博士学位论文).北京:中国科学院大学.

[205]

杨玉忠, 吴青柏, 贠汉伯, 2013.北麓河多年冻土区降水及河水稳定同位素特征分析.水科学进展, 24(6): 778-785.

[206]

姚檀栋,秦大河,沈永平,等,2013.青藏高原冰冻圈变化及其对区域水循环和生态条件的影响.自然杂志,35(3): 178-186.

[207]

姚檀栋, 周行, 杨晓新, 2009.印度季风水汽对青藏高原降水和河水中δ18O高程递减率的影响.科学通报, 54(15): 2124-2130.

[208]

余婷婷,甘义群,周爱国,等,2010.拉萨河流域地表径流氢氧同位素空间分布特征.地球科学,35(5): 873-878.

[209]

袁瑞丰, 2020.石羊河流域降水与河水稳定同位素特征及来源研究(硕士学位论文).兰州:西北师范大学.

[210]

张百娟,李宗省,王昱,等,2019.祁连山北坡中段降水稳定同位素特征及水汽来源分析.环境科学,40(12): 5272-5285.

[211]

张贵玲, 角媛梅, 何礼平, 等, 2015.中国西南地区降水氢氧同位素研究进展与展望.冰川冻土, 37(4): 1094-1103.

[212]

张江,李桂芳,贺亚玲,等,2018.基于稳定同位素技术的塔里木河下游不同林龄胡杨的水分利用来源.生物多样性,26(6): 564-571.

[213]

章新平,刘晶淼,中尾正义,等,2009.我国西南地区降水中过量氘指示水汽来源.冰川冻土,31(4): 613-619.

[214]

章新平,中尾正义,藤田耕史,等,2001.喜马拉雅山朗塘流域降水中δ18O的变化.中国科学(D辑),31(3): 206-213.

[215]

章新平, 姚檀栋, 1998.我国降水中δ18O的分布特点.地理学报, 53(4): 356-364.

[216]

章新平,姚檀栋,田立德,等,2003.乌鲁木齐河流域不同水体中的氧稳定同位素.水科学进展, 14(1): 50-56.

[217]

张子宇,2019.西北高寒山区大气降水稳定同位素组成时空特征分布研究(硕士学位论文).临汾:山西师范大学.

[218]

郑淑蕙, 侯发高, 倪葆龄, 1983.我国大气降水的氢氧稳定同位素研究.科学通报, 28(13): 801-806.

基金资助

国家自然科学基金区域发展联合基金重点项目(U22A20592)

国家重点研发计划项目专题(2020YFA0607702)

第二次青藏高原综合科学考察研究项目专题(2019QZKK0405)

中国科学院青年交叉团队项目(JCTD-2022-18)

中国科学院“西部之光”交叉团队项目‒重点实验室合作研究专项

甘肃省创新群体项目(20JR10RA038)

AI Summary AI Mindmap
PDF (3783KB)

298

访问

0

被引

详细

导航
相关文章

AI思维导图

/