长江中游荆江段地下水排泄的量化及其空间差异性分析
周子皓 , 杜尧 , 孙晓梁 , 范红晨 , 邓娅敏
地球科学 ›› 2024, Vol. 49 ›› Issue (04) : 1448 -1458.
长江中游荆江段地下水排泄的量化及其空间差异性分析
Quantification of Groundwater Discharge and Its Spatial Variability in Jingjiang Section of Middle Reach of the Yangtze River
,
地下水与河流的相互作用对于维持河流生态系统的健康十分关键,但是目前对于地下水向湿润地区大型河流排泄过程的定量化研究较为薄弱.针对这一问题,以长江中游荆江段为研究区,通过野外采样和水文气象数据收集,利用222Rn质量平衡模型定量估算长江中游荆江段的地下水排泄,并用EC质量平衡模型及水量平衡模型验证222Rn质量平衡的结果.结果显示:长江中游荆江段的平均地下水排泄速率为133 mm/d,排泄总量为1.06×108 m3/d,对水量平衡的贡献约为10.99%.其中枝城-沙市段地下水排泄速率最大,监利-螺山段地下水排泄速率最低.含水层富水性和地下水位可能是控制地下水排泄速率的关键因素.本研究对于流域水资源管理具有重要意义,也可为今后长江中游地区水资源的合理开发利用以及生态环境保护提供理论依据.
地下水排泄 / 氡 / 水量平衡 / 荆江 / 长江中游 / 水文地质学
groundwater discharge / radon / water balance / Jingjiang River / middle reach of the Yangtze River / hydrogeology
附图见本刊官网(http://www.earth-science.net).
| [1] |
Batlle-Aguilar, J., Harrington, G. A., Leblanc, M., et al., 2014. Chemistry of Groundwater Discharge Inferred from Longitudinal River Sampling. Water Resources Research, 50(2): 1550-1568. https://doi.org/10.1002/2013wr013591 |
| [2] |
Bauer, P., Held, R.J., Zimmermann, S., et al., 2006. Coupled Flow and Salinity Transport Modelling in Semi-Arid Environments: The Shashe River Valley, Botswana. Journal of Hydrology, 316(1/2/3/4): 163-183. https://doi.org/10.1016/j.jhydrol.2005.04.018 |
| [3] |
Boudreau, B.P.,1996. The Diffusive Tortuosity of Fine-Grained Unlithified Sediments. Geochimica et Cosmochimica Acta, 60(16): 3139-3142. https://doi.org/10.1016/0016-7037(96)00158-5 |
| [4] |
Burnett, W. C., Peterson, R. N., Chanyotha, S., et al., 2013. Using High-Resolution In Situ Radon Measurements to Determine Groundwater Discharge at a Remote Location: Tonle Sap Lake, Cambodia.Journal of Radioanalytical and Nuclear Chemistry, 296(1): 97-103. https://doi.org/10.1007/s10967-012-1914-8 |
| [5] |
Burnett, W. C., Peterson, R. N., Santos, I. R., et al., 2010. Use of Automated Radon Measurements for Rapid Assessment of Groundwater Flow into Florida Streams. Journal of Hydrology, 380(3-4): 298-304. https://doi.org/10.1016/j.jhydrol.2009.11.005 |
| [6] |
Che, Q. H., Su, X. S., Zheng, S. D., et al., 2021. Interaction between Surface Water and Groundwater in the Alluvial Plain (Anqing Section) of the Lower Yangtze River Basin: Environmental Isotope Evidence.Journal of Radioanalytical and Nuclear Chemistry, 329(3): 1331-1343. https://doi.org/10.1007/s10967-021-07889-4 |
| [7] |
Chen, X., 2007. Hydrologic Connections of a Stream-Aquifer-Vegetation Zone in South-Central Platte River Valley, Nebraska. Journal of Hydrology, 333(2/3/4): 554-568. https://doi.org/10.1016/j.jhydrol.2006.09.020 |
| [8] |
Corbett, D. R., Burnett, W. C., Cable, P. H., et al., 1998. A Multiple Approach to the Determination of Radon Fluxes from Sediments.Journal of Radioanalytical and Nuclear Chemistry, 236(1/2): 247-253. https://doi.org/10.1007/BF02386351 |
| [9] |
Dai, W. Y., 2021. Analysis of Riverbed Evolution of the Waigaoqiao Branch Channel of the Yangtze Estuary in Flood Period under New Water and Sediment Conditions. American Journal of Water Science and Engineering, 7(2): 48-56. https://doi.org/10.11648/j.ajwse.20210702.13 |
| [10] |
Deng, Q.J., Tang, Z.H., Wu, Q., et al., 2014. Characteristics of Groundwater and Its Influencing Factors in Jingzhou City. Resources and Environment in the Yangtze Basin, 23(9): 1215-1221 (in Chinese with English abstract). |
| [11] |
Dimova, N. T., Burnett, W. C., 2011. Evaluation of Groundwater Discharge into Small Lakes Based on the Temporal Distribution of Radon-222. Limnology and Oceanography, 56(2): 486-494. https://doi.org/10.4319/lo.2011.56.2.0486 |
| [12] |
Fan, X. J., Wang, L., Li, C., et al., 2021. Occurrence Characteristics of Shallow Groundwater in Urban District in Yichang. Resources Environment & Engineering, 35(2): 211-215, 231 (in Chinese with English abstract). |
| [13] |
Freeze, R.A., Witherspoon, P. A., 1967. Theoretical Analysis of Regional Groundwater Flow: 2. Effect of Water-Table Configuration and Subsurface Permeability Variation. Water Resources Research, 3(2): 623-634. https://doi.org/10.1029/wr003i002p00623 |
| [14] |
Gao, Y., Chen, L., Zhang, W., et al., 2021. Spatiotemporal Variations in Characteristic Discharge in the Yangtze River Downstream of the Three Gorges Dam. Science of the Total Environment, 785(3-4): 147343. https://doi.org/10.1016/j.scitotenv.2021.147343 |
| [15] |
Han, J. B., Xu, J. X., Yi, L., et al., 2022. Seasonal Interaction of River Water-Groundwater-Salt Lake Brine and Its Influence on Water-Salt Balance in the Nalenggele River Catchment in Qaidam Basin, NW China. Journal of Earth Science, 33(5): 1298-1308. https://doi.org/10.1007/s12583-022-1731-0 |
| [16] |
Han, J. Q., Wang, Y., Sun, Z. H., 2021. Changes of Water Stage in the Middle Yangtze River Influenced by Human Activities in the Past 70 Years. Frontiers of Earth Science, 15(1): 121-132. https://doi.org/10.1007/s11707-020-0855-8 |
| [17] |
Huang, C.S., Zhou, Y., Zhang, S.N., et al., 2021. Groundwater Resources in the Yangtze River Basin and Its Current Development and Utilization. Geology in China, 48(4): 979-1000 (in Chinese with English abstract). |
| [18] |
Kluge, T., Ilmberger, J., von Rohden, C., et al., 2007. Tracing and Quantifying Groundwater Inflow into Lakes Using a Simple Method for Radon-222 Analysis. Hydrology and Earth System Sciences, 11(5): 1621-1631. https://doi.org/10.5194/hess-11-1621-2007 |
| [19] |
Li, M.T., 2005. Study on the Coupling Effect of Main Water and Sediment in the Middle and Lower Reaches of the Yangtze River and Modern Riverbed Geomorphology(Dissertation). East China Normal University, Shanghai (in Chinese with English abstract). |
| [20] |
Liao, F., Wang, G. C., Shi, Z. M., et al., 2018. Estimation of Groundwater Discharge and Associated Chemical Fluxes into Poyang Lake, China: Approaches Using Stable Isotopes (δD and δ18O) and Radon. Hydrogeology Journal, 26(5): 1625-1638. https://doi.org/10.1007/s10040-018-1793-3 |
| [21] |
Liu, J., Tian,Y., Huang, K., et al., 2021. Spatial-Temporal Differentiation of the Coupling Coordinated Development of Regional Energy-Economy-Ecology System: A Case Study of the Yangtze River Economic Belt. Ecological Indicators, 124(2): 107394. https://doi.org/10.1016/j.ecolind.2021.107394 |
| [22] |
Liu, S., Zhu, J. Q., Tian, H., 2012. Main Water Issues and Countermeasures in Middle and Lower Reaches of Yangtze River. Journal of Yangtze University (Natural Science Edition), 9(1): 42-46, 5 (in Chinese with English abstract). |
| [23] |
Luo, X., Jiao, J. J., Wang, X. S., et al., 2016. Temporal 222Rn Distributions to Reveal Groundwater Discharge into Desert Lakes: Implication of Water Balance in the Badain Jaran Desert, China. Journal of Hydrology, 534: 87-103. https://doi.org/10.1016/j.jhydrol.2015.12.051 |
| [24] |
Mao, L.F., Fu, S., Liu, H., et al., 2023. Analysis of Recharge Source of Karst Spring Water Based on Stable Hydrogen and Oxygen Isotopes. Earth Science, 48(9): 3480-3493 (in Chinese with English abstract). |
| [25] |
Martinez, J.L., Raiber, M., Cox, M.E., 2015. Assessment of Groundwater-Surface Water Interaction Using Long-Term Hydrochemical Data and Isotope Hydrology: Headwaters of the Condamine River, Southeast Queensland, Australia. Science of the Total Environment, 536: 499-516. https://doi.org/10.1016/j.scitotenv.2015.07.031 |
| [26] |
Ortega, L., Manzano, M., Custodio, E., et al., 2015. Using 222Rn to Identify and Quantify Groundwater Inflows to the Mundo River (SE Spain). Chemical Geology, 395: 67-79. https://doi.org/10.1016/j.chemgeo.2014.12.002 |
| [27] |
Pan, B.Z., Liu, X.Y., 2021. A Review of Water Ecology Problems and Restoration in the Yangtze River Basin. Journal of Yangtze River Scientific Research Institute, 38(3): 1-8 (in Chinese with English abstract). |
| [28] |
Qi, L.Y., Huang, J.C., Gao, J.F., et al., 2017. Temporal and Spatial Simulation of Water Level and Velocity during Low Water Level Statistical Year in Lake Poyang. Resources and Environment in the Yangtze Basin, 26(4): 572-584 (in Chinese with English abstract). |
| [29] |
Rosenberry, D. O., Lewandowski, J., Meinikmann, K., et al., 2015. Groundwater—The Disregarded Component in Lake Water and Nutrient Budgets. Part 1: Effects of Groundwater on Hydrology. Hydrological Processes, 29(13): 2895-2921. https://doi.org/10.1002/hyp.10403 |
| [30] |
Tóth, J., 1963. A Theoretical Analysis of Groundwater Flow in Small Drainage Basins. Journal of Geophysical Research, 68(16): 4795-4812. https://doi.org/10.1029/jz068i016p04795 |
| [31] |
Wang, S.Y., He, X.B., Ding, Y.J., et al., 2020. Characteristics and Influencing Factors of Stable Hydrogen and Oxygen Isotopes in Groundwater in the Permafrost Region of the Source Region of the Yangtze River. Environmental Science, 41(1): 166-172 (in Chinese with English abstract). |
| [32] |
Wang, Y. S., Chen, X. X., Zhang, M. N., et al., 2017. Using Multiple Tracers to Quantify Groundwater Discharge to Yellow River in Weining Plain. IOP Conference Series: Earth and Environmental Science, 59(1): 012023. https://doi.org/10.1088/1755-1315/59/1/012023 |
| [33] |
Xie, Q. C., Yang, J., Staffan Lundström, T., 2021. Sediment and Morphological Changes along Yangtze River’s 500 km between Datong and Xuliujing before and after Three Gorges Dam Commissioning. Scientific Reports, 11(1): 13662. https://doi.org/10.1038/s41598-021-93004-2 |
| [34] |
Xie, Y. Q., Cook, P. G., Shanafield, M., et al., 2016. Uncertainty of Natural Tracer Methods for Quantifying River-Aquifer Interaction in a Large River. Journal of Hydrology, 535: 135–147. https://doi.org/10.1016/j.jhydrol.2016.01.071 |
| [35] |
Xu, J., Wang, Y.G., Chen, Y., et al., 2020. Characteristics on Spatiotemporal Variations of Surface Water Environmental Quality in Tuojiang River in Upper Reaches of Yangtze River Basin. Earth Science, 45(6): 1937-1947 (in Chinese with English abstract). |
| [36] |
Yang, B., Zhang, Y.H., 2020. Properties of Vertical Distribution of Velocity in Dongtinghu Lake. Water Resources and Power, 38(8): 33-36 (in Chinese with English abstract). |
| [37] |
Yang, J., Yu, Z.B., Yi, P., et al., 2020. Evaluation of Surface Water and Groundwater Interactions in the Upstream of Kui River and Yunlong Lake, Xuzhou, China. Journal of Hydrology, 583(15): 124549. https://doi.org/10.1016/j.jhydrol.2020.124549 |
| [38] |
Yang, X.L., Yu, X.H., Wang, Y.Q., et al., 2019. Estimating the Response of Hydrological Regimes to Future Projections of Precipitation and Temperature over the Upper Yangtze River. Atmospheric Research, 230: 104627. https://doi.org/10.1016/j.atmosres.2019.104627 |
| [39] |
Zhou, Y., Wenninger, J., Yang, Z., et al., 2013. Groundwater-Surface Water Interactions, Vegetation Dependencies and Implications for Water Resources Management in the Semi-Arid Hailiutu River Catchment, China: A Synthesis. Hydrology and Earth System Sciences, 17(7): 2435-2447. https://doi.org/10.5194/hess-17-2435-2013 |
| [40] |
邓青军, 唐仲华, 吴琦, 等, 2014. 荆州市地下水动态特征及影响因素分析. 长江流域资源与环境, 23(9): 1215-1221. |
| [41] |
范小军, 汪力, 李超, 等, 2021. 宜昌市主城区浅层地下水的赋存特征初探. 资源环境与工程,35(2): 211-215, 231. |
| [42] |
黄长生, 周耘, 张胜男, 等, 2021. 长江流域地下水资源特征与开发利用现状. 中国地质, 48(4): 979-1000. |
| [43] |
李茂田, 2005. 长江中下游干流水沙与现代河床地貌耦合作用研究(博士学位论文). 上海: 华东师范大学. |
| [44] |
刘松, 朱建强, 田皓, 2012. 长江中下游地区的主要水问题与对策. 长江大学学报(自然科学版), 9(1): 42-46, 5. |
| [45] |
毛龙富, 付舒, 刘宏, 等, 2023. 基于氢氧稳定同位素的喀斯特泉水补给来源分析. 地球科学, 48(9): 3480-3493. |
| [46] |
潘保柱, 刘心愿, 2021. 长江流域水生态问题与修复述评. 长江科学院院报, 38(3): 1-8. |
| [47] |
齐凌艳, 黄佳聪, 高俊峰, 等, 2017. 鄱阳湖枯水水位及流速时空分布模拟. 长江流域资源与环境, 26(4):572-584. |
| [48] |
汪少勇, 何晓波, 丁永建, 等, 2020. 长江源多年冻土区地下水氢氧稳定同位素特征及其影响因素. 环境科学, 41(1): 166-172. |
| [49] |
许静, 王永桂, 陈岩, 等, 2020. 长江上游沱江流域地表水环境质量时空变化特征. 地球科学, 45(6): 1937-1947. |
| [50] |
杨斌, 张英豪, 2020. 洞庭湖流速垂向分布特性. 水电能源科学, 38(8): 33-36. |
湖北省科技计划项目(2020BCA088)
/
| 〈 |
|
〉 |