寒旱区内陆河流域碳通量年际变化控制机制
王同红 , 王旭峰 , 张松林 , 谭俊磊 , 张阳 , 任志国 , 白雪洁
地球科学 ›› 2024, Vol. 49 ›› Issue (05) : 1907 -1919.
寒旱区内陆河流域碳通量年际变化控制机制
Interannual Change Control Mechanism of Carbon Flux in Inland River Basins in Cold and Arid Regions
,
,
为了解寒旱区内陆河流域碳通量的年际变化及其控制机制,使用涡度相关技术和气象观测系统同步对黑河流域典型生态系统(草地、农田、湿地、荒漠、森林)的碳通量和气象环境要素进行了长期定位观测.分析观测数据显示:黑河流域内农田(玉米)生长季净生态系统生产力(NEP)与总初级生产力(GPP)最大(729.81 g C/m2/a与1 184.60 g C/m2/a),戈壁荒漠最小(94.18 g C/m2/a与134.97 g C/m2/a);湿地生长季生态系统呼吸(Reco)最大(460.22 g C/m2/a),戈壁荒漠最小(41.18 g C/m2/a).黑河上游高寒生态系统温度对NEP、GPP和Reco年际变化的解释度明显高于黑河中下游干旱生态系统,而上游高寒生态系统土壤水分对NEP、GPP和Reco年际变化的解释度低于中下游干旱生态系统.在上游的高寒生态系统中,各站点间温度与NEP、GPP和Reco为正相关,而在中下游则为负相关.浅层土壤水分在黑河流域内高寒区和干旱区均与生态系统的NEP、GPP和Reco为正相关,上游高寒区浅层土壤水分与NEP、GPP和Reco的相关性要高于深层土壤水分,而中下游干旱区则是深层土壤水分与NEP、GPP和Reco的相关性更高.
碳 / 黑河流域 / 总初级生产力 / 净生态系统生产力 / 生态系统 / 环境地质
carbon / Heihe River basin / gross primary productivity / net ecosystem productivity / ecosystems / environmental geology
| [1] |
Baldocchi, D., 2008. ‘Breathing’ of the Terrestrial Biosphere: Lessons Learned from a Global Network of Carbon Dioxide Flux Measurement Systems. Australian Journal of Botany, 56(1): 1. https://doi.org/10.1071/bt07151 |
| [2] |
Baldocchi, D., Falge, E., Gu, L. H., et al., 2001. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society, 82(11): 2415-2434. https://doi.org/10.1175/1520-0477(2001)0822415: fantts>2.3.co;2 |
| [3] |
Barros, V., Stocker, T. F., 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. Journal of Clinical Endocrinology & Metabolism, 18(6): 586-599. |
| [4] |
Cao, L., Shen, J.M., Nie, Z.L., et al., 2021. Stable Isotopic Characteristics of Precipitation and Moisture Recycling in Badain Jaran Desert. Earth Science, 46(8): 2973-2983 (in Chinese with English abstract). |
| [5] |
Cao, S. K., Cao, G. C., Feng, Q., et al., 2017. Alpine Wetland Ecosystem Carbon Sink and Its Controls at the Qinghai Lake. Environmental Earth Sciences, 76(5): 210. https://doi.org/10.1007/s12665-017-6529-5 |
| [6] |
Chai, X., Li, Y.N., Duan, C., et al., 2018. CO2 Flux Dynamics and Its Limiting Factors in the Alpine Shrub-Meadow and Steppe-Meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 42(1): 6-19 (in Chinese with English abstract). |
| [7] |
Cheng, G. D., Li, X., 2015. Integrated Research Methods in Watershed Science. Science China Earth Sciences, 58(7): 1159-1168. https://doi.org/10.1007/s11430-015-5074-x |
| [8] |
Guo, H., Li, S. E., Wong, F. L., et al., 2021. Drivers of Carbon Flux in Drip Irrigation Maize Fields in Northwest China. Carbon Balance and Management, 16(1): 12. https://doi.org/10.1186/s13021-021-00176-5 |
| [9] |
Le Quéré, C., Raupach, M. R., Canadell, J. G., et al., 2009. Trends in the Sources and Sinks of Carbon Dioxide. Nature Geoscience, 2: 831-836. https://doi.org/10.1038/ngeo689 |
| [10] |
Li, Y. N., Sun, X. M., Zhao, X. Q., et al., 2006. Seasonal Variations and Mechanism for Environmental Control of NEE of CO2 Concerning the Potentilla Fruticosa in Alpine Shrub Meadow of Qinghai-Tibet Plateau. Science in China (Series D: Earth Sciences), 49(2): 174-185. https://doi.org/10.1007/s11430-006-8174-9 |
| [11] |
Liu, S. M., Che, T., Zhang, Y., et al., 2021. Comprehensive Observation Network of Qilian Mountains: Comprehensive Observation Network of Surface Processes in the Haihe River Basin (Eddy Correlator at Yakou Station-2020). National Tibetan Plateau Scientific Data Center, Beijing (in Chinese with English abstract). |
| [12] |
Liu, S. M., Xu, Z. W., Wang, W. Z., et al., 2011. A Comparison of Eddy-Covariance and Large Aperture Scintillometer Measurements with Respect to the Energy Balance Closure Problem. Hydrology and Earth System Sciences, 15(4): 1291-1306. https://doi.org/10.5194/hess-15-1291-201110.5194/hessd-7-8741-2010 |
| [13] |
Lloyd, J., Taylor, J. A.,1994. On the Temperature Dependence of Soil Respiration. Functional Ecology, 315-323. |
| [14] |
Loescher, H. W., Law, B. E., Mahrt, L., et al., 2006. Uncertainties in, and Interpretation of, Carbon Flux Estimates Using the Eddy Covariance Technique. Journal of Geophysical Research: Atmospheres, 111(D21): D21S90. https://doi.org/10.1029/2005jd006932 |
| [15] |
Ma, X. J., Wang, C. X., Dong, B. Y., et al., 2019. Carbon Emissions from Energy Consumption in China: Its Measurement and Driving Factors. Science of the Total Environment, 648: 1411-1420. https://doi.org/10.1016/j.scitotenv.2018.08.183 |
| [16] |
Mao, N., Liu, G.M., Li, L.S., et al., 2022. Methane Fluxes and Their Relationships with Methane-Related Microbes in Permafrost Regions of the Qilian Mountains. Earth Science, 47(2): 556-567 (in Chinese with English abstract). |
| [17] |
Richardson, A. D., Braswell, B. H., Hollinger, D. Y., et al., 2006. Comparing Simple Respiration Models for Eddy Flux and Dynamic Chamber Data. Agricultural and Forest Meteorology, 141(2/3/4): 219-234. https://doi.org/10.1016/j.agrformet.2006.10.010 |
| [18] |
Solomon, S., Pierrehumbert, R. T., Matthews, D., et al., 2013. Atmospheric Composition, Irreversible Climate Change, and Mitigation Policy. Climate Science for Serving Society. Springer, Dordrecht, 415-436. https://doi.org/10.1007/978-94-007-6692-1_15 |
| [19] |
Thorsteinsson, T., Jóhannesson, T., Snorrason, Á., 2013. Glaciers and Ice Caps: Vulnerable Water Resources in a Warming Climate. Current Opinion in Environmental Sustainability, 5(6): 590-598. https://doi.org/10.1016/j.cosust.2013.11.003 |
| [20] |
Wang, H. B., Li, X., Xiao, J. F., et al., 2019. Carbon Fluxes across Alpine, Oasis, and Desert Ecosystems in Northwestern China: The Importance of Water Availability. The Science of the Total Environment, 697: 133978. https://doi.org/10.1016/j.scitotenv.2019.133978 |
| [21] |
Wang, J., Feng, L., Palmer, P. I., et al., 2020. Large Chinese Land Carbon Sink Estimated from Atmospheric Carbon Dioxide Data. Nature, 586: 720-723. https://doi.org/10.1038/s41586-020-2849-9 |
| [22] |
Wang, J.F., Xu, C.D., 2017. Geodetector: Principle and Prospective. Acta Geographica Sinica, 72(1): 116-134 (in Chinese with English abstract). |
| [23] |
Wang, S. Y., Zhang, Y., Lü, S. H., et al., 2016. Biophysical Regulation of Carbon Fluxes over an Alpine Meadow Ecosystem in the Eastern Tibetan Plateau. International Journal of Biometeorology, 60(6): 801-812. https://doi.org/10.1007/s00484-015-1074-y |
| [24] |
Wang, X. F., Ma, M. G., Huang, G. H., et al., 2012. Vegetation Primary Production Estimation at Maize and Alpine Meadow over the Heihe River Basin, China. International Journal of Applied Earth Observation and Geoinformation, 17: 94-101. https://doi.org/10.1016/j.jag.2011.09.009 |
| [25] |
Wang, Y. N., 2015. Remote Sensing Monitoring of Farmland Carbon Flux and Carbon Sequestration Capacity Based on Vorticity Correlation (Dissertation). Henan Polytechnic University, Jiaozuo (in Chinese with English abstract). |
| [26] |
Wei, D., Qi, Y. H., Ma, Y. M., et al., 2021. Plant Uptake of CO2 Outpaces Losses from Permafrost and Plant Respiration on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 118(33): e2015283118. https://doi.org/10.1073/pnas.2015283118 |
| [27] |
Wutzler, T., Lucas-Moffat, A., Migliavacca, M., et al., 2018. Basic and Extensible Post-Processing of Eddy Covariance Flux Data with REddyProc. Biogeosciences, 15(16): 5015-5030. https://doi.org/10.5194/bg-15-5015-2018 |
| [28] |
Xiao, J. F., Sun, G., Chen, J. Q., et al., 2013. Carbon Fluxes, Evapotranspiration, and Water Use Efficiency of Terrestrial Ecosystems in China. Agricultural and Forest Meteorology, 182/183: 76-90. https://doi.org/10.1016/j.agrformet.2013.08.007 |
| [29] |
Xinhua News Agency, 2020. Xi Jinping Delivered an Important Speech at the General Debate of the 75th Session of the UN General Assembly (in Chinese). |
| [30] |
Yamamoto, S., Saigusa, N., Gamo, M., et al., 2005. Findings through the AsiaFlux Network and a View Toward the Future. Journal of Geographical Sciences, 15(2): 142-148. https://doi.org/10.1007/BF02872679 |
| [31] |
Yang, P., Zhao, L. Q., Liang, X. R., et al., 2022. Response of Net Ecosystem CO2 Exchange to Precipitation Events in the Badain Jaran Desert. Environmental Science and Pollution Research, 29(24): 36486-36501. https://doi.org/10.1007/s11356-021-18229-0 |
| [32] |
You, N. S., Meng, J. J., Zhu, L. K., 2018. Sensitivity and Resilience of Ecosystems to Climate Variability in the Semi-Arid to Hyper-Arid Areas of Northern China: A Case Study in the Heihe River Basin. Ecological Research, 33(1): 161-174. https://doi.org/10.1007/s11284-017-1543-3 |
| [33] |
Yu, T., Zhang, Q., Sun, R., 2021. Spatial Representativeness of Gross Primary Productivity from Carbon Flux Sites in the Heihe River Basin, China. Remote Sensing, 13(24): 5016. https://doi.org/10.3390/rs13245016 |
| [34] |
Zhang, Q., Sun, R., Jiang, G. Q., et al., 2016. Carbon and Energy Flux from a Phragmites Australis Wetland in Zhangye Oasis-Desert Area, China. Agricultural and Forest Meteorology, 230/231: 45-57. https://doi.org/10.1016/j.agrformet.2016.02.019 |
| [35] |
Zhou, B.T., Qian, J., 2021. Changes of Weather and Climate Extremes in the IPCC AR6. Climate Change Research, 17(6): 713-718. |
| [36] |
Zhou, T. J., 2021. New Physical Science Behind Climate Change: What does IPCC AR6 Tell Us? Innovation (Cambridge (Mass)), 2(4): 100173. https://doi.org/10.1016/j.xinn.2021.100173 |
国家自然科学基金项目(41771466)
科技部重点研发计划(2017YFA0604801)
“一带一路”(甘肃段)生态服务功能问题与对策研究项目(5013/0030)
/
| 〈 |
|
〉 |