东昆仑造山带海德乌拉辉绿岩成因及其地质意义

孙立强 ,  王凯兴 ,  戴佳文 ,  刘晓东 ,  刘文恒 ,  余驰达 ,  雷勇亮 ,  陈耀新 ,  林俊杰

地球科学 ›› 2024, Vol. 49 ›› Issue (04) : 1261 -1276.

PDF (6861KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (04) : 1261 -1276. DOI: 10.3799/dqkx.2022.270

东昆仑造山带海德乌拉辉绿岩成因及其地质意义

作者信息 +

Petrogenesis of Haidewula Diabase, Eastern Kunlun Orogenic Belt and Its Geological Implications

Author information +
文章历史 +
PDF (7025K)

摘要

古特提斯洋在东昆仑造山带的闭合时间仍存在争议.对东昆仑东段海德乌拉地区产出的辉绿岩开展了系统的研究工作.LA-ICP-MS锆石U-Pb同位素定年的结果显示,海德乌拉辉绿岩形成于238±2 Ma.在地球化学组成上,该辉绿岩具有较高的TiO2(1.75%~2.46%)、Fe2O3 T(8.88%~12.30%)含量和较低的MgO含量(2.76%~6.34%);富集不相容元素,相对亏损Nb、Ta、Sr、Ti;Sr-Nd同位素组成较为富集且均一,(87Sr/86Sr)i为0.711 61~0.712 95,εNdt)为-3.2~-2.8.上述特征表明海德乌拉辉绿岩形成于板片俯冲环境,其源区为由俯冲板片释放的流体交代所形成的富集地幔.结合前人的研究成果,认为古特提斯阿尼玛卿洋的北向俯冲至少持续到中三叠世末期;随后,洋盆在晚三叠世早期闭合;在不晚于228 Ma时,东昆仑东段地区进入后碰撞伸展的环境.

关键词

东昆仑造山带 / 构造演化 / 三叠纪 / 辉绿岩 / 岩石成因 / 岩石学

Key words

East Kunlun orogenic belt / tectonic evolution / Triassic / diabase / petrogenesis / petrology

引用本文

引用格式 ▾
孙立强,王凯兴,戴佳文,刘晓东,刘文恒,余驰达,雷勇亮,陈耀新,林俊杰. 东昆仑造山带海德乌拉辉绿岩成因及其地质意义[J]. 地球科学, 2024, 49(04): 1261-1276 DOI:10.3799/dqkx.2022.270

登录浏览全文

4963

注册一个新账户 忘记密码

东昆仑造山带位于青藏高原北缘(图1a).自显生宙以来,该造山带经历了复杂的地质作用和构造演化历史,记录了关于原特提斯洋和古特提斯洋演化历程的丰富信息,因而,长久以来备受学界关注(郭正府等, 1998; 莫宣学等, 2007; 许志琴等, 2012; Dong et al., 2018Yu et al., 2020).
受古特提斯洋演化的影响,东昆仑造山带在晚古生代至早中生代时期发育了大量的与板片俯冲-碰撞造山有关的构造-岩浆活动(郭正府等, 1998; 莫宣学等, 2007; 许志琴等, 2012; Dong et al., 2018; Yu et al., 2020).已有研究指出,作为古特提斯洋分支的阿尼玛卿洋,在石炭纪时期已经形成,在二叠纪期间,大洋板片开始北向俯冲,随后,东昆仑地区由俯冲环境转入同碰撞阶段(郭正府等, 1998; 刘战庆等, 2011; Yu et al., 2020).不过,对构造转换,即阿尼玛卿洋洋盆闭合的时间,研究者们仍存在分歧.一种观点认为,阿尼玛卿洋洋盆于晚二叠世期间闭合,东昆仑造山带广泛出露的三叠纪岩浆岩均产出于同碰撞和后碰撞的构造环境(Huang et al., 2014Kong et al., 2020Zhu et al., 2022).另一种观点则认为,晚二叠世-中三叠世岩浆岩的形成均与俯冲作用有关,洋盆的闭合应发生在中三叠世期间(莫宣学等, 2007; Xiong et al., 2014Zhao et al., 2020; 陈国超等, 2020; 王巍等, 2021).最近,一些研究则进一步将闭合时限限定在中三叠世末到晚三叠世初期(黄啸坤等, 2021; 封铿等, 2022).除上述观点外,一些学者指出部分晚三叠世岩浆岩也显示了弧岩浆岩的特征,并据此将洋盆闭合的时间推移至晚三叠世中晚期(Yu et al., 2020; 徐博等, 2020a, 2020b).
基性岩浆往往起源自地幔的部分熔融.不同构造环境下所形成的基性岩浆,由于其地幔源区成分,以及所经历的壳幔相互作用过程的不同,常常具有不同的地球化学特征(Kepezhinskas et al., 1997Kuritani et al., 2011Khan et al.,2023).例如,俯冲环境下,地幔楔受到俯冲板片的交代而发生富集,因而,由其部分熔融所形成的基性岩浆,相比于大洋中脊玄武岩(MORB),常常具有富集的Sr-Nd同位素组成和较高的不相容元素含量(Kepezhinskas et al., 1997Rawson et al., 2016).因此,对基性岩的源区组成和岩石成因开展详尽的研究,可以为反演区域构造演化过程提供有力的依据.
东昆仑造山带内出露有中二叠世-三叠纪的基性岩(图1).这些基性岩具有不同的地球化学特征(Zhao et al., 2019; 陈国超等, 2019),为探究东昆仑造山带的构造演化历史提供了抓手.本文选取东昆仑造山带东段海德乌拉地区产出的辉绿岩为研究对象,通过锆石年代学、元素地球化学和Sr-Nd同位素组成的研究,厘定其成岩时代,揭示其岩石成因.在此基础之上,结合以往对东昆仑造山带中二叠世-三叠纪基性岩的研究成果,探讨区域构造环境,从而为限定东昆仑地区晚古生代-早中生代时期的构造演化历史提供新的依据.

1 区域地质背景

东昆仑造山带位于青藏高原北缘,北邻柴达木盆地,东接秦岭造山带,西以阿尔金断裂带为界,东西延伸约1 500 km(图1).以祁漫塔格-香日德蛇绿岩带、昆中缝合带和昆南缝合带为界,东昆仑造山带自北向南被划分为北祁漫塔格带、昆北地体(也称中昆仑带)、昆南地体(也称南昆仑带)和巴颜喀拉地体(Dong et al., 2018).海德乌拉地区位于昆南地体内(图1).

昆南地体内出露的主要地层包括:古元古界金水口群为一套角闪岩相变质岩系,岩性主要为片麻岩、片岩、角闪岩和大理岩;中-新元古界万宝沟群则主要为玄武岩、安山岩、碳酸盐岩与碎屑岩,变质程度较低;志留系赛什腾组主要由砾岩、砂岩、火山岩和凝灰岩构成;中-上泥盆统则包含火山碎屑岩、碳酸盐岩、砂岩和粉砂岩等岩石;石炭纪和二叠纪地层均由砾岩、砂岩、粉砂岩、泥岩和灰岩构成,部分地区见火山岩出露,其中,上二叠统格曲组为一套滨浅海相磨拉石建造;三叠系角度不整合覆盖于下伏的古生界岩层之上,其中,下三叠统洪水川组的岩性由底部的砾岩、砂岩,向上转变为砾岩、凝灰岩、玄武质安山岩与粉砂岩和泥岩互层;中三叠统包括闹仓坚沟组和希里科特组,前者主要由灰岩、火山岩夹砂岩构成,而后者的岩性则为砾岩夹砂岩;上三叠统八宝山组为典型的磨拉石建造,岩性主要为砾岩、砂岩、粉砂岩,夹有少量凝灰岩(刘战庆, 2011; 杨森等, 2016).

自古生代到中生代期间,东昆仑造山带内的岩浆作用可大致分为两段,即早古生代岩浆作用和晚古生代-早中生代岩浆作用(莫宣学等, 2007; Yu et al., 2020).前者可能与原特提斯洋的演化有关,而后者则是在古特提斯洋演化的作用下形成的(Yu et al., 2020).东昆仑造山带内出露的岩浆岩主要为花岗质岩石,少量为基性岩(图1).

2 研究区概况和岩石学特征

海德乌拉火山盆地整体呈狭长型,东西长约30 km,南北最宽处约7 km(图2a).盆地以北,出露有古生代花岗岩(图2a),这些花岗岩可能形成于奥陶纪和石炭纪(青海省地质局, 1996, 海德郭勒等8幅1∶5万联测填图资料).盆地内发育一套中-酸性火山岩-次火山岩组合.火山作用具有多次喷发的特点,岩性主要包括粗面岩、流纹岩、火山角砾岩等,夹有砂岩、粉砂岩.该套火山岩北侧与中新元古代地层呈断层接触,南侧被新生代沉积物覆盖或与石炭系和侏罗系呈断层接触,局部被侏罗系覆盖,二者呈不整合接触.该套火山岩早期被认为形成于晚三叠世-早侏罗世(朱云海等, 2003).不过,最近对其中流纹岩的研究显示,其形成于志留纪罗德洛世,并具有A型岩浆岩特征(雷勇亮等, 2021).盆地内发育花岗斑岩岩脉、辉绿岩脉,局部见玄武岩.

辉绿岩呈脉状侵入砂岩或粗面岩岩层(图2c),走向近东西向,产状与砂岩岩层相近,宽度从约0.5米到数十米不等(图2a~2c).岩石呈细粒等粒结构,主要矿物组成为斜长石和单斜辉石(图2d).斜长石,含量60%~70%,大多为板状自形,长轴长0.06~0.30 mm;辉石,含量25%~35%,常呈粒状,粒径多在0.05~0.08 mm,与斜长石构成辉绿结构.在一些样品中,可见辉石发生绿泥石化、绿帘石化等蚀变.

3 实验方法

本文的锆石U-Pb同位素定年工作在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成.激光剥蚀系统为Resonietics-S-155.测试中激光束斑为24 μm,频率10 Hz,剥蚀30 s.电感耦合等离子体质谱仪为热电公司制造的iCAPQc.测试过程中,以标准锆石91500为外标校正元素分馏,以标准锆石Plešovice作为盲样监控数据质量.测试数据使用ICPMSDataCal软件进行离线处理(Liu et al., 2010).

全岩主量元素和微量元素测试工作在澳实分析检测有限公司(广州)完成.其中,主量元素分析过程中,将样品粉末与四硼酸锂-偏硼酸锂-硝酸锂混合后,制成熔片并用XRF测定,仪器型号为PANalytical PW2424,分析精度和准确度的相对偏差均小于5%.微量元素分析过程中,将样品粉末用高氯酸、硝酸、氢氟酸消解后,转为稀盐酸介质之后,使用ICP-MS进行测定.仪器型号为Agilent 7900.分析精度和准确度相对偏差低于10%.

全岩Sr-Nd同位素分析在南京聚谱检测科技有限公司使用Nu Plasma II MC-ICP-MS测定完成.其中,Sr同位素组成测定中,采用86Sr/87Sr= 0.119 4内部校正仪器质量分馏,以国际标准物质NISTSRM987作为外标校正仪器漂移;Nd同位素组成的测试中,采用146Nd/144Nd = 0.721 9内部校正仪器质量分馏,以国际标准物质JNdi-1作为外标校正仪器漂移.实验中,质控盲样USGSBCR-2和USGS STM-2的87Sr/86Sr比值分别为0.705 043±0.000 010 (2SE) 和0.703 702±0.000 012 (2SE),143Nd/144Nd比值分别为0.512 630±0.000 004 (2SE)和0.512 916±0.000 004 (2SE),在误差范围内与文献报道值一致(Weis et al., 2006).

4 实验结果

4.1 锆石U-Pb年龄

辉绿岩锆石大多为长柱状或短柱状,无色透明,部分锆石表面有裂隙.锆石长60~150 μm、宽30~60 μm,长宽比为2∶1~3∶1.在CL图像中,部分锆石具有较为宽缓的振荡环带,另有部分锆石无明显环带(图3c);少量锆石(< 5%)可见核幔结构.

本文挑选了辉绿岩中的24颗锆石开展了U-Pb同位素年龄的测试工作,分析结果分别列于附表1.分析结果显示,8颗锆石数据偏离谐和线,另有2颗锆石年龄数据(HD-3和HD-24)虽然位于谐和线上,但误差很大(图3a).除上述10颗锆石以外,其余14颗锆石年龄数据位于谐和线上(图3a).这14颗具有谐和年龄的锆石的Th含量为69.3×10-6~3 074×10-6,U含量为79.9×10-6~1 669×10-6,Th/U比值为0.52~2.36,符合岩浆锆石的特征.这些锆石分别形成于石炭纪(1颗)、二叠纪(8颗)和三叠纪(5颗)(图3b表1).具体而言,测点HD-2的206Pb/238U年龄为321±3 Ma,测点HD-14的206Pb/238U年龄为270±3 Ma,测点HD-1等7颗锆石的206Pb/238U年龄的加权平均值为252±3 Ma (MSWD=2.1),测点HD-11等5个测点的206Pb/238U年龄的加权平均值为238±2 Ma (MSWD=0.82).

4.2 全岩主量元素和微量元素

海德乌拉辉绿岩的全岩主量元素和微量元素分析结果列于附表2.海德乌拉辉绿岩的SiO2含量在46.6%~51.2%之间,TiO2含量为1.75%~2.46%,在图4中,海德乌拉辉绿岩落于辉绿岩/辉长岩区域.碱金属含量变化范围较大(Na2O+K2O=5.60%~8.13%),Na含量高于K含量,Na2O/K2O = 1.09~4.70.海德乌拉辉绿岩表现出高Fe含量(Fe2O3 T=8.88%~12.3%)、低Mg含量(MgO=2.76%~6.34%)的特征,Mg#较低,在0.36~0.54之间.

在微量元素蛛网图中,海德乌拉辉绿岩显示出富集不相容元素的特征,但Nb、Ta、Sr、Ti相对亏损,Pb则相对富集(图5a).在稀土元素(REE)配分图解中,海德乌拉辉绿岩明显富集轻稀土,并且具有一定的Eu负异常(δEu= 0.67~0.80),其轻稀土元素(LREE)含量与OIB相当,但重稀土元素(HREE)含量则明显高于OIB(图5b).海德乌拉辉绿岩的Zr/Hf比值为43.0~47.2,明显高于球粒陨石(Zr/Hf=36.3, Sun and McDonough, 1989),Nb/Ta在16.5~19.6之间,与球粒陨石大体相当(Nb/Ta=17.6, Sun and McDonough, 1989).

4.3 全岩Sr-Nd同位素

海德乌拉辉绿岩的全岩Sr-Nd同位素分析结果列于附表3,Sr同位素初始值和εNdt)值校正到238 Ma.海德乌拉辉绿岩具有相对富集的Sr-Nd同位素组成,(87Sr/86Sr)i比值为0.711 61~0.712 95,εNdt)值较为一致,在-3.2~-2.8之间(图6a),单阶段Nd模式年龄(T DM)为1.35~1.39 Ga,明显高于其成岩年龄.

5 讨论

5.1 成岩时代

本文对海德乌拉辉绿岩的锆石U-Pb年龄测试获得了两组较为集中的谐和年龄,分别为252±3 Ma(n= 7)和238±2 Ma(n= 5).本文认为238±2 Ma应代表了辉绿岩的成岩时代,而前一组锆石则很可能是岩浆上升过程中从围岩捕获得到的.值得注意的是,这两组锆石均具有较高的Th/U比值(>0.4),而在CL图像上,大多显示出宽缓的韵律环带(图3c),表明它们有可能均结晶于基性岩浆(吴元保和郑永飞, 2004).张宇婷(2018)对与研究区邻近的五龙沟地区的研究揭示了多期的基性岩浆活动(表1).因此,海德乌拉地区或许也存在着多期基性岩浆活动.不过,这仍有待未来进一步工作的论证.

晚古生代-早中生代是东昆仑造山带构造-岩浆活动较为活跃的时期,产出了大量的岩浆岩(图1).这些岩浆岩以花岗岩类为主,不过,基性岩石亦有出露(图1).从形成时代来看,自中二叠世到三叠纪期间,东昆仑造山带内发育的基性岩石大体可分为3个时间段,分别为263 Ma之前、251~238 Ma之间和228 Ma之后(表1).

5.2 岩石成因

5.2.1 低温蚀变作用和地壳混染对岩浆成分的影响

从光学显微镜的观察可知,海德乌拉辉绿岩的部分样品,经历了一定程度的后期低温蚀变作用.这与样品烧失量较大范围的变化相吻合(LOI=3.78%~6.02%).蚀变作用有可能导致岩石中的活动元素(如K、Na、Rb、Sr)含量的下降(Deniel, 1998).因此,在后文的讨论中,将利用岩石中不活动主量元素(如Si、Fe、Al、Ti)、高场强元素、稀土元素和过渡族元素的特征,对岩浆演化过程和源岩特征进行判别,而不使用Sr、Rb、K等活动元素.

基性岩浆上升过程中,难免会受到地壳物质的混染,而强烈的地壳混染将会改变基性岩浆的地球化学特征(Yu et al.,2022).海德乌拉辉绿岩中存在继承锆石(见5.1节),在微量元素标准化图解中明显富集Pb(图5a),这些特征都表明岩浆上升过程中与地壳岩石之间发生了一定程度的同化混染作用.因此,在利用地球化学特征探讨源区性质和岩浆过程之前,需要对地壳混染对岩浆成分的影响进行评估.

海德乌拉辉绿岩的Zr/Nb比值随着SiO2含量的升高而呈现升高的趋势,并且,该比值与Nb/La比值呈负相关关系(图7a7b),这些变化趋势不符合受到地壳混染控制的变化趋势;海德乌拉辉绿岩Zr/Hf比值明显高于大陆上地壳平均成分(36.4,Rudnick and Gao, 2003),并且与SiO2含量之间没有明显的负相关关系(图7c);海德乌拉辉绿岩的Sm/Yb比值低于大陆上地壳平均成分(2.35,Rudnick and Gao, 2003),并且与SiO2含量之间大体呈负相关关系(图7d).这些特征均暗示着岩浆中高场强元素和REE(Eu除外)的特征没有受到地壳物质混染的明显影响,可以反映其地幔源区的特征.

5.2.2 地幔源区特征

海德乌拉辉绿岩明显富集不相容元素,具有显著的Nb、Ta的相对亏损,以及相对富集的Sr-Nd同位素组成,这些地球化学特征明显区别于N-MORB和OIB(图5a图6a).造成这种富集的同位素组成和元素特征的原因有两种,即地壳物质混染和继承自富集的地幔源区.

为了评估地壳物质混染对海德乌拉辉绿岩的影响,本文进行了Sr-Nd同位素的模拟计算(图6a).以阿尼玛卿洋晚古生代大洋中脊玄武岩(MORB)或洋岛玄武岩(OIB)作为原始岩浆,混染以中上地壳物质(以东昆仑造山带强过铝质S型花岗岩代替),只有当地壳组分比例超过30%时,才有可能得到与海德乌拉基性岩同位素组成相当的岩浆.考虑到海德乌拉基性岩SiO2含量为46.6%~51.9%,与阿尼玛卿洋晚古生代MORB(SiO2= 45.3%~50.3%)和OIB(SiO2= 43.6%~51.2%)大体相当(郭安林等, 2007b),而大陆上地壳平均SiO2含量约为66.6%(Rudnick and Gao, 2003),根据质量守恒定律,混染的地壳物质的比例应低于10%,远不足以得到海德乌拉基性岩的Sr-Nd同位素组成(图6a).虽然上述计算中使用了近似成分进行替代,所得数值与实际情况之间可能有所偏差,但仍然足以说明,造成海德乌拉基性岩富集的同位素组成的主要原因,并非地壳物质的混染.

在Nb/Yb-Th/Yb图解中,海德乌拉辉绿岩样品落在MORB-OIB演化区域之上(图8a),表明其地幔源区中存在部分俯冲物质;在La/Nb-Nb/Th图解中,海德乌拉辉绿岩落在弧火山岩区域中(图8b),也支持其地幔源区曾受到俯冲物质的交代.因此,海德乌拉辉绿岩应来自于受到俯冲物质交代的地幔的部分熔融,其富集的特征应是继承自地幔源区.

在俯冲过程中,交代地幔楔的物质可能来自:(1)俯冲板片或沉积物释放的流体;(2)俯冲沉积物或板片熔融形成的熔体.如图9所示,海德乌拉辉绿岩样品大体呈现水平展布趋势,与俄罗斯堪察加(Kamchatka)岩浆弧中的戈洛温(Golovin)和别拉亚(Belaya)岩浆岩成分的变化趋势大体相当,反映了研究区地幔的富集主要是受到流体交代的结果,熔体交代不明显.同时,东昆仑造山带内发育的其他早-中三叠世基性岩(如图9中白日其利镁铁质岩墙和按纳格角闪辉长岩)与海德乌拉辉绿岩展现了相同的变化趋势,暗示着在这一时期,俯冲流体对地幔的交代在东昆仑造山带普遍发育.

综上所述,海德乌拉地区的地幔受到俯冲板片释放流体的交代,从而发生了富集和部分熔融,形成了海德乌拉辉绿岩.

5.3 构造意义

东昆仑地区在晚古生代至早中生代期间受到

古特提斯洋北侧分支,即阿尼玛卿洋演化的控制,而发育了大规模的构造岩浆作用.前人对东昆仑地区在此阶段的构造演化历史已开展了大量研究,然而,对于该洋盆的闭合时限仍存在争议,已有观点包括晚二叠世(Huang et al., 2014; Kong et al., 2020; Zhu et al., 2022)、中三叠世(莫宣学等, 2007; Xiong et al., 2014; Zhao et al., 2020; 陈国超等, 2020; 王巍等, 2021; 封铿等, 2022),以及晚三叠世(郭正府等, 1998; Yu et al., 2020; 徐博等, 2020a, 2020b).

已有研究指出,在中-晚二叠世期间,东昆仑地区已经出现了多处与俯冲作用相关的岩浆活动,如坑得弄舍辉长岩、加当辉长岩、五龙沟小干沟辉绿岩、巴隆花岗闪长岩和石英闪长岩(Zhang et al., 2012; 孔会磊等, 2018; 张宇婷, 2018; Zhao et al., 2019).例如,Zhao et al. (2019) 对坑得弄舍辉长岩进行的研究表明,该辉长岩具有较为亏损的同位素组成,暗示其很可能形成于弧后环境.总之,阿尼玛卿洋在中二叠世时已经开始了俯冲(图10b).

本文对中三叠世末期形成的海德乌拉辉绿岩的研究表明,其地幔源区受到了俯冲洋壳的交代影响(见第5.2节).不仅如此,东昆仑造山带内其他的早-中三叠世基性岩,如白日其利镁铁质岩墙、按纳格辉长岩,都表现出与海德乌拉基性岩相似的地球化学特征和同位素组成(图6图8图9),它们的地幔源区也都表现出受到俯冲流体交代的特征(熊富浩等, 2011; 赵旭等, 2018),指示着它们形成于俯冲的构造环境.近年来,对东昆仑地区的大量研究揭示了该地区广泛出露的晚二叠世-中三叠世中酸性火成岩具有陆源弧岩浆岩属性,并且岩浆岩活动(包括基性岩和中酸性火成岩)在整体上呈现出持续增强的趋势(莫宣学等, 2007; Zhang et al., 2012Xiong et al., 2014Ju et al., 2017Wang et al., 2019; 黄啸坤等, 2021; 徐晓波等, 2021; 封铿等, 2022).沉积学研究也指出,上二叠统格曲组和下三叠统洪水川组均是在活动大陆边缘环境下形成,记录了古洋壳的俯冲过程(李瑞保等, 2015; 杨森等, 2016).这些证据同样支持板片俯冲作用应持续到中三叠世.

需要指出的是,中-晚三叠世基性岩与中二叠世基性岩在岩石性质和构造环境上的差别,可能表征了俯冲板片的影响范围不断向北推进(Zhao et al., 2019).一种可能的解释是,随着俯冲作用的进行,板片俯冲角度发生了变化,进而影响上覆岩石圈,使之发生了有限程度的挤压加厚,引发了基性岩浆性质的变化和上二叠统的沉积间断.在这种情况下,虽然基性岩浆因岩石圈增厚而难以到达中上地壳,但酸性岩浆活动并未停滞.不过,这一猜想有待进一步研究的验证.

总之,本文认为阿尼玛卿洋在晚二叠世-中三叠世时期并未闭合,东昆仑地区仍处于板片俯冲的构造环境(图10c).本文对海德乌拉辉绿岩的研究则指示着,板片的俯冲至少持续到238 Ma左右.

在海德乌拉辉绿岩形成之后,基性岩浆活动在晚三叠世早期(237~229 Ma)出现了短暂的减弱,到228 Ma之后再次集中产出(表1图10a).值得注意的是,虽然晚三叠世基性岩仍然具有弧岩浆岩的特征(图8图9),但相对于早-中三叠世基性岩而言,其Sr-Nd同位素组成较为亏损(图6b).这一变化表明,在晚三叠世时期,东昆仑地区富集的地幔楔中加入了部分较为亏损的组分(Liu et al., 2017).结合基性岩浆活动在晚三叠世早期的减少(图10a),本文认为,东昆仑地区在晚三叠世早期进入陆(弧)陆碰撞的构造环境,随后,由于残留板片的断离或是加厚岩石圈的拆沉(陈国超等, 2019; Zhu et al., 2022),导致了软流圈地幔上涌,加入到富集的地幔楔中,诱发了地幔物质的部分熔融,形成了相对较为亏损的晚三叠世基性岩(图10d).与此同时,东昆仑地区进入后碰撞伸展的构造环境.

构造环境的转变,不仅造成了基性岩的再次活跃以及同位素组成的变化,也留下了相应的沉积记录,同时,引起了中酸性岩浆岩活动强度和岩石性质的变化.晚三叠世时,东昆仑地区出现了明显的沉积间断,表现为上三叠统八宝山组陆相磨拉石沉积不整合覆盖于中三叠统岩层之上,这次不整合事件正是在碰撞挤压的环境下形成的.对东昆仑地区三叠纪岩浆岩的统计研究显示,岩浆活动(包括基性岩和中酸性岩石)在235~229 Ma间出现了低谷(徐晓波等, 2021),这与本文对基性岩的统计结果相吻合,进一步佐证了构造环境在此时期内发生了转变.而在230 Ma之后,岩浆活动再次活跃,花岗质岩石的性质也随之发生了变化,产出了大量埃达克质岩石和A型花岗岩(Xiong et al., 2014; 陈国超等, 2019; Zhu et al., 2022),暗示东昆仑地区在此时进入了后碰撞伸展的构造环境,也与本文结论相吻合.

需要说明的是,虽然近年来的研究指出,一些晚三叠世酸性岩也具有弧岩浆岩的特征,但这些岩浆岩主要分布于东昆仑西段(徐博等, 2020a, 2020b).这一现象暗示着东昆仑西段与东段之间,在构造转换的时间上可能有所差异.

总之,本文的研究表明,东昆仑东段地区在中二叠世-中三叠世期间,处于板片俯冲的构造环境;陆(弧)陆碰撞发生在237~229 Ma期间;到不晚于228 Ma时,东昆仑东段地区已经进入后碰撞伸展的构造环境.

6 结论

(1)海德乌拉辉绿岩形成时代在238±2 Ma.

(2)海德乌拉辉绿岩是在板片俯冲的构造环境下,由受到俯冲板片释放出的流体交代作用影响的地幔源区,发生部分熔融而形成的.

(3)在东昆仑东段地区,阿尼玛卿洋洋壳的北向俯冲至少持续到了中三叠世末;由俯冲阶段到碰撞阶段的构造转换发生在237~229 Ma之间;在不晚于228 Ma时,东昆仑东段转入后碰撞伸展的构造环境.

--引用第三方内容--

附表见官网(http://www.earth-science.net).

参考文献

[1]

Ao, C., Sun, F.Y., Li, B.L., et al., 2015. U-Pb Dating, Geochemistry and Tectonic Implications of Xiaojianshan Gabbro in Qimantage Mountain, Eastern Kunlun Orogenic Belt. Geotectonica et Metallogenia, 39(6): 1176-1184 (in Chinese with English abstract).

[2]

Ba, J., Chen, N.S., Wang, Q.Y., et al., 2012. Nd-Sr-Pb Isotopic Compositions of Cordierite Granite on Southern Margin of the Qaidam Block, NW China, and Constraints on Its Petrogenesis, Tectonic Affinity of Source Region and Tectonic Implications. Earth Science, 37(S1): 80-92(in Chinese with English abstract).

[3]

Chen, G.C., Pei, X.Z., Li, R.B., et al., 2017. Age and Petrogenesis of Jialuhe Basic-Intermediate Pluton in Xiangjia’nanshan Granite Batholith in the Eastern Part of East Kunlun Orogenic Belt, and Its Geological Significance. Geotectonica et Metallogenia, 41(6): 1097-1115 (in Chinese with English abstract).

[4]

Chen, G.C., Pei, X.Z., Li, R.B., et al., 2019. Lithospheric Extension of the Post-Collision Stage of the Paleo-Tethys Oceanic System in the East Kunlun Orogenic Belt: Insights from Late Triassic Plutons. Earth Science Frontiers, 26(4): 191-208 (in Chinese with English abstract).

[5]

Chen, G.C., Pei, X.Z., Li, R.B., et al., 2020. Late Palaeozoic-Early Mesozoic Tectonic-Magmatic Evolution and Mineralization in the Eastern Section of the East Kunlun Orogenic Belt. Earth Science Frontiers, 27(4): 33-48 (in Chinese with English abstract).

[6]

Deniel, C., 1998. Geochemical and Isotopic (Sr, Nd, Pb) Evidence for Plume-Lithosphere Interactions in the Genesis of Grande Comore Magmas (Indian Ocean). Chemical Geology, 144(3-4): 281-303. https://doi.org/10.1016/s0009-2541(97)00139-3

[7]

Dong, Y., He, D., Sun, S., et al., 2018. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261. https://doi.org/10.1016/j.earscirev.2017.12.006

[8]

Feng, K., Li, R.B., Pei, X.Z., et al., 2022. Zircon U-Pb Chronology, Geochemistry and Geological Significance of Late Triassic Intermediate-Acid Volcanic Rocks in Boluositai Area, East Kunlun Orogenic Belt. Earth Science, 47(4): 1194-1216 (in Chinese with English abstract).

[9]

Goldstein, S. L., O’Nions, R. K., Hamilton, P. J., 1984. A Sm-Nd Isotopic Study of Atmospheric Dusts and Particulates from Major River Systems. Earth and Planetary Science Letters, 70(2): 221-236.

[10]

Guo, A.L., Zhang, G.W., Sun, Y.G., et al., 2007a. Sr-Nd-Pb Isotopic Geochemistry of Late-Paleozoic Mafic Volcanic Rocks in the Surrounding Areas of the Gonghe Basin, Qinghai Province and Geological Implications. Acta Petrologica Sinica, 23(4): 747-754(in Chinese with English abstract).

[11]

Guo, A.L., Zhang, G.W., Sun, Y.G., et al., 2007b. Geochemistry and Spatial Distribution of OIB and MORB in A’nyemaqen Ophiolite Zone: Evidence of Majixueshan Ancient Ridge-Centered Hotspot. Scientia Sinica (Terrae), 37(S1): 249-261(in Chinese).

[12]

Guo, Z.F., Deng, J.F., Xu, Z.Q., et al., 1998. Late Palaeozoic-Mesozoic Intracontinental Orogenic Process and Intermedate-Acidic Igneous Rocks from the Eastern Kunlun Mountains of Northwestern China. Geoscience, 12(3): 344-352 (in Chinese with English abstract).

[13]

Hu, Y., Niu, Y. L., Li, J. Y., et al., 2016. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245: 205-222. https://doi.org/10.1016/j.lithos.2015.05.004

[14]

Huang, H. Q., Niu, Y., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/J.CHEMGEO.2014.01.010

[15]

Huang, X.K., Wei, J.H., Li, H., et al., 2021. Zircon U-Pb Geochronological, Elemental and Sr-Nd-Hf Isotopic Constraints on Petrogenesis of Late Triassic Quartz Diorite in Balong Region, East Kunlun Orogen. Earth Science, 46(6): 2037-2056 (in Chinese with English abstract).

[16]

Jacobsen, S. B., Wasserburg, G. J., 1980. Sm-Nd Isotopic Evolution of Chondrites. Earth and Planetary Science Letters, 50(1): 139–155.

[17]

Jahn, B. M., Condie, K. C., 1995. Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonicpelites. Geochimica et Cosmochimica Acta, 59(11): 2239-2258. https://doi.org/10.1016/0016-7037(95)00103-7

[18]

Ju, Y. J., Zhang, X. L., Lai, S. C., et al., 2017. Permian–Triassic Highly-Fractionated I-Type Granites from the Southwestern Qaidam Basin (NW China): Implications for the Evolution of the Paleo-Tethys in the Eastern Kunlun Orogenic Belt. Journal of Earth Science, 28(1): 51-62. https://doi.org/10.1007/s12583-017-0745-5

[19]

Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace Element and SR-ND-PB Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577-600. https://doi.org/10.1016/S0016-7037(96)00349-3

[20]

Khan Junaid, Yao Huazhou, Zhao Junhong, Li Qiwei, Xiang Wenshuai, Jiang Junsheng, Tahir Asma, 2023. Petrogenesis and Tectonic Implications of the Tertiary Choke Shield Basalt and Continental Flood Basalt from the Central Ethiopian Plateau. Journal of Earth Science, 34(1): 86-100. https://doi.org/10.1007/s12583-022-1729-7

[21]

Kong, H.L., Li, J.C., Li, Y.Z., et al., 2017. Zircon LA-ICP-MS U-Pb Dating and Its Geological Significance of the Jiadang Gabbro in the Eastern Section of East Kunlun, Qinghai Province. Geology and Exploration, 53(5): 889-902 (in Chinese with English abstract).

[22]

Kong, H.L., Li, J.C., Li, Y.Z., et al., 2018. Zircon U-Pb Dating and Geochemistry of the Jiadang Olivine Gabbro in the Eastern Section of East Kunlun, Qinghai Province and Their Geological Significance. Acta Geologica Sinica, 92(5): 964-978 (in Chinese with English abstract).

[23]

Kong, J. J., Niu, Y. L., Hu, Y., et al., 2020. Petrogenesis of the Triassic Granitoids from the East Kunlun Orogenic Belt, NW China: Implications for Continental Crust Growth from Syn-Collisional to Post-Collisional Setting. Lithos, 364: 105513. https://doi.org/10.1016/j.lithos.2020.105513

[24]

Kuritani, T., Ohtani, E., Kimura, J. I., 2011. Intensive Hydration of the Mantle Transition Zone beneath China Caused by Ancient Slab Stagnation. Nature Geoscience, 4: 713-716. https://doi.org/10.1038/ngeo1250

[25]

Lei, Y.L., Dai, J.W., Bai, Q., et al., 2021. Genesis and Implications of Peraluminous A-Type Rhyolite in the Haidewula Area, East Kunlun Orogen. Acta Petrologica Sinica, 37(7): 1964-1982 (in Chinese with English abstract).

[26]

Li, R.B., Pei, X.Z., Li, Z.C., et al., 2015. The Depositional Sequence and Prototype Basin for Lower Triassic Hongshuichuan Formation in the Eastern Segment of East Kunlun Mountains. Geological Bulletin of China, 34(12): 2302-2314 (in Chinese with English abstract).

[27]

Liew, T. C., Hofmann, A. W., 1988. Precambrian Crustal Components, Plutonic Associations, Plate Environment of the Hercynian Fold Belt of Central Europe: Indications from a Nd and Sr Isotopic Study. Contributions to Mineralogy and Petrology, 98(2): 129-138. https://doi.org/10.1007/BF00402106

[28]

Liu, B., Ma, C., Huang, J., et al., 2017. Petrogenesis and Tectonic Implications of Upper Triassic Appinite Dykes in the East Kunlun Orogenic Belt, Northern Tibetan Plateau. Lithos, 284-285: 766-778. https://doi.org/10.1016/j.lithos.2017.05.016

[29]

Liu, C. D., Mo, X. X., Luo, Z. H., et al., 2004. Mixing Events between the Crust- and Mantle-Derived Magmas in Eastern Kunlun: Evidence from Zircon SHRIMP II Chronology. Chinese Science Bulletin, 49(8): 828-834. https://doi.org/10.1007/BF02889756

[30]

Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082

[31]

Liu, Z.Q., 2011. Study on the Geological Characteristics and Tectonic of Buqingshan Melanges Belt, the South Margin of East Kunlun Mountains (Dissertation). Chang’an University, Xi’an (in Chinese with English abstract).

[32]

Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011. LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A’nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication. Acta Geologica Sinica, 85(2): 185-194 (in Chinese with English abstract).

[33]

Lugmair, G. W., Marti, K., 1978. Lunar Initial 143Nd/144Nd: Differential Evolution of the Lunar Crust and Mantle. Earth and Planetary Science Letters, 39(3): 349-357. https://doi.org/10.1016/0012-821X(78)90021-3

[34]

Luo, Z.H., Ke, S., Cao, Y.Q., et al., 2002. Late Indosinian Mantle-Derived Magmatism in the East Kunlun. Regional Geology of China, 21(6): 292-297 (in Chinese with English abstract).

[35]

Ma, L.Y., Niu, Z.J., Bai, Y.S., et al., 2007. Sr, Nd and Pb Isotopic Geochemistry of Permian Volcanic Rocks from Southern Qinghai and Their Geological Significance. Earth Science, 32(1): 22-28 (in Chinese with English abstract).

[36]

Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414 (in Chinese with English abstract).

[37]

Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016

[38]

Rawson, H., Keller, T., Fontijn, K., et al., 2016. Compositional Variability in Mafic Arc Magmas over Short Spatial and Temporal Scales: Evidence for the Signature of Mantle Reactive Melt Channels. Earth and Planetary Science Letters, 456: 66-77. https://doi.org/10.1016/j.epsl.2016.09.056

[39]

Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., Holland, H. D., Turekian, K, K., eds., Treatise on Geochemistry. Elsevier-Pergamon, Oxford, 3: 1-64.

[40]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

[41]

Wang, M., Pei, X. Z., Li, R. B., et al., 2019. Early Indosinian High-Mg# and High-Sr/Y Ratio Granodiorites in the Xiahe Area, West Qinling, Central China: Petrogenesis and Geodynamic Implications. Lithos, 332-333: 162-174. https://doi.org/10.1016/j.lithos.2019.03.005

[42]

Wang, W., Xiong, F.H., Ma, C.Q., et al., 2021. Petrogenesis of Triassic Suolagou Sanukitoid-Like Diorite in East Kunlun Orogen and Its Implications for Paleo-Tethyan Orogeny. Earth Science, 46(8): 2887-2902 (in Chinese with English abstract).

[43]

Weis, D., Kieffer, B., Maerschalk, C., et al., 2006. High-Precision Isotopic Characterization of USGS Reference Materials by TIMS and MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8): Q08006. https://doi.org/10.1029/2006GC001283

[44]

Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2

[45]

Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin. 49(16): 1589-1604 (in Chinese).

[46]

Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2011. LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt. Acta Petrologica Sinica, 27(11): 3350-3364 (in Chinese with English abstract).

[47]

Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic I-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171: 847-863. https://doi.org/10.1144/jgs2013-038

[48]

Xu, B., Li, Y.L., Shi, L.C., et al., 2020a. Magmatic Consanguinity of the Late Triassic Granites and Rhyolites in Eastern Qimantage: Constraints from Geochronology, Geochemistry and Nd-Pb Isotopes. Geological Review, 66(3): 686-698(in Chinese with English abstract).

[49]

Xu, B., Wang, C.Y., Liu, J.D., et al., 2020b. The Petrogenesis of the Late Triassic Granites in the Heergetou Area, East Kunlun: Constraints from Geochronology, Geochemistry and Sr-Nd-Pb Isotopes. Acta Geologica Sinica, 94(12): 3643-3656(in Chinese with English abstract).

[50]

Xu, X.B., Wang, L.X., Ma, C.Q., et al., 2021. Petrogenesis and Geological Implications of the Yangfengou Intermediate-Felsic Dykes in the Balong Area within the Eastern Kunlun Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 40(3): 653-676 (in Chinese with English abstract).

[51]

Xu, Z.Q., Yang, J.S., Li, H.Q., et al., 2012. Indosinian Collision-Orogenic System of Chinese Continent and Its Orogenic Mechanism. Acta Petrologica Sinica, 28(6): 1697-1709 (in Chinese with English abstract).

[52]

Yang, H., Ge, W., Dong, Y., et al., 2019. Permian Subduction of the Paleo-Pacific (Panthalassic) Oceanic Lithosphere beneath the Jiamusi Block: Geochronological and Geochemical Evidence from the Luobei Mafic Intrusions in Northeast China. Lithos, 332-333: 207-225. https://doi.org/10.1016/j.lithos.2019.03.004

[53]

Yang, S., Pei, X.Z., Li, R.B., et al., 2016. Provenance Analysis and Structural Implications of Gequ Formation at the Buqingshan Area in the Eastern Segment of the East Kunlun Region. Geological Bulletin of China, 35(5): 674-686 (in Chinese with English abstract).

[54]

Yu, M., Dick, J. M., Feng, C., et al., 2020. The Tectonic Evolution of the East Kunlun Orogen, Northern Tibetan Plateau: A Critical Review with an Integrated Geodynamic Model. Journal of Asian Earth Sciences, 191: 104168. https://doi.org/10.1016/j.jseaes.2019.104168

[55]

Yu, N., Jin, W., Ge, W.C., et al., 2005. Geochemical Study on Peraluminous Granite from Jinshuikou in East Kunlun. World Geology, 24(2): 123-128 (in Chinese with English abstract).

[56]

Yu, Y.Y., Zong, K.Q., Yuan, Y.,et al., 2022. Crustal Contamination of the Mantle-Derived Liuyuan Basalts: Implications for the Permian Evolution of the Southern Central Asian Orogenic Belt. Journal of Earth Science, 33(5): 1081-1094. https://doi.org/10.1007/s12583-022-1706-1

[57]

Zhang, J. Y., Ma, C. Q., Xiong, F. H., et al., 2012. Petrogenesis and Tectonic Significance of the Late-Permian-Middle Triassic Calc-Alkaline Granites in the Balong Region, Eastern Kunlun Orogen, China. Geological Magazine, 149(5):892-908. https://doi.org/10.1017/S0016756811001142

[58]

Zhang, Y.T., 2018. Research on Metallogenesis of Gold Deposits in the Wulonggou Ore Concentration Area, Central Segment of the East Kunlun Mountains, Qinghai Province (Dissertation). Jilin University, Changchun (in Chinese with English abstract).

[59]

Zhao, X., Fu, L., Wei, J. H., et al., 2019. Late Permian Back-Arc Extension of the Eastern Paleo-Tethys Ocean: Evidence from the East Kunlun Orogen, Northern Tibetan Plateau. Lithos, 340-341: 34-48. https://doi.org/10.1016/j.lithos.2019.05.006

[60]

Zhao, X., Fu, L.B., Wei, J.H., et al., 2018. Geochemical Characteristics of An’nage Hornblende Gabbro from East Kunlun Orogenic Belt and Its Constraints on Evolution of Paleo-Tethys Ocean. Earth Science, 43(2): 354-370 (in Chinese with English abstract).

[61]

Zhao, X., Wei, J. H., Fu, L. B., et al., 2020. Multi-Stage Crustal Melting from Late Permian Back-Arc Extension through Middle Triassic Continental Collision to Late Triassic Post-Collisional Extension in the East Kunlun Orogen. Lithos, 360-361: 105446. https://doi.org/10.1016/j.lithos.2020.105446

[62]

Zhu, Y.H., Zhu, Y.S., Lin, Q.X., et al., 2003. Characteristics of Early Jurassic Volcanic Rocks and Their Tectonic Significance in Haidewula, East Kunlun Orogenic Belt, Qinghai Province. Earth Science, 28(6): 653-659 (in Chinese with English abstract).

[63]

Zhu, Y. X., Wang, L. X., Ma, C., et al., 2022. Petrogenesis and Tectonic Implication of the Late Triassic A1-Type Alkaline Volcanics from the Xiangride Area, Eastern Segment of the East Kunlun Orogen (China). Lithos, 412-413: 106595. https://doi.org/10.1016/j.lithos.2022.106595.

基金资助

国家自然科学基金面上项目(42072095)

青海省科学技术厅重点研发与转化计划(2021-SF-157)

东华理工大学博士启动基金(DHBK2018024)

AI Summary AI Mindmap
PDF (6861KB)

182

访问

0

被引

详细

导航
相关文章

AI思维导图

/