晚中新世龙门山南段及前缘地区盆山体系形成的动力学机制

邵崇建 ,  颜照坤 ,  李勇 ,  聂舟 ,  任聪 ,  孙岳

地球科学 ›› 2023, Vol. 48 ›› Issue (04) : 1379 -1388.

PDF (4195KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (04) : 1379 -1388. DOI: 10.3799/dqkx.2022.279

晚中新世龙门山南段及前缘地区盆山体系形成的动力学机制

作者信息 +

Dynamic Mechanism of Formation of Basin-Mountain System in Southern Segment of Longmenshan and Frontal Area in Late Miocene

Author information +
文章历史 +
PDF (4294K)

摘要

新生代龙门山的隆升机制存在上地壳缩短和下地壳流两种端元模式,两种模式会造成四川盆地不同的构造变形响应,形成不同的盆山系统.为了厘定龙门山南段及前缘地区盆山系统的构造变形特征及其动力学指示意义,利用低温热年代学技术(AFT和AHe)对龙门山南段前缘地区乐地1井7个砂岩样品进行了分析,约束该地区的剥露特征.结果表明,龙门山南段前缘地区中新世(约21 Ma)以来浅部地层经历了约10~11 Ma的快速剥露阶段(约500~700 m/Ma),与前人龙门山南段揭露的快速剥露时间一致.结合区域地质资料,认为约10~11 Ma龙门山南段向南东的逆冲推覆作用,导致构造应力通过四川盆地西南部多层滑脱层向盆地传递,造成龙门山前缘地区大范围构造变形及快速剥露,该认识支持龙门山上地壳缩短的隆升机制.

关键词

龙门山南段前缘地区 / 动力学机制 / 低温热年代学 / 快速剥露 / 地球动力学

Key words

frontal area of southern Longmenshan / dynamic mechanism / low temperature thermochronology / rapid exhumation / geodynamics

引用本文

引用格式 ▾
邵崇建,颜照坤,李勇,聂舟,任聪,孙岳. 晚中新世龙门山南段及前缘地区盆山体系形成的动力学机制[J]. 地球科学, 2023, 48(04): 1379-1388 DOI:10.3799/dqkx.2022.279

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

自65±5 Ma以来印度板块和欧亚板块碰撞,导致南北缩短至少1 400 km,地壳厚度增加了一倍(70 km),形成了内部平坦、边缘陡峭的青藏高原(Royden et al.,2008).青藏高原东缘龙门山与四川盆地的海拔落差超5 000 m,为地球上最陡峭的山脉之一,其隆升机制一直是青藏高原隆升机制研究的焦点问题(Clark et al.,2005aRoyden et al.,2008Hubbard and Shaw,2009Wang et al.,2012Tian et al.,2013, 2015,2018a,,2018b;Shen et al.,2019).目前,针对龙门山的隆升机制存在上地壳缩短和下地壳流两种端元模式,上地壳缩短模式认为龙门山的隆升与脆性上地壳缩短密切相关(Hubbard and Shaw,2009Tian et al.,2013).下地壳流模式认为中新世晚期从高原中心向外流动的下地壳物质,受到四川盆地坚硬岩石圈的阻挡,转而近垂直向上推挤促使龙门山隆升,即认为龙门山的隆升与地壳缩短解耦(Clark et al.,2005aRoyden et al.,2008).

这两种模式对于龙门山和四川盆地的新生代变形历史具有明显不同的意义.地壳缩短模式认为青藏高原东部地壳挤压缩短被龙门山和四川盆地吸收(Tian et al.,2018a).相反,对于下地壳流模式,坚硬的四川盆地迫使下地壳流近垂直向上推挤(Clark et al.,2005a;Royden et al.,2008),从而认为晚中新世以来青藏高原东缘没有或者很少有地壳缩短扩展到四川盆地(Tian et al.,2018a).

由于较低的封闭温度,低温热年代学技术成为记录地壳最上层几千米内岩石冷却或剥露的最新阶段的最佳工具(Wang et al.,2012Li et al.,2012Tian et al.,2013, 2015,2018a,,2018b;Tan et al.,2014Zhang et al.,2016Liu-Zeng et al.,2018Shen et al.,2019张北航等,2021林旭等,2022郭超等,2022).目前,基于高程剖面采样的低温热年代学研究,成为揭露快速剥露或隆升事件的可靠手段(Wang et al.,2012Tian et al.,2015Liu-Zeng et al.,2018).Tian et al.(2018a)通过钻井高程剖面低温热年代学分析,首次定量证明了四川盆地东部在始新世晚期-渐新世(约35~28 Ma)快速剥露,这与Wang et al.(2012)通过龙门山中段高程剖面低温热年代学分析所获得的渐新世(约30~25 Ma)快速剥露同期,表明在该阶段,青藏高原东缘的地壳缩短传递到了四川盆地东部,支持了上地壳缩短模式.然而,考虑到下地壳流是在中新世晚期形成的(Clark et al.,2005a;Royden et al.,2008),因此进一步分析四川盆地在中新世晚期以来是否存在与龙门山同步快速剥露事件,对约束龙门山的动力学隆升机制具有重要意义.

四川盆地新生代沉积物主要分布在四川盆地西南部(龙门山南段前缘地区),除第四系地层外,始新统-渐新统地层为最年轻地层,且已经卷入变形(Burchfiel et al., 1995).因此,龙门山南段及其前缘地区,是分析和甄别上述两种端元模式的重要场所.目前,多位学者已对龙门山南段进行了低温热年代学分析,揭露出龙门山南段晚中新世(约10 Ma)处于快速剥露(Tian et al.,2013Cook et al.,2013).进而,本次选取龙门山南段前缘地区乐地1井的7个岩心样品,构成高程剖面,采用磷灰石裂变径迹(AFT)和磷灰石(U-Th-Sm)/He(AHe)两种方法对龙门山南段前缘地区中新世以来的隆升历史进行精细刻画,结合龙门山南段已揭露的快速剥露时间,为中新世以来龙门山南段及前缘地区盆山体系形成及动力学机制提供约束条件.

1 区域地质背景

龙门山地处青藏高原与四川盆地的分界线上,为地形陡变带,呈SW-NE向展布,沿走向以北川-安县与卧龙-怀远一线为界可三分为北段、中段和南段(李智武等,2008沈桐等,2021)(图1).其中龙门山南段以出露五龙、宝兴基底杂岩及其前缘发育飞来峰为典型特征,以较宽的断褶带向东南侧四川盆地过渡(图2),其冲断变形主要发生在新生代(李智武等,2008).

震旦纪-中三叠世,四川盆地的构造环境为扬子地块西缘的被动大陆边缘;震旦纪时期,扬子克拉通经历了明显的裂谷作用,寒武系和奥陶系沉积物沉积于浅海环境;志留纪、泥盆纪和石炭纪,四川盆地大面积缺失沉积物(Burchfiel et al.,1995).中生代时期,沉积环境发生重大变化,在晚三叠世-白垩纪,伴随着古特提斯洋的闭合,扬子板块、华北板块和松潘-甘孜地块持续汇聚,转变为前陆盆地(Burchfiel et al.,1995).从浅海至局部非海相中下三叠统沉积物,转变成晚三叠统非海相碎屑岩沉积物.其中,中下三叠统膏盐岩层是龙门山褶皱冲断带和川西盆地浅部的滑脱层(Hubbard and Shaw,2009李智武等,2009Shao et al.,2019)(图2).新生代以来,受印度-欧亚板块持续汇聚的影响,四川盆地结束了大面积的陆相沉积,进入到整体抬升、剥蚀和改造阶段,新生代沉积物主要分布在四川盆地南部(Burchfiel et al.,1995).

龙门山南段前缘地区,展示出明显的垂向分层变形,以中下三叠统富膏盐岩层为界,发育上下两套完全不同的构造样式(李智武等,2009)(图2).中下三叠统富膏盐岩层以上,从双石断裂向东至龙泉山构造带,发育数排平行排列或斜列的断层相关褶皱,它们均以中下三叠统富膏盐岩层为底部滑脱面;中下三叠统富膏盐岩层以下,则很好地保存了先期的垒-堑式张性构造(图2).

前人对龙门山中段进行低温热年代学研究,揭露出约13~8 Ma以来龙门山处于快速剥露阶段(Godard et al.,2009Shen et al.,2019)(图1).另外,Wang et al.(2012)获得了龙门山新生代更为丰富的剥露历史信息,认为龙门山在新生代早期经历了缓慢而稳定的剥露,之后经历了两次快速剥露事件,一次开始于约30~25 Ma,另一次开始于约15~10 Ma,并持续到现在(图1).对于龙门山南段,前人同样揭露出了约10 Ma的快速剥露事件(Tian et al.,2013;Cook et al.,2013).在龙门山南段前麓地区,前人揭露出两次快速剥露事件,分别约为25~20 Ma和10 Ma(Li et al.,2012).在龙门山南段前缘地区,前人主要揭露出3次快速剥露事件,分别约为40 Ma以来(Richardson et al.,2008)、25~20 Ma(Meng et al.,2016)和15 Ma(刘树根等,2008).

2 样品采集和实验

本次采集了龙门山南段前缘地区乐地1井上三叠统-中侏罗统7个砂岩岩心样品,构成一个约1 600 m的高程剖面,样品之间深度落差200~300 m(表1).AHe和AFT分析均在澳大利亚墨尔本大学的热年代学实验室进行测量.对于AFT分析,样品的蚀刻过程为:在20 ℃ 5 mol HNO3中蚀刻20 s.数据采集使用Zeiss Axio Imager M1m显微镜和墨尔本热年表组开发的Trackworks和FastTracks软件进行.颗粒的铀浓度使用Agilent 7700 LA-ICP-MS结合New Wave UP-213激光器测定.对于AHe分析,在Olympus SZX12双目显微镜下手工挑选出未破裂、晶粒半径相似的自形晶粒,浸入乙醇中;然后在偏振光下检查,剔除可能存在夹杂的晶粒;晶粒的几何形状在显微镜下成像、测量和存储,相关结果被用于α离子射出效应校正;之后颗粒被装入经酸处理的小型铂筒中,以备后续测试.关于AFT和AHe实验方法的更多细节见Gleadow et al.(2015)文献.其中用于评估AHe分析质量的参考材料为Durango.

3 实验结果及分析

乐地1井剖面所有7个样品均获得了裂变径迹数据(表1).对于AFT,若裂变径迹年龄卡方统计检验值Pχ 2)>5%,样品将采用合并年龄(Pooled age)(Galbraith,1981),否则将采用中值年龄(Central age)(Galbraith and Laslett,1993).因此,4个样品(LD01, LD05, LD06, LD07)AFT年龄取中值年龄,3个样品(LD02, LD03, LD04)AFT年龄取合并年龄,年龄分布范围为(10.7±2.2)~(21.5±1.8) Ma(表1).总体而言7个样品的AFT年龄均远小于地层年龄(表1),并且随着深度变浅,年龄变大(图3a),已完全热重置.

乐地1井剖面获得了4个样品的11个AHe数据(表2).除了LD03,整体上每个样品,不同颗粒的AHe年龄相近,说明实验结果较好.但LD03样品的3个AHe年龄中,一个年龄(15.7±1.0)明显大于另外两个相近的年龄(3.8±0.2, 4.7±0.3).整体上,4个样品AHe的年龄随着深度变浅,年龄变大,15.7±1.0 Ma年龄明显偏离这个趋势(图3b),因此在分析中不考虑15.7±1.0 Ma这个年龄.对于AHe,辐射损伤的积累可能会影响磷灰石晶粒的He滞留性,从而影响封闭温度,这种效应可以表现为AHe年龄与磷灰石颗粒的有效铀浓度(eU)之间的相关性(Flowers,2009).表2相关数据表明,单颗粒AHe年龄与有效铀(eU)含量关系不明显,不同辐射损伤程度的颗粒间氦滞留率无显著差异.

4 讨论

4.1 中新世以来龙门山南段前缘地区地层剥露特征

钻井样品所构成的年龄-深度(高程)剖面可以获得剥露速率(Wang et al.,2012Liu-Zeng et al.,2018).根据乐地1井AHe和AFT的年龄-深度关系,可基于最小二乘法(Glotzbach et al.,2011Liu-Zeng et al.,2018)进行线性拟合(R 2分别为0.74和0.82),获得剥露速率(图3).

通过堆叠虚拟高程(Pseudo-elevation)-年龄剖面的方法,可以将多种温度计(例如,AHe和AFT)纳入的高程-年龄关系(Reiners and Brandon,2006Liu-Zeng et al.,2018).样品的虚拟高程是指温度计(例如AHe和AFT)封闭深度以上的高度(Liu-Zeng et al.,2018).封闭深度可以通过温度计的假设封闭温度、地热梯度以及地表温度进行计算.AFT和AHe的封闭温度依次约为110±20 ℃(Laslett et al.,1987)和60±20 ℃(Farley,2002).此外,钻井附近地表温度为20 ℃,地温梯度大约为20 ℃/km(Li et al.,2012Tian et al.,2018a).据此,计算获得样品AFT和AHe年龄对应的虚拟高程(表1表2),并构建虚拟高程-年龄剖面(图4).构建的虚拟高程-年龄剖面(图4),保持AHe和AFT的年龄-深度关系所拟合的线性关系不变(图3).

基于虚拟高程-年龄剖面(图4),可估算龙门山南段前缘地区中新世(约21 Ma)以来浅部地层(T3 x 1及上覆地层)主要经历了3个阶段的剥露.在约21~12 Ma,剥露速率相对较慢,约为130 m/Ma;在约10~11 Ma剥露速率明显较快,约为500~700 m/Ma;在约10~1 Ma,剥露速率相对较慢,约为172 m/Ma.另外,LD01-LD04样品AFT年龄相近(表1),也指示在约10~13 Ma间存在快速剥露事件.此外,根据区域上已报道的加速剥露事件,晚中新世约10 Ma的加速剥露事件大致分布在岷山-龙门山中段-龙门山南段前缘地区(威远背斜)连线以西的区域,具有明显的区域性(图1).

4.2 晚中新世龙门山南段及前缘地区盆山体系形成动力学机制探讨

前人提出了两种解释龙门山新生代隆升的端元动力学模式,包括地壳缩短模式(Hubbard and Shaw,2009Tian et al.,2018b)和下地壳流模式(Clark et al.,2005a;Royden et al.,2008).对于龙门山南段前缘(四川盆地西南部)而言,上地壳缩短模式(图5a),认为龙门山南段前缘地区浅部地壳的变形,是由于青藏高原东缘的缩短经滑脱层向盆地传递导致的(Hubbard and Shaw,2009Tian et al.,2018aShao et al.,2019)(图2);从而可以推测龙门山南段前缘地区浅部地壳变形所导致的快速剥露会与龙门山南段的快速剥露密切相关,即两者具有同步性.相反,对于下地壳流模式(图5b),坚硬的四川盆地下地壳,抑制下地壳流东向流动,迫使下地壳流近垂直向上推挤龙门山(Clark et al.,2005a;Royden et al.,2008),认为青藏高原东缘晚中新世以来地壳缩短极少或没有向盆地传递,因此仅影响龙门山南段山前有限区域(Hubbard and Shaw,2009Tian et al.,2018a).

乐地1井高程剖面样品为上三叠统-侏罗系地层的砂岩样品,因此均在中下三叠统浅层滑脱层(Hubbard and Shaw, 2009)之上,样品AFT和AHe分析结果表明龙门山南段前缘地区在约10~11 Ma快速剥露(图4).龙门山南段前缘地区,从双石断裂向东至龙泉山构造带,发育数排平行排列或斜列的断层相关褶皱,它们均以中下三叠统富膏盐岩层为底部滑脱面(图2),且相关褶皱走向与龙门山平行;另外,龙门山中南段晚中新世剥露速率加快与地壳构造缩短密切相关(Tian et al.,2013);这说明龙门山南段前缘地区的变形、隆升与龙门山南段的构造变形密切相关.因此,一种合理的解释为龙门山南段在该时期快速隆升或冲断,更多地壳缩短通过中下三叠统浅层滑脱层向盆地传播,导致前缘地区发生构造变形和快速剥露.

此外,有学者认为四川盆地和青藏高原东缘普遍在晚中新世(约12~10 Ma)发生快速剥露,可能是长江下游袭夺了四川盆地的水系促使四川盆地水系侵蚀增强造成的(Yang et al.,2017).但是,目前研究所揭露的~10 Ma的加速剥露事件主要位于四川盆地西部,但四川盆地东部却未见约10 Ma这次快速剥露事件,而普遍发生约20~15 Ma的加速剥露事件(图1),这与长江下游在约10 Ma袭夺四川盆地的水系导致四川盆地普遍快速剥露的推断不相符.因此,结合龙门山南段8~12 Ma的快速剥露(Cook et al.,2013Tian et al.,2013)与龙门山南段前缘地区约10~11 Ma快速剥露同步,本文认为龙门山南段前缘地区约10~11 Ma快速剥露事件主要与龙门山南段的构造变形增强相关,即龙门山南段晚中新世造山作用造成了龙门山南段前缘地区较大范围的上地壳缩短变形和同步快速剥露,该认识支持龙门山南段晚新生代上地壳缩短的构造演化模型.

5 结论

基于对龙门山南段前缘地区乐地1井7个砂岩样品的低温热年代学(AFT和AHe)分析,结合前人的成果进行综合分析,主要获得以下两个认识:

(1)龙门山南段前缘地区中新世(约21 Ma)以来浅部地层主要经历了3个阶段的剥露.在约21~12 Ma(约130 m/Ma)和约10~1 Ma(约172 m/Ma)阶段,剥露速率相对较慢;约10~11 Ma为快速剥露阶段(约500~700 m/Ma).

(2)四川盆地西南部上地壳的多套滑脱层为龙门山南段构造变形向盆地传递提供了物质基础,本次在龙门山南段前缘地区获得了与龙门山南段同步发生的晚中新世快速剥露事件(约10 Ma),进一步证实龙门山南段晚新生代的构造变形主要为上地壳构造缩短,并可以传递到盆地内较大范围,该认识支持龙门山南段晚新生代上地壳缩短的构造演化模型.

参考文献

[1]

Burchfiel, B. C., Chen, Z. L., Liu, Y. P., et al., 1995. Tectonics of the Longmen Shan and Adjacent Regions, Central China. International Geology Review, 37(8): 661-735. https://doi.org/10.1080/00206819509465424

[2]

Clark, M. K., Bush, J. W. M., Royden, L. H., 2005a. Dynamic Topography Produced by Lower Crustal Flow against Rheological Strength Heterogeneities Bordering the Tibetan Plateau. Geophysical Journal International, 162(2): 575-590. https://doi.org/10.1111/j.1365-246X.2005.02580.x

[3]

Clark, M. K., House, M. A., Royden, L. H., et al., 2005b. Late Cenozoic Uplift of Southeastern Tibet. Geology, 33(6): 525. https://doi.org/10.1130/g21265.1

[4]

Cook, K. L., Royden, L. H., Burchfiel, B. C., et al., 2013. Constraints on Cenozoic Tectonics in the Southwestern Longmen Shan from Low-Temperature Thermochronology. Lithosphere, 5(4): 393-406. https://doi.org/10.1130/l263.1

[5]

Deng, B., Liu, S. G., Enkelmann, E., et al., 2015. Late Miocene Accelerated Exhumation of the Daliang Mountains, Southeastern Margin of the Tibetan Plateau. International Journal of Earth Sciences, 104(4): 1061-1081. https://doi.org/10.1007/s00531-014-1129-z

[6]

Deng, B., Liu, S.G., Wang, G.Z., et al., 2013. Cenozoic Uplift and Exhumation in Southern Sichuan Basin—Evidence from Low-Temperature Thermochronology. Chinese Journal of Geophysics, 56(6): 1958-1973 (in Chinese with English abstract).

[7]

Farley, K. A., 2002. (U-Th)/He Dating: Techniques, Calibrations, and Applications. Reviews in Mineralogy and Geochemistry, 47(1): 819-844. https://doi.org/10.2138/rmg.2002.47.18

[8]

Flowers, R. M., 2009. Exploiting Radiation Damage Control on Apatite (U-Th)/He Dates in Cratonic Regions. Earth and Planetary Science Letters, 277(1-2): 148-155. https://doi.org/10.1016/j.epsl.2008.10.005

[9]

Galbraith, R. F., 1981. On Statistical Models for Fission Track Counts. Journal of the International Association for Mathematical Geology, 13(6): 471-478. https://doi.org/10.1007/BF01034498

[10]

Galbraith, R. F., Laslett, G. M., 1993. Statistical Models for Mixed Fission Track Ages. Nuclear Tracks and Radiation Measurements, 21(4): 459-470. https://doi.org/10.1016/1359-0189(93)90185-c

[11]

Gleadow, A., Harrison, M., Kohn, B., et al., 2015. The Fish Canyon Tuff:A New Look at an Old Low-Temperature Thermochronology Standard. Earth and Planetary Science Letters, 424: 95-108. https://doi.org/10.1016/j.epsl.2015.05.003

[12]

Glotzbach, C., van der Beek, P. A., Spiegel, C., 2011. Episodic Exhumation and Relief Growth in the Mont Blanc Massif, Western Alps from Numerical Modelling of Thermochronology Data. Earth and Planetary Science Letters, 304(3/4): 417-430. https://doi.org/10.1016/j.epsl.2011.02.020

[13]

Godard, V., Pik, R., Lavé, J., et al., 2009. Late Cenozoic Evolution of the Central Longmen Shan, Eastern Tibet: Insight from (U-Th)/He Thermochronometry. Tectonics, 28(5): TC5009. https://doi.org/10.1029/2008tc002407

[14]

Guo, C., Zhang, Z. Y., Wu, L., et al., 2022. Mesozoic-Cenozoic Coupling Process of Tianshan Denudation and Sedimentation in the Northern Margin of the Tarim Basin: Evidence from Low-Temperature Thermochronology(Kuqa River Section, Xinjiang). Earth Science, 47(9): 3417-3430 (in Chinese with English abstract).

[15]

Hubbard, J., Shaw, J. H., 2009. Uplift of the Longmen Shan and Tibetan Plateau, and the 2008 Wenchuan (M =7.9) Earthquake. Nature, 458(7235): 194-197. https://doi.org/10.1038/nature07837

[16]

Laslett, G. M., Green, P. F., Duddy, I. R., et al., 1987. Thermal Annealing of Fission Tracks in Apatite 2. A Quantitative Analysis. Chemical Geology: Isotope Geoscience Section, 65(1): 1-13. https://doi.org/10.1016/0168-9622(87)90057-1

[17]

Li, Z. W., Liu, S. G., Chen, H. D., et al., 2012. Spatial Variation in Meso-Cenozoic Exhumation History of the Longmen Shan Thrust Belt (Eastern Tibetan Plateau) and the Adjacent Western Sichuan Basin: Constraints from Fission Track Thermochronology. Journal of Asian Earth Sciences, 47: 185-203. https://doi.org/10.1016/j.jseaes.2011.10.016

[18]

Li, Z.W., Liu, S.G., Chen, H.D., et al., 2008. Structural Segmentation and Zonation and Differential Deformation across and along the Lomgmen Thrust Belt, West Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 35(4): 440-454 (in Chinese with English abstract).

[19]

Li, Z. W., Liu, S. G., Lin, J., et al., 2009. Structural Configuration and Its Genetic Mechanism of the West Sichuan Depression in China. Journal of Chengdu University of Technology (Science & Technology Edition), 36(6): 645-653 (in Chinese with English abstract).

[20]

Lin, X., Wu, L., Marc, J., et al., 2022. Apatite (U-Th)/He Thermochronology Evidence for Two Cenozoic Denudation Events in Eastern Part of Sulu Orogenic Belt. Earth Science, 47(4): 1162-1176 (in Chinese with English abstract).

[21]

Liu, S.G., Ma, Y.S., Sun, W., et al., 2008. Studying on the Differences of Sinian Natural Gas Pools between Weiyuan Gas Field and Ziyang Gas-Brone Area, Sichuan Basin. Acta Geologica Sinica, 82(3): 328-337 (in Chinese with English abstract).

[22]

Liu-Zeng, J., Zhang, J. Y., McPhillips, D., et al., 2018. Multiple Episodes of Fast Exhumation since Cretaceous in Southeast Tibet, Revealed by Low-Temperature Thermochronology. Earth and Planetary Science Letters, 490: 62-76. https://doi.org/10.1016/j.epsl.2018.03.011

[23]

Meng, K., Wang, E., Wang, G., 2016. Uplift of the Emei Shan, Western Sichuan Basin: Implication for Eastward Propagation of the Tibetan Plateau in Early Miocene. Journal of Asian Earth Sciences, 115: 29-39. https://doi.org/10.1016/j.jseaes.2015.09.020

[24]

Ouimet, W., Whipple, K., Royden, L., et al., 2010. Regional Incision of the Eastern Margin of the Tibetan Plateau. Lithosphere, 2(1): 50-63. https://doi.org/10.1130/l57.1

[25]

Reiners, P. W., Brandon, M. T., 2006. Using Thermochronology to Understand Orogenic Erosion. Annual Review of Earth and Planetary Sciences, 34: 419-466. https://doi.org/10.1146/annurev.earth.34.031405.125202

[26]

Richardson, N. J., Densmore, A. L., Seward, D., et al., 2008. Extraordinary Denudation in the Sichuan Basin: Insights from Low-Temperature Thermochronology Adjacent to the Eastern Margin of the Tibetan Plateau. Journal of Geophysical Research, 113(B4): B04409. https://doi.org/10.1029/2006jb004739

[27]

Royden, L. H., Burchfiel, B. C., van der Hilst, R. D., 2008. The Geological Evolution of the Tibetan Plateau. Science, 321(5892): 1054-1058. https://doi.org/10.1126/science.1155371

[28]

Shao, C. J., Li, Y., Yan, Z. K., et al., 2019. Differential Strain Transfer, Longmen Shan Thrust Belt, Eastern Tibetan Plateau Margin: Implications for Seismic Hazards. Journal of Asian Earth Sciences, 169: 284-297. https://doi.org/10.1016/j.jseaes.2018.09.005

[29]

Shen, T., Meng, L. F., Chen, W., et al., 2021. Tectonic Activities in Middle and North Sections of Longmenshan Thrust Belt during Late Indosinian: Evidence from Structural Analysis and Detrital Zircon Geochronology. Earth Science, (5): 1728-1736(in Chinese with English abstract).

[30]

Shen, X. M., Tian, Y. T., Zhang, G. H., et al., 2019. Late Miocene Hinterland Crustal Shortening in the Longmen Shan Thrust Belt, the Eastern Margin of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 124(11): 11972-11991. https://doi.org/10.1029/2019jb018358

[31]

Shi, H. C., Shi, X. B., Glasmacher, U. A., et al.,2016. The Evolution of Eastern Sichuan Basin, Yangtze Block since Cretaceous: Constraints from Low Temperature Thermochronology. Journal of Asian Earth Sciences, 116: 208-221. https://doi.org/10.1016/j.jseaes.2015.11.008

[32]

Tan, X. B., Lee, Y. H., Chen, W. Y., et al., 2014. Exhumation History and Faulting Activity of the Southern Segment of the Longmen Shan, Eastern Tibet. Journal of Asian Earth Sciences, 81: 91-104. https://doi.org/10.1016/j.jseaes.2013.12.002

[33]

Tian, Y. T., Kohn, B. P., Gleadow, A. J. W., et al., 2013. Constructing the Longmen Shan Eastern Tibetan Plateau Margin: Insights from Low-Temperature Thermochronology. Tectonics, 32(3): 576-592. https://doi.org/10.1002/tect.20043

[34]

Tian, Y. T., Kohn, B. P., Hu, S. B., et al., 2015. Synchronous Fluvial Response to Surface Uplift in the Eastern Tibetan Plateau: Implications for Crustal Dynamics. Geophysical Research Letters, 42(1): 29-35. https://doi.org/10.1002/2014gl062383

[35]

Tian, Y. T., Kohn, B. P., Qiu, N. S., et al., 2018a. Eocene to Miocene Out-of-Sequence Deformation in the Eastern Tibetan Plateau: Insights from Shortening Structures in the Sichuan Basin. Journal of Geophysical Research: Solid Earth, 123(2): 1840-1855. https://doi.org/10.1002/2017jb015049

[36]

Tian, Y. T., Li, R., Tang, Y., et al., 2018b. Thermochronological Constraints on the Late Cenozoic Morphotectonic Evolution of the Min Shan, the Eastern Margin of the Tibetan Plateau. Tectonics, 37(6): 1733-1749. https://doi.org/10.1029/2017tc004868

[37]

Tian, Y. T., Kohn, B. P., Zhu, C. Q., et al., 2012. Post-Orogenic Evolution of the Mesozoic Micang Shan Foreland Basin System, Central China. Basin Research, 24(1): 70-90. https://doi.org/10.1111/j.1365-2117.2011.00516.x

[38]

Wang, E., Kirby, E., Furlong, K. P., et al., 2012. Two-Phase Growth of High Topography in Eastern Tibet during the Cenozoic. Nature Geoscience, 5(9): 640-645. https://doi.org/10.1038/ngeo1538

[39]

Wang, P., Liu, S.F., Gao, T.J., et al., 2012. Cretaceous Transportation of Eastern Sichuan Arcuate Fold Belt in Three Dimensions: Insights from AFT Analysis. Chinese Journal of Geophysics, 55(5): 1662-1673 (in Chinese with English abstract).

[40]

Yan, D. P., Zhou, M. F., Li, S. B., et al., 2011. Structural and Geochronological Constraints on the Mesozoic-Cenozoic Tectonic Evolution of the Longmen Shan Thrust Belt, Eastern Tibetan Plateau. Tectonics, 30(6): TC6005. https://doi.org/10.1029/2011TC002867

[41]

Yang, Z., Shen, C. B., Ratschbacher, L., et al., 2017. Sichuan Basin and Beyond: Eastward Foreland Growth of the Tibetan Plateau from an Integration of Late Cretaceous-Cenozoic Fission Track and (U-Th)/He Ages of the Eastern Tibetan Plateau, Qinling, and Daba Shan. Journal of Geophysical Research: Solid Earth, 122(6): 4712-4740. https://doi.org/10.1002/2016jb013751

[42]

Zhang, B. H., Zhang, J., Qu, J. F., et al., 2021. Lüliangshan: A Mesozoic Basement Involved Fold System in the Central North China Craton. Earth Science, (7): 2423-2448(in Chinese with English abstract).

[43]

Zhang, H. P., Oskin, M. E., Jing, L. Z., et al., 2016. Pulsed Exhumation of Interior Eastern Tibet: Implications for Relief Generation Mechanisms and the Origin of High-Elevation Planation Surfaces. Earth and Planetary Science Letters, 449: 176-185. https://doi.org/10.1016/j.epsl.2016.05.048

[44]

邓宾, 刘树根, 王国芝, 等, 2013. 四川盆地南部地区新生代隆升剥露研究: 低温热年代学证据. 地球物理学报, 56(6): 1958-1973.

[45]

郭超, 张志勇, 吴林, 等, 2022. 中新生代天山剥蚀与塔里木盆地北缘沉积耦合过程: 新疆库车河剖面的低温热年代学证据. 地球科学, 47(9): 3417-3430.

[46]

李智武, 刘树根, 陈洪德, 等, 2008. 龙门山冲断带分段-分带性构造格局及其差异变形特征. 成都理工大学学报(自然科学版), 35(4): 440-454.

[47]

李智武, 刘树根, 林杰, 等, 2009. 川西坳陷构造格局及其成因机制. 成都理工大学学报(自然科学版), 36(6): 645-653.

[48]

林旭, 吴林, MarcJolivet, 等, 2022. 苏鲁造山带东段新生代两阶段剥露事件的磷灰石(U-Th)/He热年代学证据. 地球科学, 47(4): 1162-1176.

[49]

刘树根, 马永生, 孙玮, 等, 2008. 四川盆地威远气田和资阳含气区震旦系油气成藏差异性研究. 地质学报, 82(3): 328-337.

[50]

沈桐, 孟立丰, 陈伟, 等, 2021. 龙门山中北段印支晚期构造活动: 来自构造解析及碎屑锆石年代学的证据. 地球科学, (5): 1728-1736.

[51]

王平, 刘少峰, 郜瑭珺, 等, 2012. 川东弧形带三维构造扩展的AFT记录. 地球物理学报, 55(5): 1662-1673.

[52]

张北航, 张进, 曲军峰, 等, 2021. 吕梁山——华北克拉通中部中生代基底卷入褶皱系统. 地球科学, 46(7): 2423-2448.

基金资助

国家自然科学基金项目(41502116)

自然资源部深地动力学重点实验室自主(开放)研究课题(J1901)

中国铀业有限公司-东华理工大学核资源与环境国家重点实验室联合创新基金(2022NRE-LH-04)

东华理工大学江西省数字国土重点实验室开放研究基金资助项目(DLLJ202110)

东华理工大学博士启动基金(DHBK2019044)

AI Summary AI Mindmap
PDF (4195KB)

188

访问

0

被引

详细

导航
相关文章

AI思维导图

/