东昆仑大格勒稀有金属矿化碳酸岩和橄榄岩斜锆石U-Pb年代学研究和找矿意义
王秉璋 , 李五福 , 金婷婷 , 张晗 , 李玉龙 , 付长垒 , 刘建栋 , 王涛 , 薛万文 , 王泰山
地球科学 ›› 2024, Vol. 49 ›› Issue (04) : 1245 -1260.
东昆仑大格勒稀有金属矿化碳酸岩和橄榄岩斜锆石U-Pb年代学研究和找矿意义
Baddeleyite U-Pb Geochronology of Rare Metal Mineralized Carbonatite and Peridotite in Dagele Area of East Kunlun Orogen and Its Prospecting Significance
,
东昆仑大格勒地区发现稀有和稀土矿化碱性岩-碳酸岩杂岩体,表明东昆仑稀有和稀土金属成矿也具有较大的前景,在东昆仑地质过程研究和稀有金属找矿方面具有重要的意义.以大格勒杂岩体中碳酸岩和橄榄岩为目标,针对斜锆石开展地球化学和同位素年代学研究工作,橄榄岩中斜锆石化学成分主要为ZrO2(96.48%~97.21%),其次为HfO2(0.83%~1.17%)和Nb2O5(0.61%~0.93%),LA-ICP-MS U-Pb测年结果表明,207Pb校正年龄加权平均值为381.0±2.3 Ma和417.5±3.4 Ma,T-W图的下交点年龄为381.1±2.3 Ma和417.7±3.4 Ma;碳酸岩中斜锆石化学成分主要为ZrO2(91.1%),其次为HfO2(4.3%)、Nb2O5(1.22%)和FeO(2.31%),207Pb校正年龄加权平均值为381.5±2.5 Ma和416.5±4.5 Ma,T-W图的下交点年龄为381.8±1.8 Ma和416.7±4.5 Ma.推断碳酸岩的形成时代为381.8 Ma,橄榄岩的形成时代为417.7 Ma,暗示富集Nb元素的硅不饱和岩浆活动至少存在两期,东昆仑加里东碰撞造山带碰撞后-造山后岩石圈伸展、地幔部分熔融是其形成的最主要的地球动力学机制.推断晚志留世-泥盆纪是东昆仑十分重要的一个稀有金属成矿期,大格勒-诺木洪河地区是东昆仑稀有金属成矿的重要远景区之一.
东昆仑 / 大格勒 / 橄榄岩 / 碳酸岩 / 斜锆石 / 稀有金属 / 地球化学 / 岩石学
East Kunlun / Dagele / peridotite / carbonatite / baddeleyite / rare metals / geochemistry / petrology
附表见本刊官网(http://www.earth-science.net).
| [1] |
Ba, J., Zhang, L., He, C., et al., 2018. Zircon and Monazite Ages Constraints on Devonian Magmatism and Granulite-Facies Metamorphism in the Southern Qaidam Block: Implications for Evolution of Proto- and Paleo-Tethys in East Asia. Journal of Earth Science, 29(5): 1132-1150. https://doi.org/10.1007/s12583-018-0853-x |
| [2] |
Bayanova, T., Subbotin, V., Drogobuzhskaya, S., et al., 2019. Baddeleyite from Large Complex Deposits: Significance for Archean-Paleozoic Plume Processes in the Arctic Region (NE Fennoscandian Shield) Based on U-Pb (ID-TIMS) and LA-ICP-MS Data. Open Journal of Geology, 9(8): 474-496. https://doi.org/10.4236/ojg.2019.98031 |
| [3] |
Bi,H.Z., Whitney, D.L., Song, S.G., et al., 2022. HP-UHP Eclogites in the East Kunlun Orogen, China: P-T Evidence for Asymmetric Suturing of the Proto-Tethys Ocean. Gondwana Research, 104: 199-214. https://doi.org/10.1016/j.gr.2021.04.008 |
| [4] |
Cai, P. R., Wang T., Wang, Z. Q., et al.,2020. Geochronology and Geochemistry of Late Paleozoic Volcanic Rocks from Eastern Inner Mongolia, NE China: Implications for Igneous Petrogenesis, Tectonic Setting, and Geodynamic Evolution of the South-Eastern Central Asian Orogenic Belt. Lithos, 362/363: 105480. https://doi.org/10.1016/j.lithos.2020.105480 |
| [5] |
Chew, D. M., Petrus, J. A., Kamber, B. S., 2014. U-Pb LA-ICPMS Dating Using Accessory Mineral Standards with Variable Common Pb. Chemical Geology, 363: 185-199. https://doi.org/10.1016/j.chemgeo.2013.11.006 |
| [6] |
Deng, H. B., Li, P. L., He, W. J., et al.,2021. Zircon Age, Petrogeochemical Characteristics and Geological Significance of Granite in Dashuigou Area, East Kunlun. Journal of Guilin University of Technology, 41 (1): 1-14 (in Chinese with English abstract). |
| [7] |
Ding, Q. F., Song, K., Zhang, Q., et al., 2019. Zircon U-Pb Geochronology and Hf Isotopic Constraints on the Petrogenesis of the Late Silurian Shidonggou Granite from the Wulonggou Area in the Eastern Kunlun Orogen, Northwest China. International Geology Review, 61(13): 1666-1689. https://doi.org/10.1080/00206814.2018.1534218 |
| [8] |
Fan, H. R., Niu, H. C., Li, X. C., et al., 2020. The Types, Ore Genesis and Resource Perspective of Endogenic REE Deposits in China. Chinese Science Bulletin, 65(33): 3778-3793 (in Chinese). |
| [9] |
Feng, K., Li, R.B., Pei, X.Z., et al., 2022. Zircon U-Pb Chronology, Geochemistry and Geological Significance of Late Triassic Intermediate-Acid Volcanic Rocks in Boluositai Area, East Kunlun Orogenic Belt. Earth Science, 47(4): 1194-1216 (in Chinese with English abstract). |
| [10] |
Gou, R.T., Zeng, P.S., Liu, S.W., et al., 2019. Distribution Characteristics of Carbonatites of the World and Its Metallogenic Significance. Acta Geologica Sinica, 93(9): 2348-2361 (in Chinese with English abstract). |
| [11] |
Han, Z.H., Sun, F.Y., Tian, N., et al., 2021. Zircon U-Pb Geochronology, Geochemistry and Geological Implications of the Early Paleozoic Wulanwuzhuer Granites in the Qimantag, East Kunlun, China. Earth Science, 46(1): 13-30 (in Chinese with English abstract). |
| [12] |
Hao, M. N., Xiong, F. H., Zhao, H., et al., 2021. Petrogenesis of Devonian Granites from the Qiujigonggou Area in East Kunlun and Its Implications for Proto-Tethys Orogeny. Mineralogy and Petrology, 41(2): 59-70 (in Chinese with English abstract). |
| [13] |
Heaman, L.M., 2009. The Application of U-Pb Geochronology to Mafic, Ultramafic and Alkaline Rocks: An Evaluation of Three Mineral Standards. Chemical Geology, 261(1-2): 43-52. https://doi.org/10.1016/j.chemgeo.2008.10.021 |
| [14] |
Hu, J.C., Chen, J., He, S.Y., et al., 2017. Geochronology and Petrogenesis of Mylonitized Granite from Wulonggou Area in East Kunlun and Its Tectonic Significance. Northwestern Geology, 50(3): 54-64 (in Chinese with English abstract). |
| [15] |
Jiang, S.Y., Wang, W., 2022. How does the Strategic Key Metal Produce Super-Rich Integrated Ore? Earth Science, 47(10): 3869-3871 (in Chinese with English abstract). |
| [16] |
Lei, Y.L., Dai, J.W., Bai, Q., et al., 2021. Genesis and Implications of Peraluminous A-Type Rhyolite in the Haidewula Area, East Kunlun Orogen. Acta Petrologica Sinica, 37(7): 1964-1982 (in Chinese with English abstract). |
| [17] |
Li, J. K., Li, P., Wang, D. H., et al., 2019. A Review of Niobium and Tantalum Metallogenic Regularity in China. Chinese Science Bulletin, 64(15): 1545-1566 (in Chinese). |
| [18] |
Li, L., Sun, F. Y, Li, B. L., et al., 2018.Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes of No. I Complex from the Shitoukengde Ni-Cu Sulfide Deposit in the Eastern Kunlun Orogen, Western China: Implications for the Magmatic Source, Geodynamic Setting and Genesis. Acta Geologica Sinica, 92(1): 106-126. |
| [19] |
Li, S.J., Sun, F.Y., Gao, Y.W., et al., 2012. The Theoretical Guidance and the Practice of Small Intrusions Forming Large Deposits—The Enlightenment and Significance for Searching Breakthrough of Cu-Ni Sulfide Deposit in Xiarihamu, East Kunlun, Qinghai. Northwestern Geology, 45(4): 185-191 (in Chinese with English abstract). |
| [20] |
Li, W. F., Wang, T., Wang, B. Z., et al., 2022. Discovery and Significance of Rare and REE Mineralized Alkaline Complex in Dagele Area of East Kunlun. Geotectonica et Metallogenia (in Chinese with English abstract). https://kns.cnki.net/kcms/detail/44.1595.P.20220128.1313.002.html |
| [21] |
Li, Z.H., Li, B.L., Li, P., et al., 2023. Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes of the Diorite in the Heishishan Copper Polymetallic Deposit, East Kunlun. Earth Science, 48(12): 4465-4480. |
| [22] |
Liu, B., Ma, C. Q., Zhang, J. Y., et al., 2012. Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes. Acta Petrologica Sinica, 28(6): 1785-1807 (in Chinese with English abstract). |
| [23] |
Liu, B., Wu, L.H., Ma, C.Q., et al., 2023. Petrogenesis and Tectonic Implications of Silurian to Devonian Intermediate Rocks from East Part of East Kunlun Orogenic Belt. Earth Science, 48(6): 2398-2414 (in Chinese with English abstract). |
| [24] |
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082 |
| [25] |
Long, X. P., Jin, W., Ge, W. C., et al., 2006. Zircon U-Pb Geochronology and Geological Implications of the Granitoids in Jinshuikou, East Kunlun, NW China. Geochimica, 35(4): 367-376 (in Chinese with English abstract). |
| [26] |
Lu, L., Zhang, Y.L., Wu, Z.H., et al., 2013. Zircon U-Pb Dating of Early Paleozoic Granites from the East Kunlun Mountains and Its Geological Significance. Acta Geoscientia Sinica, 34(4): 447-454 (in Chinese with English abstract). |
| [27] |
Ma, C.Q., Xiong, F.H., Yin, S., et al., 2015. Intensity and Cyclicity of Orogenic Magmatism: An Example from a Paleo-Tethyan Granitoid Batholith, Eastern Kunlun, Northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12): 3555-3568 (in Chinese with English abstract). |
| [28] |
Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414 (in Chinese with English abstract). |
| [29] |
Ou, Q., 2020. Demand Trend Analysis and Supply Risk Study of Niobium Resources in China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). |
| [30] |
Pan, G.T., Xiao, Q.H., Lu, S.N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1): 1-4, I0001, 5-28(in Chinese with English abstract). |
| [31] |
Shen, M.T., Guo W. M., Xu, M., et al., 2021.Characteristics of Typical Niobium-Tantalum Deposits in Brazil and Their Resource Distribution Regularity and Prospecting Directions. Mineral Deposits, 40(3):603-624 (in Chinese with English abstract). |
| [32] |
Song, S. G., Bi, H. Z., Qi, S. S., et al., 2018. HP-UHP Metamorphic Belt in the East Kunlun Orogen: Final Closure of the Proto-Tethys Ocean and Formation of the Pan-North-China Continent. Journal of Petrology, 59(11): 2043-2060. https://doi.org/10.1093/petrology/egy089 |
| [33] |
Song, X. Y., Yi, J. N., Chen, L. M., et al., 2016. The Giant Xiarihamu Ni-Co Sulfide Deposit in the East Kunlun Orogenic Belt, Northern Tibet Plateau, China. Economic Geology, 111(1): 29-55. https://doi.org/10.2113/econgeo.111.1.29 |
| [34] |
Stacey, J.S., Kramers, J.D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 26(2): 207-221. https://doi.org/10.1016/0012-821X(75)90088-6 |
| [35] |
Tang, Y. J., Liu, B., Li, M. J., et al., 2020. Origin of Devonian Mafic Magmatism in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Exhumation. Geological Magazine, 157(8): 1265-1280. https://doi.org/10.1017/s0016756819001353 |
| [36] |
Tian, G.K., Meng, F.C., Fan, Y.Z., et al., 2016. The Characteristics of Early Paleozoic Post-Orogenic Granite in the East Kunlun Orogen: A Case Study of Dagangou Granite. Acta Petrologica et Mineralogica, 35(3): 371-390 (in Chinese with English abstract). |
| [37] |
Wang, B.Z., Li, J.Q., Fu, C.L., et al., 2022. Discussion on the Formation and Evolution of the Early Paleozoic Bulhanbuda Arc in the East Kunlun Orogen. Earth Science, 47(4): 1253-1270 (in Chinese with English abstract). |
| [38] |
Wang, B.Z., Pan, T., Ren, H.D., et al., 2021. Cambrian Qimantagh Island Arc in the East Kunlun Orogen: Evidences from Zircon U-Pb Ages, Lithogeochemistry and Hf Isotopes of High-Mg Andesite/Diorite from the Lalinggaolihe Area. Earth Science Frontiers, 28(1): 318-333 (in Chinese with English abstract). |
| [39] |
Wang, Q., Zhao, J., Zhang, C. L., et al., 2022. Paleozoic Post-Collisional Magmatism and High-Temperature Granulite-Facies Metamorphism Coupling with Lithospheric Delamination of the East Kunlun Orogenic Belt, NW China. Geoscience Frontiers, 13(1): 101271. https://doi.org/10.1016/j.gsf.2021.101271 |
| [40] |
Wang, Y. C., Sun, F. Y., 2019. The Middle-Late Silurian Granitoids in the Eastern Kunlun Orogenic Belt, NW China: Petrogenesis and Implications for Tectonic Evolution.Arabian Journal of Geosciences, 12(18): 1-18. https://doi.org/10.1007/s12517-019-4652-1 |
| [41] |
Wang, Y.L., Li, Y.J., Wei, J.H., et al., 2018. Origin of Late Silurian A-Type Granite in Wulonggou Area, East Kunlun Orogen: Zircon U-Pb Age, Geochemistry, Nd and Hf Isotopic Constraints. Earth Science, 43(4): 1219-1236 (in Chinese with English abstract). |
| [42] |
Xin, W., Sun, F. Y., Li, L., et al., 2018. The Wulonggou Metaluminous A2-Type Granites in the Eastern Kunlun Orogenic Belt, NW China: Rejuvenation of Subduction-Related Felsic Crust and Implications for Post-Collision Extension. Lithos, 312/313: 108-127. https://doi.org/10.1016/j.lithos.2018.05.005 |
| [43] |
Xing, Y.A., Chen, D.Y., 2004. A Brief Introduction of the Baigan Lake W, Sn Deposit, Xinjiang. Jilin Geology, 23(3): 64-66 (in Chinese with English abstract). |
| [44] |
Xiong, F. H., Ma, C. Q., Jiang, H. A., et al., 2014. Geochronology and Geochemistry of Middle Devonian Mafic Dykes in the East Kunlun Orogenic Belt, Northern Tibet Plateau: Implications for the Transition from Prototethys to Paleotethys Orogeny. Geochemistry, 74(2): 225-235. https://doi.org/10.1016/j.chemer.2013.07.004 |
| [45] |
Yan, W., Qiu, D.M., Ding, Q.F., et al., 2016. Geochronology, Petrogenesis, Source and Its Structural Significance of Houtougou Monzogranite of Wulonggou Area in Eastern Kunlun Orogen. Journal of Jilin University (Earth Science Edition), 46(2): 443-460 (in Chinese with English abstract). |
| [46] |
Ying, Y., Chen, W., Lu, J., et al., 2017. In Situ U-Th-Pb Ages of the Miaoya Carbonatite Complex in the South Qinling Orogenic Belt, Central China. Lithos, 290/291: 159-171. https://doi.org/10.1016/j.lithos.2017.08.003 |
| [47] |
Zhang, G.W., Dong, Y.P., Lai, S.C., et al., 2003. Mianlue Structural Belt and Mianlue Suture Belt in the Southern Margin of Qinling-Dabie Orogenic Belt. Science in China (Series D), 33(12): 1121-1135 (in Chinese). |
| [48] |
Zhang, J. Y., Lei, H. L., Ma, C. Q., et al., 2021. Silurian-Devonian Granites and Associated Intermediate-Mafic Rocks along the Eastern Kunlun Orogen, Western China: Evidence for a Prolonged Post-Collisional Lithospheric Extension. Gondwana Research, 89: 131-146. https://doi.org/10.1016/j.gr.2020.08.019 |
| [49] |
Zhang, L., Li., B. L., Liu, L., et al., 2021.Geochronology, Geochemistry and Geological Significance of the Early Devonian Bimodal Intrusive Rocks in Wulonggou Area, East Kunlun Orogen. Acta Petrologica Sinica,37(7): 2007-2028 (in Chinese with English abstract). |
| [50] |
Zhang, W., Terry Chen, W., Gao, J. F., et al., 2019. Two Episodes of REE Mineralization in the Qinling Orogenic Belt, Central China: In-Situ U-Th-Pb Dating of Bastnäsite and Monazite.Mineralium Deposita, 54(8): 1265-1280. https://doi.org/10.1007/s00126-019-00875-7 |
| [51] |
Zhang, X.B., Zhang, S.T., Chen, H.Y., et al., 2020. Application of Garnet U-Pb Dating in the Skarn Deposit: A Case Study of Gaoyishan Wo (-Cu) Deposit in Southeast Hubei Province. Earth Science, 45(3): 856-868 (in Chinese with English abstract). |
| [52] |
Zhang, Z. W., Wang, Y. L., Qian, B., et al., 2018. Metallogeny and Tectonomagmatic Setting of Ni-Cu Magmatic Sulfide Mineralization, Number I Shitoukengde Mafic-Ultramafic Complex, East Kunlun Orogenic Belt, NW China. Ore Geology Reviews, 96: 236-246. https://doi.org/10.1016/j.oregeorev.2018.04.027 |
| [53] |
Zheng, Z., Chen, Y. J., Deng, X. H., et al., 2018. Origin of the Bashierxi Monzogranite, Qiman Tagh, East Kunlun Orogen, NW China: A Magmatic Response to the Evolution of the Proto-Tethys Ocean. Lithos, 296/297/298/299: 181-194. https://doi.org/10.1016/j.lithos.2017.10.019 |
| [54] |
邓红宾, 李培龙, 何文劲, 等, 2021.东昆仑大水沟一带花岗岩体锆石年龄、岩石地球化学特征及地质意义. 桂林理工大学学报, 41(1): 1-14. |
| [55] |
范宏瑞,牛贺才,李晓春,等,2020. 中国内生稀土矿床类型、成矿规律与资源展望. 科学通报,65(33):3778-3793. |
| [56] |
封铿, 李瑞保, 裴先治, 等, 2022. 东昆仑造山带波洛斯太地区晚三叠世中酸性火山岩锆石U-Pb年代学、地球化学及地质意义. 地球科学, 47(4): 1194-1216. |
| [57] |
苟瑞涛, 曾普胜, 刘斯文, 等, 2019. 碳酸岩分布特征及成矿意义. 地质学报, 93(9): 2348-2361. |
| [58] |
韩志辉, 孙丰月, 田楠, 等, 2021. 东昆仑祁漫塔格地区乌兰乌珠尔早古生代花岗岩锆石U-Pb年代学、地球化学及其地质意义. 地球科学, 46(1): 13-30. |
| [59] |
郝梦楠, 熊富浩, 赵涵, 等, 2021. 东昆仑丘吉东沟地区泥盆纪花岗岩的成因机制及其对原特提斯造山作用的启示.矿物岩石, 41(2): 59-70. |
| [60] |
胡继春, 陈静, 何书跃, 等, 2017. 东昆仑五龙沟地区糜棱岩化花岗岩年代学、岩石成因及其构造意义. 西北地质, 50(3): 54-64. |
| [61] |
蒋少涌, 王微, 2022. 战略性关键金属是如何发生超常富集成矿的?. 地球科学, 47(10): 3869-3871. |
| [62] |
雷勇亮, 戴佳文, 白强, 等, 2021. 东昆仑造山带海德乌拉铝质A型流纹岩成因及其意义. 岩石学报, 37(7)1964-1982. |
| [63] |
李建康, 李鹏, 王登红, 等, 2019. 中国铌钽矿成矿规律. 科学通报, 64(15): 1545-1566. |
| [64] |
李世金, 孙丰月, 高永旺, 等, 2012. 小岩体成大矿理论指导与实践: 青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义. 西北地质, 45(4): 185-191. |
| [65] |
李五福, 王涛, 王秉璋, 等, 2022. 东昆仑大格勒地区稀有和稀土矿化碱性杂岩体的发现及意义. 大地构造与成矿学, https://kns.cnki.net/kcms/detail/44.1595.P.20220128.1313.002.html |
| [66] |
李治华, 李碧乐, 李鹏, 等, 2023. 东昆仑黑石山铜多金属矿床闪长岩锆石U-Pb 年代学、地球化学和Sr-Nd-Hf 同位素. 地球科学,48(12): 4465-4480. |
| [67] |
刘彬, 马昌前, 张金阳, 等, 2012. 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示. 岩石学报, 28(6): 1785-1807. |
| [68] |
刘彬, 伍炼华, 马昌前, 等, 2023. 东昆仑造山带东段志留纪-泥盆纪中性岩的成因及其构造意义. 地球科学, 48(6): 2398-2414. |
| [69] |
龙晓平, 金巍, 葛文春, 等, 2006. 东昆仑金水口花岗岩体锆石U-Pb 年代学及其地质意义. 地球化学, 35(4): 367-376. |
| [70] |
陆露, 张延林, 吴珍汉, 等, 2013. 东昆仑早古生代花岗岩锆石U-Pb年龄及其地质意义. 地球学报, 34(4): 447-454. |
| [71] |
马昌前, 熊富浩, 尹烁, 等, 2015. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555-3568. |
| [72] |
莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414. |
| [73] |
欧强, 2020. 中国铌资源需求趋势分析及供应风险研究(硕士学位论文). 北京: 中国地质大学(北京). |
| [74] |
潘桂棠, 肖庆辉, 陆松年, 等, 2009. 中国大地构造单元划分. 中国地质, 36(1): 1-4, I0001, 5-28. |
| [75] |
沈莽庭, 郭维民, 徐鸣, 等, 2021. 巴西铌钽矿典型矿床特征及其资源分布规律和找矿方向.矿床地质, 40(3):603-624. |
| [76] |
田广阔, 孟繁聪, 范亚洲, 等, 2016. 东昆仑早古生代造山后花岗岩的特征: 以大干沟花岗岩为例. 岩石矿物学杂志, 35(3): 371-390. |
| [77] |
王秉璋, 李积清, 付长垒, 等, 2022. 东昆仑布尔汗布达早古生代岩浆弧的形成与演化初探. 地球科学, 47(4): 1253-1270. |
| [78] |
王秉璋, 潘彤, 任海东, 等, 2021. 东昆仑祁漫塔格寒武纪岛弧: 来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石U-Pb年代学、地球化学和Hf同位素证据. 地学前缘, 28(1): 318-333. |
| [79] |
王艺龙, 李艳军, 魏俊浩, 等, 2018. 东昆仑五龙沟地区晚志留世A型花岗岩成因: U-Pb年代学、地球化学、Nd及Hf同位素制约. 地球科学, 43(4): 1219-1236. |
| [80] |
邢延安, 陈殿义, 2004. 新疆白干湖钨锡矿床简介. 吉林地质, 23(3): 64-66. |
| [81] |
严威, 邱殿明, 丁清峰, 等, 2016. 东昆仑五龙沟地区猴头沟二长花岗岩年龄、成因、源区及其构造意义. 吉林大学学报(地球科学版), 46(2): 443-460. |
| [82] |
张国伟, 董云鹏, 赖绍聪, 等, 2003. 秦岭-大别造山带南缘勉略构造带与勉略缝合带. 中国科学(D辑), 33(12): 1121-1135. |
| [83] |
张亮, 李碧乐, 刘磊, 等, 2021. 东昆仑五龙沟地区早泥盆世双峰式侵入岩年代学、地球化学及其地质意义. 岩石学报, 37(7): 2007-2028. |
| [84] |
张小波, 张世涛, 陈华勇, 等, 2020. 石榴子石U-Pb定年在矽卡岩矿床中的应用: 以鄂东南高椅山硅灰石(-铜)矿床为例. 地球科学, 45(3): 856-868. |
青海省地质矿产勘查开发局项目(青地矿[2021]61号)
第二次青藏高原综合科学考察研究(STEP)项目(2019QZKK0702)
青海省地质调查局项目(2021074055kc024)
/
| 〈 |
|
〉 |