海洋沉积物碳循环过程数值模型的研究进展
徐思南 , 吴自军 , 张喜林 , 孙伟香 , 耿威 , 曹红 , 翟滨 , 孙治雷
地球科学 ›› 2024, Vol. 49 ›› Issue (04) : 1431 -1447.
海洋沉积物碳循环过程数值模型的研究进展
Advances in Numerical Modelling of Carbon Cycling Processes in Marine Sediments
,
海洋沉积物不仅是各种不同来源有机碳的重要埋藏场所,也是一个十分活跃的生物地球化学反应器,在全球海洋碳循环中扮演着重要角色.相对传统的地球化学测试和定性描述方法,数值模型可以突破时间和空间的限制,定量获取海洋沉积物中各个碳循环过程的反应速率及其通量,因此日益受到学界的重视.海洋沉积物有机质降解是驱动碳循环最为关键的生物地球化学过程,其释放进入周围孔隙水的溶解无机碳一部分可扩散至沉积物上覆水体,另一部分可与钙、镁等离子沉淀形成自生碳酸盐矿物.首先综述目前主要的3类沉积物有机质降解模型(离散性有机质降解模型、连续性有机质降解模型和Power模型)的建模过程及其在全球海洋沉积物有机质降解过程中的应用;接着从有机质降解相关的初级与次级反应出发,介绍沉积物中与有机质降解相关的地球化学过程反应速率模型的刻画方法,并从碳酸盐平衡体系和同位素质量平衡模式角度,探讨了沉积物有机质降解过程对自生碳酸盐形成及其碳同位素的影响;最后分析了当前阶段数学模型在描述有机质降解过程和自生碳酸盐形成中存在的问题和不足,并在此基础上展望未来亟需加强的研究要点,希企为深入理解海洋碳循环与全球气候变化相互反馈,建立可靠的海洋碳循环和生物地球化学预测系统提供有益的科学支撑.
海洋沉积物 / 碳循环 / 有机质降解 / 自生碳酸盐形成 / 数值模型 / 海洋地质学
marine sediment / carbon cycle / organic matter degradation / authigenic carbonate formation / numerical modeling / marine geology
| [1] |
Akam, S. A., Coffin, R. B., Abdulla, H. A. N., et al., 2020. Dissolved Inorganic Carbon Pump in Methane-Charged Shallow Marine Sediments: State of the Art and New Model Perspectives. Frontiers in Marine Science, 7: 206. https://doi.org/10.3389/fmars.2020.00206 |
| [2] |
Aller, R. C., Aller, J. Y., 1998. The Effect of Biogenic Irrigation Intensity and Solute Exchange on Diagenetic Reaction Rates in Marine Sediments. Journal of Marine Research, 56(4): 905-936. https://doi.org/10.1357/002224098321667413 |
| [3] |
Aris, R., 1968. Prolegomena to the Rational Analysis of Systems of Chemical Reactions II. Some Addenda. Archive for Rational Mechanics and Analysis, 27(5): 356-364. https://doi.org/10.1007/BF00251438 |
| [4] |
Arndt, S., Jørgensen, B. B., LaRowe, D. E., et al., 2013. Quantifying the Degradation of Organic Matter in Marine Sediments: A Review and Synthesis. Earth-Science Reviews, 123: 53-86. https://doi.org/10.1016/j.earscirev.2013.02.008 |
| [5] |
Ausín, B., Bruni, E., Haghipour, N., et al., 2021. Controls on the Abundance, Provenance and Age of Organic Carbon Buried in Continental Margin Sediments. Earth and Planetary Science Letters, 558: 116759. https://doi.org/10.1016/j.epsl.2021.116759 |
| [6] |
Bauer, J. E., Cai, W. J., Raymond, P. A., et al., 2013. The Changing Carbon Cycle of the Coastal Ocean. Nature, 504(7478): 61-70. https://doi.org/10.1038/nature12857 |
| [7] |
Bayon, G., Pierre, C., Etoubleau, J., et al., 2007. Sr/Ca and Mg/Ca Ratios in Niger Delta Sediments: Implications for Authigenic Carbonate Genesis in Cold Seep Environments. Marine Geology, 241(1/2/3/4): 93-109. https://doi.org/10.1016/j.margeo.2007.03.007 |
| [8] |
Berner, R. A., 1964. An Idealized Model of Dissolved Sulfate Distribution in Recent Sediments. Geochimica et Cosmochimica Acta, 28(9): 1497-1503. https://doi.org/10.1016/0016-7037(64)90164-4 |
| [9] |
Berner, R. A., 2020. Early Diagenesis. Princeton University Press, Princeton. https://doi.org/10.2307/j.ctvx8b6p2 |
| [10] |
Bin, Z., Peng, Y., Zuosheng, Y.,et al., 2018. Reverse Weathering in River-Dominated Marginal Seas. Advances in Earth Science, 33: 42. https://doi.org/10.11867/j.issn.1001-8166.2018.01.0042 |
| [11] |
Blouet, J. P., Arndt, S., Imbert, P., et al., 2021. Are Seep Carbonates Quantitative Proxies of CH4 Leakage? Modeling the Influence of Sulfate Reduction and Anaerobic Oxidation of Methane on pH and Carbonate Precipitation. Chemical Geology, 577: 120254. https://doi.org/10.1016/j.chemgeo.2021.120254 |
| [12] |
Boudreau, B. P., 1996. A Method-of-Lines Code for Carbon and Nutrient Diagenesis in Aquatic Sediments. Computers & Geosciences, 22(5): 479-496. https://doi.org/10.1016/0098-3004(95)00115-8 |
| [13] |
Boudreau, B. P., 1997. Diagenetic Models and Their Implementation. Springer, Berlin. https://doi.org/10.1007/97S-3-642-60421-8 |
| [14] |
Boudreau, B. P., Ruddick, B. R., 1991. On a Reactive Continuum Representation of Organic Matter Diagenesis. American Journal of Science, 291(5): 507-538. https://doi.org/10.2475/ajs.291.5.507 |
| [15] |
Bradbury, H. J., Turchyn, A. V., 2019. Reevaluating the Carbon Sink Due to Sedimentary Carbonate Formation in Modern Marine Sediments. Earth and Planetary Science Letters, 519: 40-49. https://doi.org/10.1016/j.epsl.2019.04.044 |
| [16] |
Burdige, D. J., 2007. Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets? Chemical Reviews, 107(2): 467-485. https://doi.org/10.1021/cr050347q |
| [17] |
Castanier S., Métayer-levrel G L, Perthuisot J P., 2000. Bacterial Roles in the Precipitation of Carbonate Miner-als. Microbial sediment, 32-39. https://doi.org/10.1007/978-3-662-04036-2_5 |
| [18] |
Charlou, J. L., Donval, J. P., Fouquet, Y., et al., 2004. Physical and Chemical Characterization of Gas Hydrates and Associated Methane Plumes in the Congo-Angola Basin. Chemical Geology, 205(3-4), 405-425. https://doi.org/10.1016/j.chemgeo.2003.12.033 |
| [19] |
Dale, A. W., Regnier, P., Van Cappellen, P., 2006. Bioenergetic Controls on Anaerobic Oxidation of Methane (AOM) in Coastal Marine Sediments: A Theoretical Analysis. American Journal of Science, 306(4): 246-294. https://doi.org/10.2475/ajs.306.4.246 |
| [20] |
Dunne, J. P., Sarmiento, J. L., Gnanadesikan, A., 2007. A Synthesis of Global Particle Export from the Surface Ocean and Cycling through the Ocean Interior and on the Seafloor. Global Biogeochemical Cycles, 21(4): GB4006. https://doi.org/10.1029/2006gb002907 |
| [21] |
Emerson, S., Fischer, K., Reimers, C., et al., 1985. Organic Carbon Dynamics and Preservation in Deep-Sea Sediments. Deep Sea Research Part A Oceanographic Research Papers, 32(1): 1-21. https://doi.org/10.1016/0198-0149(85)90014-7 |
| [22] |
Feng, D., Qiu, J. W., Hu, Y., et al., 2018. Cold Seep Systems in the South China Sea: An Overview. Journal of Asian Earth Sciences, 168: 3-16. https://doi.org/10.1016/j.jseaes.2018.09.021 |
| [23] |
Hansell, D. A., Carlson, C. A., 2015. Preface. Biogeochemistry of Marine Dissolved Organic Matter. Elsevier, Amsterdam: xvii-xviii. https://doi.org/10.1016/b978-0-12-405940-5.09990-8 |
| [24] |
Ho, T. C., Aris, R., 1987. On Apparent Second-Order Kinetics. AIChE Journal, 33(6): 1050-1051. https://doi.org/10.1002/aic.690330621 |
| [25] |
Huguet, C., De Lange, G. J., Gustafsson, Ö, et al.,2008. Selective Preservation of Soil Organic Matter in Oxidized Marine Sediments (Madeira Abyssal Plain). Geochimica et Cosmochimica Acta, 72(24): 6061-6068. https://doi.org/10.1016/j.gca.2008.09.021 |
| [26] |
Jørgensen, B. B., 1978. A Comparison of Methods for the Quantification of Bacterial Sulfate Reduction in Coastal Marine Sediments. Geomicrobiology Journal, 1(1): 29-47. https://doi.org/10.1080/01490457809377722 |
| [27] |
Jørgensen, B. B., 1983. Processes at the Sediment-Water Interface. Major Biogeochemical Cycles and Their Interactions, 25(6): 1421-1426. |
| [28] |
Kennedy, M. J., Pevear, D. R., Hill, R. J., 2002. Mineral Surface Control of Organic Carbon in Black Shale. Science, 295(5555): 657-660. https://doi.org/10.1126/science.1066611 |
| [29] |
Kretschmer, K., Biastoch, A., Rüpke, L., et al., 2015. Modeling the Fate of Methane Hydrates under Global Warming. Global Biogeochemical Cycles, 29(5): 610-625. https://doi.org/10.1002/2014gb005011 |
| [30] |
Krumins, V., Gehlen, M., Arndt, S., et al., 2013. Dissolved Inorganic Carbon and Alkalinity Fluxes from Coastal Marine Sediments: Model Estimates for Different Shelf Environments and Sensitivity to Global Change. Biogeosciences, 10(1): 371-398. https://doi.org/10.5194/bg-10-371-2013 |
| [31] |
LaRowe, D. E., Arndt, S., Bradley, J. A., et al., 2020a. The Fate of Organic Carbon in Marine Sediments—New Insights from Recent Data and Analysis. Earth-Science Reviews, 204: 103146. https://doi.org/10.1016/j.earscirev.2020.103146 |
| [32] |
LaRowe, D. E., Arndt S., Bradley, J. A., et al., 2020b. Organic Carbon and Microbial Activity in Marine Sediments on a Global Scale Throughout the Quaternary. Geochimica et Cosmochimica Acta, 286: 227-247. https://doi.org/10.1016/j.gca.2020.07.017 |
| [33] |
LaRowe, D. E., Van Cappellen, P., 2011. Degradation of Natural Organic Matter: A Thermodynamic Analysis. Geochimica et Cosmochimica Acta, 75(8): 2030-2042. https://doi.org/10.1016/j.gca.2011.01.020 |
| [34] |
Luff, R., Greinert, J., Wallmann, K., et al., 2005. Simulation of Long-Term Feedbacks from Authigenic Carbonate Crust Formation at Cold Vent Sites. Chemical Geology, 216(1/2): 157-174. https://doi.org/10.1016/j.chemgeo.2004.11.002 |
| [35] |
Luff, R., Haeckel, M., Wallmann, K., 2001. Robust and Fast FORTRAN and MATLABLibraries to Calculate pH Distributions in Marine Systems. Computers & Geosciences, 27(2): 157-169. https://doi.org/10.1016/S0098-3004(00)00097-2 |
| [36] |
Luff, R., Wallmann, K., 2003. Fluid Flow, Methane Fluxes, Carbonate Precipitation and Biogeochemical Turnover in Gas Hydrate-Bearing Sediments at Hydrate Ridge, Cascadia Margin: Numerical Modeling and Mass Balances. Geochimica et Cosmochimica Acta, 67(18): 3403-3421. https://doi.org/10.1016/S0016-7037(03)00127-3 |
| [37] |
Maier-Reimer, E., Hasselmann, K., 1987. Transport and Storage of CO2 in the Ocean—An Inorganic Ocean-Circulation Carbon Cycle Model. Climate Dynamics, 2(2): 63-90. https://doi.org/10.1007/BF01054491 |
| [38] |
Meister, P., Liu, B., Ferdelman, T. G., et al., 2013. Control of Sulphate and Methane Distributions in Marine Sediments by Organic Matter Reactivity. Geochimica et Cosmochimica Acta, 104: 183-193. https://doi.org/10.1016/j.gca.2012.11.011 |
| [39] |
Michalopoulos, P., Aller, R. C., 1995. Rapid Clay Mineral Formation in Amazon Delta Sediments: Reverse Weathering and Oceanic Elemental Cycles. Science, 270(5236): 614-617. https://doi.org/10.1126/science.270.5236.614 |
| [40] |
Middelburg, J. J., 1989. A Simple Rate Model for Organic Matter Decomposition in Marine Sediments. Geochimica et Cosmochimica Acta, 53(7): 1577-1581. https://doi.org/10.1016/0016-7037(89)90239-1 |
| [41] |
Middelburg, J. J., Soetaert, K., Hagens, M., 2020. Ocean Alkalinity, Buffering and Biogeochemical Processes. Reviews of Geophysics, 58(3): e2019RG000681. https://doi.org/10.1029/2019rg000681 |
| [42] |
Middelburg, J. J., Soetaert, K., Herman, P. M., 1997. Empirical Relationships for Use in Global Diagenetic Models. Deep Sea Research Part I: Oceanographic Research Papers, 44(2): 327-344. https://doi.org/10.1016/S0967-0637(96)00101-X |
| [43] |
Mitnick, E. H., Lammers, L. N., Zhang, S., et al., 2018. Authigenic Carbonate Formation Rates in Marine Sediments and Implications for the Marine δ 13C Record. Earth and Planetary Science Letters, 495: 135-145. https://doi.org/10.1016/j.epsl.2018.05.018 |
| [44] |
Mood, M. F., 1951. Introduction to the Theory of Statistics. Medical biological science, 5(2): 121-122. |
| [45] |
Morse, J. W., Arvidson, R. S., Lüttge, A., 2007. Calcium Carbonate Formation and Dissolution. Chemical Reviews, 107(2): 342-381. https://doi.org/10.1021/cr050358j |
| [46] |
Naehr, T. H., Eichhubl, P., Orphan, V. J., et al., 2007. Authigenic Carbonate Formation at Hydrocarbon Seeps in Continental Margin Sediments: A Comparative Study. Deep Sea Research Part II: Topical Studies in Oceanography, 54(11-13): 1268-1291. https://doi.org/10.1016/j.dsr2.2007.04.010 |
| [47] |
Nöthen, K., Kasten, S., 2011. Reconstructing Changes in Seep Activity by Means of Pore Water and Solid Phase Sr/Ca and Mg/Ca Ratios in Pockmark Sediments of the Northern Congo Fan. Marine Geology, 287(1-4): 1-13. https://doi.org/10.1016/j.margeo.2011.06.008 |
| [48] |
Reeburgh, W. S., 2007. Oceanic Methane Biogeochemistry. Chemical Reviews, 107(2): 486-513. https://doi.org/10.1021/cr050362v |
| [49] |
Regnier, P., Dale, A. W., Arndt, S., et al., 2011. Quantitative Analysis of Anaerobic Oxidation of Methane (AOM) in Marine Sediments: A Modeling Perspective. Earth-Science Reviews, 106(1/2): 105-130. https://doi.org/10.1016/j.earscirev.2011.01.002 |
| [50] |
Regnier, P., Dale, A. W., Pallud, C., et al., 2005. Incorporating Geomicrobial Processes in Reactive Transport Models of Subsurface Environments. Reactive Transport in Soil and Groundwater. Springer Berlin, Heidelberg,109-125. https://doi.org/10.1007/3-540-26746-8_8 |
| [51] |
Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J., et al., 1998. Simulated Response of the Ocean Carbon Cycle to Anthropogenic Climate Warming. Nature, 393(6682): 245-249. https://doi.org/10.1038/30455 |
| [52] |
Schrag, D. P., Higgins, J. A., MacDonald, F. A., et al., 2013. Authigenic Carbonate and the History of the Global Carbon Cycle. Science, 339(6119): 540-543. https://doi.org/10.1126/science.1229578 |
| [53] |
Sun, J., 2023. How Many Pathways we Have for the Marine Carbon Neutrality. Journal of Earth Science, 34(5): 1621-1623. https://doi.org/10.1007/s12583-023-1892-5 |
| [54] |
Sun, Q. L., 2023. How does Global Warming Influence Seafloor Stability? Journal of Earth Science, 34(5): 1624-1625. https://doi.org/10.1007/s12583-023-1877-4 |
| [55] |
Sun, X. L., Turchyn, A. V., 2014. Significant Contribution of Authigenic Carbonate to Marine Carbon Burial. Nature Geoscience, 7(3): 201-204. https://doi.org/10.1038/ngeo2070 |
| [56] |
Vähätalo, A. V., Aarnos, H., Mäntyniemi, S., 2010. Biodegradability Continuum and Biodegradation Kinetics of Natural Organic Matter Described by the Beta Distribution. Biogeochemistry, 100(1): 227-240. https://doi.org/10.1007/s10533-010-9419-4 |
| [57] |
Van Cappellen, P., Wang, Y., 1996. Cycling of Iron and Manganese in Surface Sediments; A General Theory for the Coupled Transport and Reaction of Carbon, Oxygen, Nitrogen, Sulfur, Iron, and Manganese. American Journal of Science, 296(3): 197-243. https://doi.org/10.2475/ajs.296.3.197 |
| [58] |
Van Nugteren, P., Moodley, L., Brummer, G. J., et al., 2009. Seafloor Ecosystem Functioning: The Importance of Organic Matter Priming.Marine Biology, 156(11): 2277-2287. https://doi.org/10.1007/s00227-009-1255-5 |
| [59] |
Wang, X. J., Jin, J. P., Guo, Y. Q., et al., 2021. The Characteristics of Gas Hydrate Accumulation and Quantitative Estimation in the North Slope of South China Sea. Earth Science, 46(3): 1038-1057 (in Chinese with English abstract). |
| [60] |
Wu, Y.F., Guan, H.X., Xu, L.F., et al., 2022. Characteristics and Significance of Biomarkers Related to AOM in Surface Sediments of the Haima Cold Seep in the Northern South China Sea. Earth Science, 47(8): 3005-3015 (in Chinese with English abstract). |
| [61] |
Yoshinaga, M. Y., Holler, T., Goldhammer, T., et al., 2014. Carbon Isotope Equilibration during Sulphate-Limited Anaerobic Oxidation of Methane. Nature Geoscience, 7(3): 190-194. https://doi.org/10.1038/ngeo2069 |
| [62] |
Zeebe, R. E., Wolf-Gladrow, D., 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Gulf Professional Publishing, Amsterdam. https://doi.org/10.1016/s0422-9894(01)x8001-x |
| [63] |
Zhang, S., Wang, L.C., 2013. Review on Carbon Cycling of Farmland Ecosystem under the Context of Global Changes. Journal of Agricultural Mechanization Research, 35(1): 4-9 (in Chinese with English abstract). |
| [64] |
Zhang, Y.H., Wu, Z.J., 2019. Sedimentary Organic Carbon Mineralization and Its Contribution to the Marine Carbon Cycle in the Marginal Seas. Advances in Earth Science, 34(2): 202-209 (in Chinese with English abstract). |
| [65] |
Zhang, Z.S., Li, S.L., Wang, H.J., et al., 2022. Introduction of Crossing Disciplines between Geology and Atmospheric Science. Earth Science, 47(10): 3569-3579 (in Chinese with English abstract). |
| [66] |
Zhu, J. J., Li, S. Z., Lu, J. A., et al., 2020. Scientific Implications and Preliminary Surveying Results of Geological and Physical Oceanography Environment in the Shenhu Area of the Northern South China Sea. Earth Science, 45(4): 1416-1426 (in Chinese with English abstract). |
| [67] |
王秀娟, 靳佳澎, 郭依群, 等, 2021. 南海北部天然气水合物富集特征及定量评价. 地球科学, 46(3): 1038-1057. |
| [68] |
吴一帆, 管红香, 许兰芳, 等, 2022. 南海北部海马冷泉区表层沉积物的AOM生物标志化合物特征及意义. 地球科学, 47(8): 3005-3015. |
| [69] |
张赛, 王龙昌, 2013. 全球变化背景下农田生态系统碳循环研究. 农机化研究, 35(1): 4-9. |
| [70] |
张咏华, 吴自军, 2019. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响. 地球科学进展, 34(2): 202-209. |
| [71] |
张仲石, 李双林, 王会军, 等, 2022. 浅谈大气科学与地质学的学科交叉. 地球科学, 47(10): 3569-3579. |
| [72] |
朱俊江, 李三忠, 陆敬安, 等, 2020. 南海北部神狐海域地质环境综合调查及科学意义. 地球科学, 45(4): 1416-1426. |
国家自然科学基金项目(42176057;42276059;92358301)
中国博士后科学基金项目(2023M741869)
山东省博士后创新项目(SDCX-ZG-202302026)
同济大学海洋地质国家重点实验室开放课题(MGK202418)
/
| 〈 |
|
〉 |