考虑注意力机制的新型深度学习模型预测滑坡位移
Landslide Displacement Prediction Based on a Deep Learning Model Considering the Attention Mechanism
,
现有的基于数据驱动的滑坡位移预测模型大多是基于时间序列数据的单点建模,不能考虑整个边坡的变形相关性和滑坡变形的全局建模.为了克服这一缺点,本研究提出了一种基于时空注意(spatial-temporal attention, STA)机制的深度学习模型,该模型将卷积神经网络(convolutional neural network, CNN)与长短时记忆(long short-term memory)神经网络相结合.通过CNN和卷积注意力模块提取滑坡位移的空间变形特征,利用时间注意机制和LSTM模型从外部因素的时间序列数据中捕获重要的历史信息.注意力机制输出的注意权重值可以揭示滑坡变形的时间‒空间特征.以三峡库区泡桐湾滑坡为例,对该模型的性能进行了验证.结果表明,STA-CNN-LSTM模型预测的均方根误差(RMSE)和平均绝对百分比误差(MAPE)与传统灰狼算法优化的支持向量机(GWO-SVM)模型相比分别下降了9.28%和13.88%.模型因子权重计算结果表明,在监测期内随着时间的推移,降雨对泡桐湾滑坡变形的影响逐渐增加,而库水位的影响逐渐减小.
滑坡 / 滑坡位移预测 / 深度学习 / 注意力机制 / 权重 / 三峡库区 / 工程地质
landslides / landslide displacement prediction / deep learning / attention mechanism / weight / Three Gorges reservoir / engineering geology
| [1] |
Chen, C.Y., Chen, T.C.C., Yu, W.H., et al., 2005. Rainfall Duration and Debris-Flow Initiated Studies for Real-Time Monitoring. Environmental Geology, 47(5): 715-724. https://doi.org/10.1007/s00254-004-1203-0 |
| [2] |
Corsini, A., Mulas, M., 2017. Use of ROC Curves for Early Warning of Landslide Displacement Rates in Response to Precipitation (Piagneto Landslide, Northern Apennines, Italy). Landslides, 14(3): 1241-1252. https://doi.org/10.1007/s10346-016-0781-8 |
| [3] |
Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Machine Learning, 20(3): 273-297. https://doi.org/10.1007/BF00994018 |
| [4] |
Deng, C.J., Wang, K.W., Yuan, Q.S., et al., 2015. Stability of Reservoir Slope under Repetitive Variation of Reservoir Water Level. Journal of Yangtze River Scientific Research Institute, 32(4): 96-100 (in Chinese with English abstract). |
| [5] |
Ding, Y. K., Zhu, Y. L., Feng, J., et al., 2020. Interpretable Spatio-Temporal Attention LSTM Model for Flood Forecasting. Neurocomputing, 403: 348-359. https://doi.org/10.1016/j.neucom.2020.04.110 |
| [6] |
Guo, Z. Z., Chen, L. X., Gui, L., et al., 2020a. Landslide Displacement Prediction Based on Variational Mode Decomposition and WA-GWO-BP Model. Landslides, 17(3): 567-583. https://doi.org/10.1007/s10346-019-01314-4 |
| [7] |
Guo, Z. Z., Chen, L. X., Yin, K. L., et al., 2020b. Quantitative Risk Assessment of Slow-Moving Landslides from the Viewpoint of Decision-Making: A Case Study of the Three Gorges Reservoir in China. Engineering Geology, 273: 105667. https://doi.org/10.1016/j.enggeo.2020.105667 |
| [8] |
Hakim, W. L., Rezaie, F., Nur, A. S., et al., 2022. Convolutional Neural Network (CNN) with Metaheuristic Optimization Algorithms for Landslide Susceptibility Mapping in Icheon, South Korea. Journal of Environmental Management, 305: 114367. https://doi.org/10.1016/j.jenvman.2021.114367 |
| [9] |
Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computation, 9(8): 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735 |
| [10] |
Huang, D., Gu, D. M., 2017. Influence of Filling- Drawdown Cycles of the Three Gorges Reservoir on Deformation and Failure Behaviors of Anaclinal Rock Slopes in the Wu Gorge. Geomorphology, 295: 489-506. https://doi.org/10.1016/j.geomorph.2017.07.028 |
| [11] |
Huang, D., Luo, S. L., Zhong, Z., et al., 2020. Analysis and Modeling of the Combined Effects of Hydrological Factors on a Reservoir Bank Slope in the Three Gorges Reservoir Area, China. Engineering Geology, 279: 105858. https://doi.org/10.1016/j.enggeo.2020.105858 |
| [12] |
Li, S. H., Wu, N., 2021. A New Grey Prediction Model and Its Application in Landslide Displacement Prediction. Chaos, Solitons & Fractals, 147: 110969. https://doi.org/10.1016/j.chaos.2021.110969 |
| [13] |
Li, X. Z., Kong, J. M., 2014. Application of GA-SVM Method with Parameter Optimization for Landslide Development Prediction. Natural Hazards and Earth System Sciences, 14(3): 525-533. https://doi.org/10.5194/nhess-14-525-2014 |
| [14] |
Li, Y. J., Xu, Q., He, Y.S., et al., 2017. An ARMA-(LASSO-ELM)-Copula Framework for Landslide Displacement Prediction and Threshold Computing of the Displacement of Step-Like Landslides. Chinese Journal of Rock Mechanics and Engineering, 36(S2): 4075-4084 (in Chinese with English abstract). |
| [15] |
Liu, Y. Q., Zhang, Q., Song, L. H., et al., 2019. Attention-Based Recurrent Neural Networks for Accurate Short-Term and Long-Term Dissolved Oxygen Prediction. Computers and Electronics in Agriculture, 165: 104964. https://doi.org/10.1016/j.compag.2019.104964 |
| [16] |
Luo, W.Q., Ji, Y.L., Wang, C.Y., et al., 2016. Research on Seemingly Unrelated Regressions Model of Landslide Displacement Prediction of Multiple Monitoring Points. Chinese Journal of Rock Mechanics and Engineering, 35(S1): 3051-3056 (in Chinese with English abstract). |
| [17] |
Ma, H.T., Zhang, Y.H., Yu, Z.X., 2021. Research on the Identification of Acceleration Starting Point in Inverse Velocity Method and the Prediction of Sliding Time. Chinese Journal of Rock Mechanics and Engineering, 40(2): 355-364 (in Chinese with English abstract). |
| [18] |
Ma, X.Y., Wang, L.M., Qi, K.L., et al., 2021. Remote Sensing Image Scene Classification Method Based on Multi-Scale Cyclic Attention Network. Earth Science, 46(10): 3740-3752 (in Chinese with English abstract). |
| [19] |
Ma, Z. J., Mei, G., Prezioso, E., et al., 2021. A Deep Learning Approach Using Graph Convolutional Networks for Slope Deformation Prediction Based on Time-Series Displacement Data. Neural Computing and Applications, 33(21): 14441-14457. https://doi.org/10.1007/s00521-021-06084-6 |
| [20] |
Miao, F. S., Wu, Y. P., Xie, Y. H., et al., 2017. Research on Progressive Failure Process of Baishuihe Landslide Based on Monte Carlo Model. Stochastic Environmental Research and Risk Assessment, 31(7): 1683-1696. https://doi.org/10.1007/s00477-016-1224-8 |
| [21] |
Mirjalili, S., Mirjalili, S. M., Lewis, A., 2014. Grey Wolf Optimizer. Advances in Engineering Software, 69: 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007 |
| [22] |
Ren, Q. B., Li, M. C., Li, H., et al., 2021. A Novel Deep Learning Prediction Model for Concrete Dam Displacements Using Interpretable Mixed Attention Mechanism. Advanced Engineering Informatics, 50: 101407. https://doi.org/10.1016/j.aei.2021.101407 |
| [23] |
Shang, M., Liao, F., Ma, R., et al., 2021. Quantitative Correlation Analysis on Deformation of Baijiabao Landslide between Rainfall and Reservoir Water Level. Journal of Engineering Geology, 29(3): 742-750 (in Chinese with English abstract). |
| [24] |
Song, K., Chen, L.Y., Liu, Y.L., et al., 2022. Dynamic Mechanism of Rain Infiltration in Deep-Seated Landslide Reactivate Deformation. Earth Science, 47(10): 3665-3676 (in Chinese with English abstract). |
| [25] |
Song, K., Yan, E.C., Zhu, D.P., et al., 2011. Base on Permeability of Landslide and Reservoir Water Change to Research Variational Regularity of Landslide Stability. Rock and Soil Mechanics, 32(9): 2798-2802 (in Chinese with English abstract). |
| [26] |
Su, X.J., Zhou, W.X., Li, C.J., et al., 2022. Interpretable Offshore Wind Power Output Forecasting Based on Long Short-Term Memory Neural Network with Dual-Stage Attention. Automation of Electric Power Systems, 46(7): 141-151 (in Chinese with English abstract). |
| [27] |
Wang, Z.W., Li, D.Y., 2005. Application of 3S Technology in Landslide Monitoring. Journal of Yangtze River Scientific Research Institute, 22(5): 33-36 (in Chinese with English abstract). |
| [28] |
Woo, S., Park, J., 2018. CBAM: Convolutional Block Attention Module.Proceedings of the European Conference on Computer Vision (ECCV), Munich, 3-19. |
| [29] |
Wu, Q., Zhou, C.B., Huang, F.M., et al., 2022. Optimization of the Landslide Identification Method Based on a Dual Attention Mechanism. Bulletin of Geological Science and Technology, 41(2): 246-253 (in Chinese with English abstract). |
| [30] |
Xia, M., Ren, G. M., Ma, X. L., 2013. Deformation and Mechanism of Landslide Influenced by the Effects of Reservoir Water and Rainfall, Three Gorges, China. Natural Hazards, 68(2): 467-482. https://doi.org/10.1007/s11069-013-0634-x |
| [31] |
Xu, C., Liu, B.G., Liu, K.Y., et al., 2011. Intelligent Analysis Model of Landslide Displacement Time Series Based on Coupling PSO-GPR. Rock and Soil Mechanics, 32(6): 1669-1675 (in Chinese with English abstract). |
| [32] |
Xu, F., Fan, C.J., Xu, X.J., et al., 2018. Displacement Prediction of Landslide Based on Variational Mode Decomposition and AMPSO-SVM Coupling Model. Journal of Shanghai Jiao Tong University, 52(10): 1388-1395, 1416 (in Chinese with English abstract). |
| [33] |
Xu, S. L., Niu, R. Q., 2018. Displacement Prediction of Baijiabao Landslide Based on Empirical Mode Decomposition and Long Short-Term Memory Neural Network in Three Gorges Area, China. Computers & Geosciences, 111: 87-96. https://doi.org/10.1016/j.cageo.2017.10.013 |
| [34] |
Yin, Y. P., Huang, B. L., Wang, W. P., et al., 2016. Reservoir-Induced Landslides and Risk Control in Three Gorges Project on Yangtze River, China. Journal of Rock Mechanics and Geotechnical Engineering, 8(5): 577-595. https://doi.org/10.1016/j.jrmge.2016.08.001 |
| [35] |
Yin, Y. P., Wang, H. D., Gao, Y. L., et al., 2010. Real-Time Monitoring and Early Warning of Landslides at Relocated Wushan Town, the Three Gorges Reservoir, China. Landslides, 7(3): 339-349. https://doi.org/10.1007/s10346-010-0220-1 |
| [36] |
Zhang, K., Zhang, K., Bao, R., et al., 2021. Intelligent Prediction of Landslide Displacements Based on Optimized Empirical Mode Decomposition and K-Mean Clustering. Rock and Soil Mechanics, 42(1): 211-223 (in Chinese with English abstract). |
| [37] |
Zheng, J., 2006. Methods and Standards of Landslide Stability Evaluation. The Chinese Journal of Geological Hazard and Control, 17(3): 53-57 (in Chinese with English abstract). |
| [38] |
Zhou, C., Yin, K. L., Cao, Y., et al., 2018. Displacement Prediction of Step-Like Landslide by Applying a Novel Kernel Extreme Learning Machine Method. Landslides, 15(11): 2211-2225. https://doi.org/10.1007/s10346-018-1022-0 |
国家自然科学基金项目(42307248;U23A2047;41972297)
河北省自然科学基金项目(D2022202005)
/
| 〈 |
|
〉 |