基于水系分区的滑坡易发性机器学习分析方法:以重庆市奉节县为例
仉文岗 , 何昱苇 , 王鲁琦 , 刘松林 , 陈柏林
地球科学 ›› 2023, Vol. 48 ›› Issue (05) : 2024 -2038.
基于水系分区的滑坡易发性机器学习分析方法:以重庆市奉节县为例
Machine Learning Solution for Landslide Susceptibility Based on Hydrographic Division: Case Study of Fengjie County in Chongqing
,
三峡库区是地质灾害管理的重点地区,鉴于长江对其沿岸边坡的水力作用不容忽视,因此需进一步研究水系因素对滑坡易发性的影响.以重庆市奉节县为例,考虑区域内水系影响显著,沿水域两岸300 m区域内划分为分区Ⅰ,其余区域为分区Ⅱ.其次,全域、分区Ⅰ、分区Ⅱ以提取的16个影响因子建立易发性评价指标分析模型,基于随机森林模型计算区域滑坡发生概率,并将全域和分区的滑坡易发性评价结果对比分析.结果表明:奉节县高和极高易发区主要分布在水域两岸及耕地范围内,这是由于库水位升降减少了防滑截面的有效应力,由于原有山体平衡在垦荒过程中被破坏,耕地对斜坡的防护作用微弱;基于水系分区后模型的训练精度优于全域模型的训练精度,准确率和F1分数的最大提升幅度分别可达5.1%、5.2%.基于水系分区的方法有利于提高滑坡易发性评价精度,该方法实用性强,可靠性高.
滑坡灾害 / 机器学习 / 水系分区 / 随机森林 / 易发性评价 / 工程地质
landslide / machine learning / sub-zone based on hydrographic division / random forest / susceptibility assessment / engineering geology
| [1] |
Ali, S.K.A., Parvin, F., Pham, Q.B., et al., 2022. An Ensemble Random Forest Tree with SVM, ANN, NBT, and LMT for Landslide Susceptibility Mapping in the Rangit River Watershed, India. Natural Hazards, 113(3): 1601-1633. https://doi.org/10.1007/s11069-022-05360-5 |
| [2] |
Amiri, M., Pourghasemi, H.R., Ghanbarian, G.A., et al., 2019. Assessment of the Importance of Gully Erosion Effective Factors Using Boruta Algorithm and Its Spatial Modeling and Mapping Using Three Machine Learning Algorithms. Geoderma, 340: 55-69. https: //doi.org/10.1016/j.geoderma.2018.12.042. |
| [3] |
Bai, S.B., Wang, J., Lu, G.N., et al., 2010. GIS-Based Logistic Regression for Landslide Susceptibility Mapping of the Zhongxian Segment in the Three Gorges Area, China. Geomorphology, 115(1-2): 23-31. https://doi.org/10.1016/j.geomorph.2009.09.025 |
| [4] |
Basu, T., Pal, S., 2018. Identification of Landslide Susceptibility Zones in Gish River Basin, West Bengal, India. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 12(1): 14-28. https://doi.org/10.1080/17499518.2017.1343482 |
| [5] |
Breiman, L., 2001. Random Forests. Machine Learning, 45(1): 5-32. https://doi.org/10.1023/a:1010933404324 |
| [6] |
Chen, T., Zhu, L., Niu, R.Q., et al., 2020. Mapping Landslide Susceptibility at the Three Gorges Reservoir, China, Using Gradient Boosting Decision Tree, Random Forest and Information Value Models. Journal of Mountain Science, 17(3): 670-685. https://doi.org/10.1007/s11629-019-5839-3 |
| [7] |
Das, A.M., Kumar, N.S., Kanti, M.S., 2011. Landslide Hazard and Risk Analysis in India at a Regional Scale. Disaster Advances, 4(2): 26-39. |
| [8] |
Guo, Z.Z., Yin, K.L., Huang, F.M., et al., 2019. Evaluation of Landslide Susceptibility Based on Landslide Classification and Weighted Frequency Ratio Model. Chinese Journal of Rock Mechanics and Engineering, 38(2): 287-300 (in Chinese with English abstract). |
| [9] |
Havenith, H. B., Torgoev, A., Schlogel, R., et al., 2015. Tien Shan Geohazards Database: Landslide Susceptibility Analysis. Geomorphology, 249: 32-43. https://doi.org/10.1016/j.geomorph.2015.03.019 |
| [10] |
Huang, F. M., Cao, Y., Fan, X. M., et al., 2021. Effects of Different Landslide Boundaries and Their Spatial Shapes on the Uncertainty of Landslide Susceptibility Prediction. Chinese Journal of Rock Mechanics and Engineering, 40(S2): 3227-3240 (in Chinese with English abstract). |
| [11] |
Huang, F. M., Chen, J. W., Fan, X. M., et al., 2022. Logistic Regression Fitting of Rainfall-Induced Landslide Occurrence Probability and Continuous Landslide Hazard Prediction Modelling. Earth Science, 47(12): 4609-4628 (in Chinese with English abstract). |
| [12] |
Huang, F.M., Wang, Y., Dong, Z.l., et al., 2019. Regional Landslide Susceptibility Mapping Based on Grey Relational Degree Model. Earth Science, 44(2): 664-676 (in Chinese with English abstract). |
| [13] |
Khamkar, D. J., Mhaske, S. Y., 2019. Identification of Landslide Susceptible Settlements Using Geographical Information System of Yelwandi River Basin, Maharashtra (India). Natural Hazards, 96(3): 1263-1287. https://doi.org/10.1007/s11069-019-03609-0 |
| [14] |
Li, S.L., Xu, Q., Tang, M.G., et al., 2019. Characterizing the Spatial Distribution and Fundamental Controls of Landslides in the Three Gorges Reservoir Area, China. Bulletin of Engineering Geology and the Environment, 78(6): 4275-4290. https://doi.org/10.1007/s10064-018-1404-5 |
| [15] |
Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract). |
| [16] |
Li, Y.W., Wang, X.M., Mao, H., 2020. Influence of Human Activity on Landslide Susceptibility Development in the Three Gorges Area. Natural Hazards, 104(3): 2115-2151. https://doi.org/10.1007/s11069-020-04264-6 |
| [17] |
Long, J.J., Liu, Y., Li, C.D., et al., 2021. A Novel Model for Regional Susceptibility Mapping of Rainfall Reservoir Induced Landslides in Jurassic Slide-Prone Strata of Western Hubei Province, Three Gorges Reservoir Area. Stochastic Environmental Research and Risk Assessment, 35(7): 1403-1426. https://doi.org/10.1007/s00477-020-01892-z |
| [18] |
Sajadi, P., Sang, Y.F., Gholamnia, M., et al., 2022. Evaluation of the Landslide Susceptibility and Its Spatial Difference in the Whole Qinghai-Tibetan Plateau Region by Five Learning Algorithms. Geoscience Letters, 9(1):9. https://doi.org/10.1186/s40562-022-00218-x |
| [19] |
Shou, K. J., Chen, J. R., 2021. On the Rainfall Induced Deep-Seated and Shallow Landslide Hazard in Taiwan. Engineering Geology,288. https://doi.org/10.1016/j.enggeo.2021.106156 |
| [20] |
Sun, D.L., Gu, Q.Y., Wen, H.J., et al., 2022. A Hybrid Landslide Warning Model Coupling Susceptibility Zoning and Precipitation. Forests, 13: 827. https://doi.org/10.3390/f13060827 |
| [21] |
Sun, D.L., Xu, J.H., Wen, H.J., et al., 2021. Assessment of Landslide Susceptibility Mapping Based on Bayesian Hyperparameter Optimization: A Comparison between Logistic Regression and Random Forest. Engineering Geology,281. https://doi.org/10.1016/j.enggeo.2020.105972 |
| [22] |
Van Den Eeckhaut, M., Marre, A., Poesen, J., 2010. Comparison of Two Landslide Susceptibility Assessments in the Champagne-Ardenne Region (France). Geomorphology, 115(1-2): 141-55. https://doi.org/10.1016/j.geomorph.2009.09.042 |
| [23] |
Wang, J.G., Schweizer, D., Liu, Q.B., et al., 2021a. Three-Dimensional Landslide Evolution Model at the Yangtze River. Engineering Geology, 292. https://doi.org/10.1016/j.enggeo.2021.106275 |
| [24] |
Wang, L. Q., Zhang, Z. H., Huang, B. L., et al., 2021b. Triggering Mechanism and Possible Evolution Process of the Ancient Qingshi Landslide in the Three Gorges Reservoir. Geomatics, Natural Hazards and Risk, 12(1): 3160-3174. https://doi.org/10.1080/19475705.2021.1998230 |
| [25] |
Wang, M., Qiao, J. P., 2013. Reservoir-Landslide Hazard Assessment Based on Gis: A Case Study in Wanzhou Section of the Three Gorges Reservoir. Journal of Mountain Science, 10(6): 1085-1096. https://doi.org/10.1007/s11629-013-2498-7 |
| [26] |
Weidner, L., DePrekel, K., Oommen, T., et al., 2019. Investigating Large Landslides along a River Valley Using Combined Physical, Statistical, and Hydrologic Modeling. Engineering Geology, 259. https://doi.org/10.1016/j.enggeo.2019.105169 |
| [27] |
Wu, R. Z., Hu, X. D., Mei, H. B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330 (in Chinese with English abstract). |
| [28] |
Xiao, T., 2020. Landslide Risk Assessment in Wanzhou District and a Key Section, Three Gorges Reservoir (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [29] |
Xu, X.J., Yang, Q., 2014. Study of Reservoir-Accumulative Landslide's Stability Evolution Trend in the Three Gorges Reservoir. Paper Presented at the 5th International Conference on Intelligent Systems Design and Engineering Applications (ISDEA), Zhangjiajie. |
| [30] |
Yang, B.B., Yin, K.L., Lacasse, S., et al., 2019. Time Series Analysis and Long Short-Term Memory Neural Network to Predict Landslide Displacement. Landslides, 16(4): 677-694. https://doi.org/10.1007/s10346-018-01127-x |
| [31] |
Ye, R. Q., Li, S. Y., Guo, F., et al., 2021. RS and GIS Analysis on Relationship between Landslide Susceptibility and Land Use Change in Three Gorges Reservoir Area. Journal of Engineering Geology, 29(3): 724-733 (in Chinese with English abstract). |
| [32] |
Yin, Y. P., Wang, L. Q., Zhao, P., et al., 2022. Crashed Failure Mechanism & Prevention of Fractured High-Steep Slope in the Three Gorges Reservoir, China. Journal of Hydraulic Engineering, 53(4): 379-391 (in Chinese with English abstract). |
| [33] |
Yu, X. Y., Wang, Y., Niu, R. Q., et al., 2016. A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China. International Journal of Environmental Research and Public Health, 13(5): 487. https://doi.org/10.3390/ijerph13050487 |
| [34] |
Zhang, H.J., Song, Y.X., Xu, S.L., et al., 2022. Combining a Class-Weighted Algorithm and Machine Learning Models in Landslide Susceptibility Mapping: A Case Study of Wanzhou Section of the Three Gorges Reservoir, China. Computers & Geosciences, 158. https://doi.org/10.1016/j.cageo.2021.104966. |
| [35] |
Zhang, K.Q., Wang, L.Q., Zhang, W.G., et al., 2021. Formation and Failure Mechanism of the Xinfangzi Landslide in Chongqing City (China). Applied Sciences- Basel, 11(19). https://doi.org/10.3390/app11198963 |
| [36] |
Zhou, C., Yin, K.L., Cao, Y., et al., 2018. Landslide Susceptibility Modeling Applying Machine Learning Methods: A Case Study from Longju in the Three Gorges Reservoir Area, China. Computers & Geosciences, 112: 23-37. https://doi.org/10.1016/j.cageo.2017.11.019 |
| [37] |
Zhou, X. T., Huang, F. M., Wu, W. C., et al., 2022. Regional Landslide Susceptibility Prediction Based on Negative Sample Selected by Coupling Information Value Method. Advanced Engineering Sciences, 54(3): 25-35 (in Chinese with English abstract). |
| [38] |
Zhou, X. Z., Wen, H. J., Li, Z. W., et al., 2022. An Interpretable Model for the Susceptibility of Rainfall-Induced Shallow Landslides Based on SHAP and XGBoost. Geocarto International, 37(26): 13419-13450. https://doi.org/10.1080/10106049.2022.2076928 |
| [39] |
Zhu, C.Q., 2014. Landslide Stability and Contol Analysis of Huanglianshu in Fengjie County (Dissertation). Chongqing University, Chongqing (in Chinese with English abstract). |
| [40] |
郭子正, 殷坤龙, 黄发明, 等, 2019. 基于滑坡分类和加权频率比模型的滑坡易发性评价. 岩石力学与工程学报, 38(2): 287-300. |
| [41] |
黄发明, 曹昱, 范宣梅, 等, 2021. 不同滑坡边界及其空间形状对滑坡易发性预测不确定性的影响规律. 岩石力学与工程学报, 40(S2): 3227-3240. |
| [42] |
黄发明, 陈佳武, 范宣梅, 等, 2022. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模. 地球科学, 47(12): 4609-4628. |
| [43] |
黄发明, 汪洋, 董志良, 等, 2019. 基于灰色关联度模型的区域滑坡敏感性评价. 地球科学, 44(2):664-676. |
| [44] |
李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. |
| [45] |
吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. |
| [46] |
肖婷,2020.三峡库区万州区及重点库岸段滑坡灾害风险评价(博士学位论文).武汉:中国地质大学. |
| [47] |
叶润青, 李士垚, 郭飞, 等, 2021. 基于RS和GIS的三峡库区滑坡易发程度与土地利用变化的关系研究. 工程地质学报, 29(3): 724-733. |
| [48] |
殷跃平, 王鲁琦, 赵鹏, 等, 2022. 三峡库区高陡岸坡溃屈失稳机理及防治研究. 水利学报, 53(4): 379-391. |
| [49] |
周晓亭, 黄发明, 吴伟成, 等, 2022. 基于耦合信息量法选择负样本的区域滑坡易发性预测. 工程科学与技术, 54(3): 25-35. |
| [50] |
朱灿群,2014. 奉节县黄莲树滑坡稳定性及治理分析(硕士学位论文). 重庆:重庆大学. |
国家重点研发计划项目(2019YFC1509605)
重庆市自然科学基金项目(cstc2021jcyjbsh0047)
/
| 〈 |
|
〉 |