长江源区大气氮湿沉降时空变化特征
Temporal and Spatial Variation of Wet Deposition of Nitrogen in the Source Region of the Yangtze River
,
,
长江源区作为亚洲第一长河的发源地,探究其氮沉降特征,对于保护我国水源地安全具有十分重要的意义.本文在野外采样、数理分析的基础上,利用氮源分析及后向轨迹模型判断氮沉降的环境意义.结果表明:(1)2016年4月-2018年7月,NO2 --N、NO3 --N、NH4 +-N的平均浓度分别为1.01 mg/L、2.45 mg/L、1.30 mg/L;NO2 --N、NO3 --N、NH4 +-N的平均沉降量分别为0.02 kg/hm2、0.09 kg/hm2、0.30 kg/hm2.曲麻莱氮浓度占源区比重最高,沱沱河次之,直门达最小,且春、夏季氮沉降量高于秋、冬季.(2)氮沉降浓度与降水量之间呈对数函数关系,沉降量与降水量之间呈正向幂函数关系;NO2 --N、NO3 --N沉降量与温度呈负相关性,NH4 +-N与温度呈正相关性.(3)长江源区夏季NH4 +-N沉降增加主要源于牧民放牧,冬季NO x --N沉降增加主要源于煤炭燃烧,且污染物传递还受到西风环流及局地环流影响,境外来源更多集中在西亚地区.
长江源区 / 氮沉降 / 大气降水 / 大气化学 / 生态学
the source region of Yangtze River / nitrogen deposition / atmospheric precipitation / atmospheric chemistry / ecology
| [1] |
Adams, P. J., Seinfeld, J. H., Koch, D. M., 1999. Global Concentrations of Tropospheric Sulfate, Nitrate, and Ammonium Aerosol Simulated in a General Circulation Model. Journal of Geophysical Research: Atmospheres, 104(D11): 13791-13823. https://doi.org/10.1029/1999jd900083 |
| [2] |
Barile, P. J., Lapointe, B. E., 2005. Atmospheric Nitrogen Deposition from a Remote Source Enriches Macroalgae in Coral Reef Ecosystems near Green Turtle Cay, Abacos, Bahamas. Marine Pollution Bulletin, 50(11): 1262-1272. https://doi.org/10.1016/j.marpolbul.2005.04.031 |
| [3] |
Cai, Y. Q., Li, W. H., Yu, Z. X., et al., 2022. Temporal and Spatial Evolution of Precipitation in the Headwaters of the Yangtze River. Journal of Yangtze River Scientific Research Institute, 39(5): 28-35 (in Chinese with English abstract). |
| [4] |
Chen, Z. L., Huang, T., Huang, X. H., et al., 2019. Characteristics, Sources and Environmental Implications of Atmospheric Wet Nitrogen and Sulfur Deposition in Yangtze River Delta. Atmospheric Environment, 219: 116904. https://doi.org/10.1016/j.atmosenv.2019.116904 |
| [5] |
Cong, Z. Y., Kawamura, K., Kang, S. C., et al., 2015. Penetration of Biomass-Burning Emissions from South Asia through the Himalayas: New Insights from Atmospheric Organic Acids. Scientific Reports, 5: 9580. https://doi.org/10.1038/srep09580 |
| [6] |
Cui, L. K., Song, X. Q., Zhong, G. Q., 2021. Comparative Analysis of Three Methods for HYSPLIT Atmospheric Trajectories Clustering. Atmosphere, 12(6): 698. https://doi.org/10.3390/atmos12060698 |
| [7] |
Galloway, J. N., Dentener, F. J., Capone, D. G., et al., 2004. Nitrogen Cycles: Past, Present, and Future. Biogeochemistry, 70(2): 153-226. https://doi.org/10.1007/s10533-004-0370-0 |
| [8] |
Galloway, J. N., Townsend, A. R., Erisman, J. W., et al., 2008. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science, 320(5878): 889-892. https://doi.org/10.1126/science.1136674 |
| [9] |
Gao, S. Y., Fan, Q. S., Cao, X., et al., 2014. Glacial Fluctuation in the Source Region of the Yangtze River. IOP Conference Series: Earth and Environmental Science, 17: 012135. https://doi.org/10.1088/1755-1315/17/1/012135 |
| [10] |
Gou, Y. J., 2021. Research on the Ecological Product Value Realization of the Sanjiangyuan (Dissertation). Qinghai Normal University, Qinghai, 81-93 (in Chinese with English abstract). |
| [11] |
Gruber, N., Galloway, J. N., 2008. An Earth-System Perspective of the Global Nitrogen Cycle. Nature, 451(7176): 293-296. https://doi.org/10.1038/nature06592 |
| [12] |
Jia, J. Y., Zhang, Y., Cai, X. B., et al., 2009. A Dynamic Changes of Wet Deposition of Nitrogen in Southeast Tibet: Taking Linzhi Experiment Station as an Example. Acta Ecologica Sinica, 29(4): 1907-1913 (in Chinese with English abstract). |
| [13] |
Li, Y., Cao, M. D., Jin, M. G., et al., 2020. Hydrochemical Characteristics and Tracing of Nitrate Sources in Quanshui River Catchment, Hubei Province. Earth Science, 45(3): 1061-1070 (in Chinese with English abstract). |
| [14] |
Li, Y., Su, F. G., Tang, Q. H., et al., 2022. Contributions of Moisture Sources to Precipitation in the Major Drainage Basins in the Tibetan Plateau. Science China Earth Sciences, 65(6): 1088-1103. https://doi.org/10.1007/s11430-021-9890-6 |
| [15] |
Li, Z. J., Duan, R., Ke, H. C., et al., 2022. Research Progress of Ecological Hydrology Based on Hydrochemical Characteristics in the Source Region of the Yangtze River. Journal of Glaciology and Geocryology, 44(1): 288-298 (in Chinese with English abstract). |
| [16] |
Li, Z. J., Li, Z. X., Song, L. L., et al., 2020. Precipitation Chemistry in the Source Region of the Yangtze River. Atmospheric Research, 245: 105073. https://doi.org/10.1016/j.atmosres.2020.105073 |
| [17] |
Liu, C. M., Wan, X. J., Zeng, W. K., et al., 2018. Spatio-Temporal Variability of Bulk Nitrogen Deposition in the Dongting Lake Region. Acta Scientiae Circumstantiae, 38(3): 1137-1146 (in Chinese with English abstract). |
| [18] |
Liu, X. J., Zhang, Y., Han, W. X., et al., 2013. Enhanced Nitrogen Deposition over China. Nature, 494(7438): 459-462. https://doi.org/10.1038/nature11917 |
| [19] |
Liu, Y. W., Xu, R., Wang, Y. S., et al., 2015. Wet Deposition of Atmospheric Inorganic Nitrogen at Five Remote Sites in the Tibetan Plateau. Atmospheric Chemistry and Physics, 15(20): 11683-11700 |
| [20] |
Lu, J. P., Zhang, X. J., Liu, Y. X., et al., 2021. Variation Characteristics and Source Analysis of Atmospheric Nitrogen Deposition Flux on a Reservoir in Sand Source Areas of Beijing-Inner Mongolia. China Environmental Science, 41(3): 1034-1044 (in Chinese with English abstract). |
| [21] |
Pan, Y. P., Wang, Y. S., Tang, G. Q., et al., 2012. Wet and Dry Deposition of Atmospheric Nitrogen at Ten Sites in Northern China. Atmospheric Chemistry and Physics, 12(14): 6515-6535. https://doi.org/10.5194/acp-12-6515-2012 |
| [22] |
Paulot, F., Jacob, D. J., Henze, D. K., 2013. Sources and Processes Contributing to Nitrogen Deposition: An Adjoint Model Analysis Applied to Biodiversity Hotspots Worldwide. Environmental Science & Technology, 47(7): 3226-3233. https://doi.org/10.1021/es3027727 |
| [23] |
Qiu, J., 2015. Pollutants Waft over the Himalayas. Nature. https://doi.org/10.1038/nature.2015.17312 |
| [24] |
Schumann, U., Huntrieser, H., 2007. The Global Lightning-Induced Nitrogen Oxides Source. Atmospheric Chemistry and Physics, 7(14): 3823-3907. https://doi.org/10.5194/acp-7-3823-2007 |
| [25] |
Wang, G. Z., Liu, S. J., Yu, X. N., 2021. Characteristics of Precipitation Chemistry and Wet Deposition in Zhuhai, China. Research of Environmental Sciences, 34(7): 1612-1620 (in Chinese with English abstract). |
| [26] |
Wang, L. F., Song, L. L., Cai, Y. Q., et al., 2017. Study on the Characteristics and Sources of Acid Rain in the Source Region of the Yangtze River. Plateau Meteorology, 36(5): 1386-1393 (in Chinese with English abstract). |
| [27] |
Wang, R., Ding, J. L., Ma, W., et al., 2021. Analysis of Atmospheric Particulates Source in Urumqi Based on PSCF and CWT Models. Acta Scientiae Circumstantiae, 41(8): 3033-3042 (in Chinese with English abstract). |
| [28] |
Wang, S. Y., He, X. B., Wu, J. K., et al., 2019. Chemical Characteristics and Ionic Sources of Precipitation in the Source Region of the Yangtze River. Environmental Science, 40(10): 4431-4439 (in Chinese with English abstract). |
| [29] |
Xiao, T., Qi, Y. Q., Wang, J. B., 2010. Nitrogen Budget Estimation Based on Precipitation and Runoff in the Source of Yangtze River. Acta Ecologica Sinica, 30(19): 5404-5412 (in Chinese with English abstract). |
| [30] |
Xu, W., Luo, X. S., Pan, Y. P., et al., 2015. Quantifying Atmospheric Nitrogen Deposition through a Nationwide Monitoring Network across China. Atmospheric Chemistry and Physics, 15(21): 12345-12360. https://doi.org/10.5194/acp-15-12345-2015 |
| [31] |
Xu, W., Zhao, Y. H., Liu, X. J., et al., 2018. Atmospheric Nitrogen Deposition in the Yangtze River Basin: Spatial Pattern and Source Attribution. Environmental Pollution, 232: 546-555. https://doi.org/10.1016/j.envpol.2017.09.086 |
| [32] |
Yu, C. X., Deng, X. L., Shi, C. E., et al., 2018. The Scavenging Effect of Precipitation and Wind on PM2.5 and PM10. Acta Scientiae Circumstantiae, 38(12): 4620-4629 (in Chinese with English abstract). |
| [33] |
Yu, W. T., Jiang, C. M., Ma, Q., et al., 2011. Observation of the Nitrogen Deposition in the Lower Liaohe River Plain, Northeast China and Assessing Its Ecological Risk. Atmospheric Research, 101(1-2): 460-468. https://doi.org/10.1016/j.atmosres.2011.04.011 |
| [34] |
Zhang, X. J., Lu, J. P., Ma, T. L., et al., 2017. Wet Deposition of Atmospheric Nitrogen and Phosphorus and Its Impact on Water Environment of Reservoir in Sand Source Area. Ecology and Environmental Sciences, 26(12): 2093-2101 (in Chinese with English abstract). |
| [35] |
Zhang, X. Y., Edwards, R., 2011. Anthropogenic Sulfate and Nitrate Signals in Snow from Bogda Glacier, Eastern Tianshan. Journal of Earth Science, 22(4): 490-502. https://doi.org/10.1007/s12583-011-0196-3 |
| [36] |
Zhang, X., Lin, C. Y., Zhou, X. L., et al., 2019. Concentrations, Fluxes, and Potential Sources of Nitrogen and Phosphorus Species in Atmospheric Wet Deposition of the Lake Qinghai Watershed, China. Science of the Total Environment, 682: 523-531. https://doi.org/10.1016/j.scitotenv.2019.05.224 |
| [37] |
Zhao, X., Yan, X. Y., Xiong, Z. Q., et al., 2009. Spatial and Temporal Variation of Inorganic Nitrogen Wet Deposition to the Yangtze River Delta Region, China. Water, Air, and Soil Pollution, 203(1): 277-289. https://doi.org/10.1007/s11270-009-0011-2 |
| [38] |
Zhao, Z. Z., 2015. Characterization and Source Analysis of Atmopheric Aerosol over Qinghai-Tibet Plateau (Dissertation). Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 31-35 (in Chinese with English abstract). |
| [39] |
Zheng, X. H., Fu, C. B., Xu, X. K., et al., 2002. The Asian Nitrogen Cycle Case Study. AMBIO: A Journal of the Human Environment, 31(2): 79-87. https://doi.org/10.1579/0044-7447-31.2.79 |
| [40] |
Zhu, J. X., He, N. P., Wang, Q. F., et al., 2015. The Composition, Spatial Patterns, and Influencing Factors of Atmospheric Wet Nitrogen Deposition in Chinese Terrestrial Ecosystems. Science of the Total Environment, 511: 777-785. https://doi.org/10.1016/j.scitotenv.2014.12.038 |
| [41] |
蔡宜晴, 李文辉, 于泽兴, 等, 2022. 长江源区降水时空演变规律. 长江科学院院报, 39(5): 28-35. |
| [42] |
苟廷佳, 2021. 三江源生态产品价值实现研究(博士学位论文).青海: 青海师范大学, 81-93. |
| [43] |
贾钧彦, 张颖, 蔡晓布, 等, 2009. 藏东南大气氮湿沉降动态变化: 以林芝观测点为例. 生态学报, 29(4): 1907-1913. |
| [44] |
李严, 曹明达, 靳孟贵, 等, 2020. 湖北泉水河流域水化学特征和硝酸盐来源示踪. 地球科学, 45(3): 1061-1070. |
| [45] |
李宗杰, 段然, 柯浩成, 等, 2022. 基于水化学特征的长江源区生态水文学研究进展. 冰川冻土, 44(1): 288-298. |
| [46] |
刘超明, 万献军, 曾伟坤, 等, 2018. 洞庭湖大气氮湿沉降的时空变异. 环境科学学报, 38(3): 1137-1146. |
| [47] |
卢俊平, 张晓晶, 刘廷玺, 等, 2021. 京蒙沙源区水库大气氮沉降变化特征及源解析. 中国环境科学, 41(3): 1034-1044. |
| [48] |
王国祯, 刘偲嘉, 于兴娜, 2021. 珠海市降水化学与沉降特征. 环境科学研究, 34(7): 1612-1620. |
| [49] |
王烈福, 宋玲玲, 蔡玉琴, 等, 2017. 长江源酸雨变化特征及来源分析. 高原气象, 36(5): 1386-1393. |
| [50] |
汪蕊, 丁建丽, 马雯, 等, 2021. 基于PSCF与CWT模型的乌鲁木齐市大气颗粒物源区分析. 环境科学学报, 41(8): 3033-3042. |
| [51] |
汪少勇, 何晓波, 吴锦奎, 等, 2019. 长江源区大气降水化学特征及离子来源. 环境科学, 40(10): 4431-4439. |
| [52] |
肖桐, 齐永青, 王军邦, 2010. 基于降水和径流的长江源头氮素收支研究. 生态学报, 30(19): 5404-5412. |
| [53] |
于彩霞, 邓学良, 石春娥, 等, 2018. 降水和风对大气PM2.5、PM10的清除作用分析. 环境科学学报, 38(12): 4620-4629. |
| [54] |
张晓晶, 卢俊平, 马太玲, 等, 2017. 大气氮磷湿沉降特征及对沙源区水库水环境的影响. 生态环境学报, 26(12): 2093-2101. |
| [55] |
赵竹子, 2015. 青藏高原大气气溶胶的理化组成及其来源解析(博士学位论文).西安: 中国科学院地球环境研究所, 31-35. |
国家自然科学基金项目(42077187)
第二次青藏高原综合科学考察研究项目专题(2019QZKK0405)
中国科学院青年交叉团队项目(JCTD-2022-18)
国家重点研发计划项目专题(2020YFA0607702)
中国科学院“西部之光”交叉团队项目‒重点实验室合作研究专项
甘肃省创新群体项目(20JR10RA038)
/
| 〈 |
|
〉 |