碳酸盐岩热储中稀土元素的地球化学行为及其指示意义:以施甸地热系统为例
张晓博 , 郭清海 , 张梦昭 , 孙伟浩 , 李鑫
地球科学 ›› 2023, Vol. 48 ›› Issue (03) : 908 -922.
碳酸盐岩热储中稀土元素的地球化学行为及其指示意义:以施甸地热系统为例
Geochemical Behavior and Indicative Effect of REEs in Carbonate Geothermal Reservoir: A Case of Shidian Geothermal System
,
施甸中‒低温地热系统是滇‒藏‒川地热带的重要组成部分,强烈的构造运动使该地热系统热储结构复杂,当前对其地热水地球化学过程研究程度很低.通过分析施甸地热水中稀土元素(REEs)的地球化学行为,本文旨在揭示碳酸盐岩热储内的主导性水文地球化学过程.结果表明,施甸地热水大部分富集LREEs,显示其对围岩REEs特征的继承.地热水也表现出Ce、Eu和Y异常,其中Ce负异常因继承碳酸盐岩Ce负异常或保留地热水古氧化环境特征而形成,Eu正异常源于地热水对长石类矿物的溶解,Y正异常则是地热水运移过程中其中的Ho受碳酸盐矿物优先吸附造成.PHREEQC计算表明施甸地热水中REEs的主要形态为LnCO3 +和Ln(CO3)2 ‒,在同一水样中,LnCO3 +含量随原子系数增加依次递减,而Ln(CO3)2 -则依次递增.此外,地热水中还存在少量Ln3+、LnF2+、LnHCO3 2+和LnSO4 +,其含量均随原子系数增加依次减小,受地热水pH和F-、HCO3 -、SO4 2-含量共同控制.REEs分析可为地热水地球化学过程研究提供重要证据.
稀土元素 / 碳酸盐岩 / 水‒岩相互作用 / 施甸地热系统 / 地球化学
REEs / carbonate rock / water-rock interaction / Shidian geothermal system / geochemistry
| [1] |
Ahanger, M. A., Jeelani, G., 2022. Deformation Kinematics of Main Central Thrust Zone (MCTZ) in the Western Himalayas. Journal of Earth Science, 33(2): 452-461. https://doi.org/10.1007/s12583-020-1059-6 |
| [2] |
Bai, D. H., Unsworth, M. J., Meju, M. A., et al., 2010. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 3(5): 358-362. https://doi.org/10.1038/ngeo830 |
| [3] |
Chen, S., Gui, H. R., Sun, L. H., et al., 2011. Rare Earth Element Fractionation between Groundwater and Wall Rock in Limestone Aquifer: Sample from Taiyuan Formation Limestone Aquifer in Renlou Coal Mine, Northern Anhui Province. Geoscience, 25(4): 802-807 (in Chinese with English abstract). |
| [4] |
Coleman, M. L., Shepherd, T. J., Durham, J. J., et al., 1982. Reduction of Water with Zinc for Hydrogen Isotope Analysis. Analytical Chemistry, 54(6): 993-995. https://doi.org/10.1021/ac00243a035 |
| [5] |
Craddock, P. R., Bach, W., Seewald, J. S., et al., 2010. Rare Earth Element Abundances in Hydrothermal Fluids from the Manus Basin, Papua New Guinea: Indicators of Sub-Seafloor Hydrothermal Processes in Back-Arc Basins. Geochimica et Cosmochimica Acta, 74(19): 5494-5513. https://doi.org/10.1016/j.gca.2010.07.003 |
| [6] |
Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702 |
| [7] |
Epstein, S., Mayeda, T., 1953. Variation of O18 Content of Waters from Natural Sources. Geochimica et Cosmochimica Acta, 4(5): 213-224. https://doi.org/10.1016/0016-7037(53)90051-9 |
| [8] |
Feng, D., Chen, D. F., Peckmann, J., et al., 2010. Authigenic Carbonates from Methane Seeps of the Northern Congo Fan: Microbial Formation Mechanism. Marine and Petroleum Geology, 27(4): 748-756. https://doi.org/10.1016/j.marpetgeo.2009.08.006 |
| [9] |
Feng, D., Lin, Z. J., Bian, Y. Y., et al., 2013. Rare Earth Elements of Seep Carbonates: Indication for Redox Variations and Microbiological Processes at Modern Seep Sites. Journal of Asian Earth Sciences, 65: 27-33. https://doi.org/10.1016/j.jseaes.2012.09.002 |
| [10] |
Goodenough, K. M., Deady, E. A., Beard, C. D., et al., 2021. Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements. Journal of Earth Science, 32(6): 1332-1358. https://doi.org/10.1007/s12583-021-1500-5 |
| [11] |
Hu, H., Wang, J. L., 2015. On Characteristics of Hydrogen and Oxygen Isotope in Precipitation in Yunnan and Analysis of Moisture Sources. Journal of Southwest China Normal University (Natural Science Edition), 40(5): 142-149 (in Chinese with English abstract). |
| [12] |
Johannesson, K. H., Farnham, I. M., Guo, C. X., et al., 1999. Rare Earth Element Fractionation and Concentration Variations along a Groundwater Flow Path within a Shallow, Basin-Fill Aquifer, Southern Nevada, USA. Geochimica et Cosmochimica Acta, 63(18): 2697-2708. https://doi.org/10.1016/S0016-7037(99)00184-2 |
| [13] |
Johannesson, K. H., Lyons, W. B., Yelken, M. A., et al., 1996. Geochemistry of the Rare-Earth Elements in Hypersaline and Dilute Acidic Natural Terrestrial Waters: Complexation Behavior and Middle Rare-Earth Element Enrichments. Chemical Geology, 133(1-4): 125-144. https://doi.org/10.1016/S0009-2541(96)00072-1 |
| [14] |
Klinkhammer, G. P., Elderfield, H., Edmond, J. M., et al., 1994. Geochemical Implications of Rare Earth Element Patterns in Hydrothermal Fluids from Mid-Ocean Ridges. Geochimica et Cosmochimica Acta, 58(23): 5105-5113. https://doi.org/10.1016/0016-7037(94)90297-6 |
| [15] |
Koeppenkastrop, D., De Carlo, E. H., 1993. Uptake of Rare Earth Elements from Solution by Metal Oxides. Environmental Science & Technology, 27(9): 1796-1802. https://doi.org/10.1021/es00046a006 |
| [16] |
Li, Y.M., Chen, K., Tian, J., et al., 2022. REE Characteristics and Their Influencing Factors of the Geothermal Water in Tangkeng Geothermal Field, Fengshun, Guangdong Province. Geological Review, 68(3): 993-1005 (in Chinese with English abstract). |
| [17] |
Liu, M. L., He, T., Wu, Q. F., et al., 2020. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its. Earth Science, 45(6): 2221-2231 (in Chinese with English abstract). |
| [18] |
Ma, L., Liu, Q., He, H. J., et al., 2021. Geochemistry of Rare Earth Elements in the Groundwater of Dagu River Basin. Journal of Marine Sciences, 39(2): 33-42 (in Chinese with English abstract). |
| [19] |
Mathurin, F. A., Åström, M. E., Drake, H., et al., 2014. REE and Y in Groundwater in the Upper 1.2 km of Proterozoic Granitoids (Eastern Sweden)-Assessing the Role of Composition and Origin of Groundwaters, Geochemistry of Fractures, and Organic/Inorganic Aqueous Complexation. Geochimica et Cosmochimica Acta, 144: 342-378. https://doi.org/10.1016/j.gca.2014.08.004 |
| [20] |
Molnar, P., Lyon-Caent, H., 1989. Fault Plane Solutions of Earthquakes and Active Tectonics of the Tibetan Plateau and Its Margins. Geophysical Journal International, 99(1): 123-154. https://doi.org/10.1111/j.1365-246x.1989.tb02020.x |
| [21] |
Munemoto, T., Ohmori, K., Iwatsuki, T., 2015. Rare Earth Elements (REE) in Deep Groundwater from Granite and Fracture-Filling Calcite in the Tono Area, Central Japan: Prediction of REE Fractionation in Paleo- to Present-Day Groundwater. Chemical Geology, 417: 58-67. https://doi.org/10.1016/j.chemgeo.2015.09.024 |
| [22] |
Noack, C. W., Dzombak, D. A., Karamalidis, A. K., 2014. Rare Earth Element Distributions and Trends in Natural Waters with a Focus on Groundwater. Environmental Science & Technology, 48(8): 4317-4326. https://doi.org/10.1021/es4053895 |
| [23] |
Oliveri, Y., Cangemi, M., Capasso, G., et al., 2019. Pathways and Fate of REE in the Shallow Hydrothermal Aquifer of Vulcano Island (Italy). Chemical Geology, 512: 121-129. https://doi.org/10.1016/j.chemgeo.2019.02.037 |
| [24] |
Parkhurst, D. L., Appelo, C. A. J., 1999. User’s Guide to PHREEQC a Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculation. U.S. Geological Survey, Reston. |
| [25] |
Sanada, T., Takamatsu, N., Yoshiike, Y., 2006. Geochemical Interpretation of Long-Term Variations in Rare Earth Element Concentrations in Acidic Hot Spring Waters from the Tamagawa Geothermal Area, Japan. Geothermics, 35(2): 141-155. https://doi.org/10.1016/j.geothermics.2006.02.004 |
| [26] |
Smedley, P. L., 1991. The Geochemistry of Rare Earth Elements in Groundwater from the Carnmenellis Area, Southwest England. Geochimica et Cosmochimica Acta, 55(10): 2767-2779. https://doi.org/10.1016/0016-7037(91)90443-9 |
| [27] |
Sverjensky, D. A., 1984. Europium Redox Equilibria in Aqueous Solution. Earth and Planetary Science Letters, 67(1): 70-78. https://doi.org/10.1016/0012-821X(84)90039-6 |
| [28] |
Tao, C. H., Li, H. M., Huang, W., et al., 2011. Mineralogical and Geochemical Features of Sulfide Chimneys from the 49°39’E Hydrothermal Field on the Southwest Indian Ridge and Their Geological Inferences. Chinese Science Bulletin, 56(26): 2828-2838. https://doi.org/10.1007/s11434-011-4619-4 |
| [29] |
Taylor, S.R., McLennan, S. M., 1988. Handbook on the Physics and Chemistry of Rare Earths. Elsevier, Amsterdam. |
| [30] |
Wang, M. M., Zhou, X., Liu, Y., et al., 2020. Major, Trace and Rare Earth Elements Geochemistry of Geothermal Waters from the Rehai High-Temperature Geothermal Field in Tengchong of China. Applied Geochemistry, 119: 104639. https://doi.org/10.1016/j.apgeochem.2020.104639 |
| [31] |
Wang, Y. T., Li, J. X., Xue, X. B., et al., 2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1):308-320 (in Chinese with English abstract). |
| [32] |
Wood, S. A., Shannon, W. M., 2003. Rare-Earth Elements in Geothermal Waters from Oregon, Nevada, and California. Journal of Solid State Chemistry, 171(1-2): 246-253. https://doi.org/10.1016/S0022-4596(02)00160-3 |
| [33] |
Yokoyama, T., Nakai, S., Wakita, H., 1999. Helium and Carbon Isotopic Compositions of Hot Spring Gases in the Tibetan Plateau. Journal of Volcanology and Geothermal Research, 88(1-2): 99-107. https://doi.org/10.1016/S0377-0273(98)00108-5 |
| [34] |
Yu, L., Li, G. J., Wang, Q. F., et al., 2014. Petrogenesis and Tectonic Significance of the Late Cretaceous Magmatism in the Northern Part of the Baoshan Block: Constraints from Bulk Geochemistry, Zircon U-Pb Geochronology and Hf Isotopic Compositions. Acta Petrologica Sinica, 30(9): 2709-2724 (in Chinese with English abstract). |
| [35] |
Zhang, J., Nozaki, Y., 1998. Behavior of Rare Earth Elements in Seawater at the Ocean Margin: a Study along the Slopes of the Sagami and Nankai Troughs near Japan. Geochimica et Cosmochimica Acta, 62(8): 1307-1317. https://doi.org/10.1016/S0016-7037(98)00073-8 |
| [36] |
陈松, 桂和荣, 孙林华, 等, 2011. 灰岩含水层中稀土元素在地下水与围岩间的分异: 以皖北任楼煤矿太原组灰岩含水层为例. 现代地质, 25(4): 802-807. |
| [37] |
胡菡, 王建力, 2015. 云南地区大气降水中氢氧同位素特征及水汽来源分析. 西南师范大学学报(自然科学版), 40(5): 142-149. |
| [38] |
李义曼, 陈凯, 天娇, 等, 2022. 广东丰顺汤坑地热田热水中稀土元素特征及其影响因素. 地质论评, 68(3): 993-1005. |
| [39] |
刘明亮, 何曈, 吴启帆, 等, 2020. 雄安新区地热水化学特征及其指示意义. 地球科学, 45(6): 2221-2231. |
| [40] |
马莉, 刘茜, 何会军, 等, 2021. 大沽河流域地下水中稀土元素的地球化学特征. 海洋学研究, 39(2): 33-42. |
| [41] |
王雨婷, 李俊霞, 薛肖斌, 等, 2021. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同. 地球科学, 46(1): 308-320. |
| [42] |
禹丽, 李龚健, 王庆飞, 等, 2014. 保山地块北部晚白垩世岩浆岩成因及其构造指示: 全岩地球化学、锆石U-Pb年代学和Hf同位素制约. 岩石学报, 30(9): 2709-2724. |
中央高校基本科研业务费专项资金(CUGSDZX002)
/
| 〈 |
|
〉 |