华北克拉通东部早白垩世火山岩:再循环物质差异性改造的记录

汪浪 ,  汤华云 ,  汪翔 ,  宗克清 ,  郭京梁 ,  程怀 ,  汪在聪

地球科学 ›› 2024, Vol. 49 ›› Issue (02) : 669 -684.

PDF (8181KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (02) : 669 -684. DOI: 10.3799/dqkx.2022.340

华北克拉通东部早白垩世火山岩:再循环物质差异性改造的记录

作者信息 +

The Cretaceous Volcanic Rocks in the Eastern North China Craton: Records of Heterogeneous Modification of Recycled Crustal Components

Author information +
文章历史 +
PDF (8376K)

摘要

华北克拉通东部在130~120 Ma早白垩世期间经历强烈改造,并伴随大规模岩浆活动.对比研究了这一时期山东鲁西地区、郯庐断裂带和胶东半岛玄武安山岩-安山岩等幔源岩石的地球化学特征和Sr-Nd同位素组成,探讨了各地区火山岩源区性质以及造成源区不均一性的可能原因. 这些火山岩均来自富集型地幔且受地壳组分的混染影响较小,并主要经历了单斜辉石、磷灰石和Ti-Fe氧化物的分离结晶,但相较于郯庐断裂带和胶东半岛而言,鲁西火山岩的演化程度更低. 不同地区火山岩均具有岛弧型微量元素和富集的Sr-Nd同位素组成,其中,鲁西北部火山岩表现为(87Sr/86Sr)i<0.706的Ⅰ型富集地幔特征,而鲁西南部、郯庐断裂带以及胶东地区火山岩则具有(87Sr/86Sr)i>0.706的Ⅱ型富集地幔特征,这暗示上述火山岩可能均来自被再循环地壳物质改造的富集地幔源区,且其源区富集程度具有从西北到东南逐渐增强的趋势. Sr-Nd同位素两端元混合模拟显示,鲁西北部火山岩EMⅠ型同位素特征可能与其地幔源区受华北下地壳物质的交代有关,而鲁西中-南部、郯庐断裂带和胶东地区火山岩EMⅡ型同位素特点则更可能是源区受三叠纪俯冲扬子陆壳组分改造的结果. 古太平洋板块来源的俯冲流体交代和水化也对这些地区的富集岩石圈地幔有不同程度改造. 因此,山东半岛不同地区早白垩世火山岩记录了不同性质壳源组分对华北克拉通东部岩石圈地幔的影响,这一差异性改造对华北东部岩石圈地幔的破坏和减薄有重要制约作用.

关键词

早白垩世 / 中基性火山岩 / 富集岩石圈地幔 / 地幔交代 / 华北克拉通 / 地球化学

Key words

Early Cretaceous / Mafic to intermediate volcanic rocks / enriched lithospheric mantle / mantle metasomatism / North China Craton / geochemistry

引用本文

引用格式 ▾
汪浪,汤华云,汪翔,宗克清,郭京梁,程怀,汪在聪. 华北克拉通东部早白垩世火山岩:再循环物质差异性改造的记录[J]. 地球科学, 2024, 49(02): 669-684 DOI:10.3799/dqkx.2022.340

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

显生宙以来华北克拉通经历了显著的破坏和岩石圈地幔减薄(Wu et al., 2014),并伴随强烈的岩浆-成矿作用和构造活化(Wu et al., 2008;Chen et al., 2021Zheng et al., 2018). 已有研究表明,在华北克拉通遭受明显破坏改造的同时,其岩石圈地幔性质在空间上也呈现明显差异(Fan and Hooper, 1989Griffin et al., 1998Xu et al., 2004, 2018Zhang et al., 2004Zhu et al., 2011Zheng et al., 2018). 然而,对导致岩石圈地幔性质时空不均一机理的认识还不尽一致(Xu et al., 2004Zhang et al., 2004Gao et al., 2008Liu et al., 2010Zhu et al., 2012a).

受限于稀少的幔源捕虏体,基于中生代幔源岩浆的地球化学反演为认识华北克拉通地幔性质及其演化提供了重要制约. 华北克拉通东部以早白垩世(130~120 Ma)岩浆活动最为剧烈和广泛(Wu et al., 2005Zhu et al., 2012bZheng et al., 2018),形成的幔源火山岩大多具有富集LILE和LREE、亏损HFSE的特点,可能记录了岩石圈地幔被再循环物质交代改造的信息(Guo et al., 2003, 2005, 2013,,2022; Xu et al., 2004Zhu et al., 2011Cao et al., 2019, 2020张永清等, 2019Chang et al., 2021). 尽管认识到再循环物质可能来源于俯冲的扬子陆壳(Huang et al., 2006Zhao and Zheng, 2009Zhang et al., 2010Dai et al., 2011杨阳等,2021)、拆沉的华北下地壳(Gao et al., 2004杨进辉和吴福元, 2009)或古太平洋板片物质(Zhu et al., 2012aLi et al., 2021),但对不同来源再循环物质的鉴定识别缺乏特异性证据,使得对不同地区岩石圈地幔改造过程的认识仍存在较大争议(Zheng et al., 2018Liu et al., 2020),进而导致对再循环物质对岩石圈地幔影响空间范围的认识仍不够深入(夏群科等, 2017Zheng et al., 2018Zhai et al., 2020). 作为贯穿山东半岛鲁西和胶东陆下岩石圈地幔的超深断裂带,郯庐断裂带对深部地幔的改造和置换有重要控制作用(Zheng et al., 2007),其在中生代的向东北走滑使苏鲁造山带位移达500 km(Okay and CelalŞengör, 1992; Zhao et al., 2016). 基于对郯庐断裂带以西的鲁西邹平、济南和方城等地早白垩世辉长岩和玄武岩等幔源岩石的研究,提出再循环物质对华北岩石圈地幔的改造可能在其东南缘地区横向扩展约200 km范围(Yang et al., 2012a, 2012b杨德彬等, 2013). 一些研究分别聚焦郯庐断裂带两侧地区早白垩世玄武岩或辉长岩的成因探讨(Zhang et al., 2002Guo et al., 2003, 2005Xu et al., 2004Ying et al., 2005庞崇进, 2015),但对郯庐断裂带及其以东的胶东地区岩石圈地幔性质的系统空间对比和差异性改造缺乏专门的研究. 近年来,随着大量数据、特别是岩石的各类同位素数据的积累丰富,为从更大空间范围开展对山东鲁西、郯庐断裂带和胶东陆下岩石圈地幔性质和改造的对比研究,进而判断不同地区幔内交代介质性质提供了可能.然而,类似的研究尚不多见.

在前人研究基础上,本文进一步对郯庐断裂带相邻的鲁西和胶东地区早白垩世中基性火山岩开展了岩石学和岩石地球化学研究,并结合与各地区以及郯庐断裂带同期同类型火山岩的已有资料,进行了元素、特别是Sr-Nd同位素组成的对比,讨论了不同地区火山岩揭示的地幔源区性质及其空间不均一性,并对导致地幔源区不均一的原因进行了分析,以期更深入理解不同属性再循环物质对华北克拉通岩石圈地幔的改造.

1 地质背景和样品描述

有着大于38亿年古老陆壳岩石的华北克拉通(万渝生等, 2020),在北部和南部分别被中亚造山带和秦岭-大别-苏鲁造山带(Zhu et al., 2012b)所围限,其基底主要由太古代东部地块和西部地块以及古元古代中部造山带组成(图1a). 其中,东部陆块主要以太古代TTG岩基及绿片岩相和麻粒岩相的火山岩和沉积岩组成(Zhao et al., 2001). 显生宙以来,华北东部遭受了岩石圈巨厚减薄和整体性破坏,并伴随强烈的岩浆-成矿作用和地壳伸展、变质核杂岩形成等构造活化(Wu et al., 2008, 2014Zheng et al., 2018Chen et al., 2021).

山东省位于华北克拉通最东端,因区内发育大量含深源岩石捕虏体的显生宙岩浆岩而成为研究岩石圈演化和克拉通破坏的重要地区. 山东被深达岩石圈的郯庐断裂带分隔为鲁西和胶东两个地区(图1b),区内主要以新太古代泰山群、TTG岩系、古元古代花岗质岩体、太古代胶东群和古元古代荆山群为基底,并为古生代海相沉积岩及中、新生代含火山喷发物的断陷盆地覆盖(徐贵忠等, 2001Zhao et al., 2001牛树银等, 2003). 鲁西和胶东中生代火山岩主要分布在白垩系青山群,包括玄武岩到流纹岩以及各类火山碎屑岩(Cao et al., 2019). 它们的喷发年龄在130~115 Ma(图1c),且具有越靠近郯庐断裂带越趋于年轻的特点(图1b). 综合来看,鲁西、郯庐断裂带和胶东火山岩的喷发时代具有类似特点.

本次研究的样品采自鲁西北部邹平唐李庵、章丘孙家庄和胶东莱阳S207公路沿线等地(图1b),岩石露头良好且新鲜(图2a2d2g). 其中,鲁西章丘火山岩为灰黑色玄武安山岩(图2a),斑状结构,致密块状构造. 斑晶主要由斜长石(10~20%)、单斜辉石(10~15%)(图2b~2c)和少量橄榄石组成,斑晶自形程度较好,表面平整. 基质为玻晶交织结构,主要为微晶斜长石和玻璃质. 鲁西邹平火山岩为玄武安山岩,斑状结构,块状构造. 斑晶由自形程度相对较好的斜长石(10%~15%)和单斜辉石(5%~10%)组成(图2e~2f),基质为玻晶交织结构,主要为微晶斜长石和玻璃质. 胶东火山岩为绿黑色的玄武安山岩(图2g~2i). 斑晶斜长石(10%~12%)和单斜辉石(5%~8%)自形程度较差,表面粗糙,基质为玻晶交织结构,玻璃质和微晶含量高达15%~20%(图2h~2i). 前人年代学工作表明,所采集的鲁西章丘、邹平和胶东莱阳火山岩分别形成于130 Ma(张永清等, 2017)、(129.3±0.63) Ma和(125.3±2.82) Ma(庞崇进, 2015曹光跃, 2018).

2 分析方法

对22件新鲜岩石样品(LOI: 0.60%~3.01%)进行了全岩主、微量元素测试. 所有样品通过玛瑙研磨机加工成200目粉末以备测试. 制备好的样品倒入铂金坩埚中,然后置于溶样炉中高温熔融,待冷却凝固后贴上标签在Shimadzu 1800 XRF上完成全岩主量元素测试,分析不确定度均优于5%. 微量元素分析时,使用HF-HNO3混合物在Teflon溶样弹中对50 mg样品高压密闭消解. 采用Agilent 7500a ICP-MS进行溶液测试分析,以USGS标准AGV-2、BHVO-2、BCR-2、GSP-2和RGM-2对样品元素数据进行校准. 由于测试元素浓度较高,分析不确定度大多优于5%,重复样的结果在误差范围内一致. 详细的微量元素分析方法可参考Liu et al.(2008). 样品主、微量元素测试均在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成,分析结果见附件2.

3 测试结果

本文分析的鲁西北部章丘和邹平早白垩世火山岩SiO2含量为52.8%~59.9%,Na2O+K2O含量为4.44%~8.11%,为亚碱性和碱性系列的玄武安山岩-安山岩(图3a). 它们具有相对高且变化的Fe2O3 T(4.69%~10.2%)和CaO(3.19%~8.22%),相对低的TiO2(0.60%~1.06%)和P2O5(0.28%~0.50%)(图4). 就鲁西地区总体而言,早白垩世幔源火山岩主要为亚碱性和碱性系列的玄武岩-安山岩. 其中,与南部演化程度相对低(SiO2:45.2%~49.5%)的玄武岩相比,鲁西中-北部早白垩世玄武安山岩-安山岩具有更高且变化范围更大的SiO2含量(51.3%~62.4%),但是Fe2O3 T、TiO2、CaO和P2O5含量较低(图4).

本文分析的胶东莱阳早白垩世火山岩SiO2含量为52.6%~62.7%,Na2O+K2O含量为5.69%~7.61%,主要为亚碱性系列的安山岩(图3b). 与鲁西地区早白垩世中基性火山岩相比,胶东和郯庐断裂带早白垩世幔源火山岩以碱性和亚碱性系列玄武岩-安山岩为主(图3b),具有更高且变化范围更大的SiO2含量(45.2%~65.0%),以及相对低的Fe2O3 T(4.21%~5.99%)、CaO(2.47%~8.33%)、P2O5(0.21%~0.43%)和近一致的TiO2(0.64%~0.92%).

鲁西、郯庐断裂带和胶东各地区早白垩世中基性火山岩的Fe2O3 T、TiO2、CaO和P2O5含量具有随着SiO2含量升高而降低的趋势(图4),表明各地区火山岩可能都经历了不同程度的分异结晶作用.

鲁西、郯庐断裂带和胶东地区早白垩世中基性火山岩均呈现出轻稀土富集的“右倾”型稀土元素配分模式(图5a5c). 除鲁西中-南部、郯庐断裂带和本文新分析的胶东莱阳盆地火山岩表现出稍显分异的重稀土组成外,鲁西北部章丘、邹平样品具有重稀土相对平坦的特点. 此外,本文分析的鲁西北部火山岩的(La/Yb)N在7.32~16.2,具有弱Eu异常(δEu=0.88~1.01);而胶东莱阳火山岩的(La/Yb)N在24.2~32.1,Eu负异常(δEu= 0.72~0.85)较为明显,与鲁西中-南部、郯庐断裂带、胶东地区其他早白垩世火山岩类似(图5). 各地区火山岩均具有富集Rb、Ba等大离子亲石元素(LILE)、亏损Nb、Ta等高场强元素(HFSE)以及Pb正异常的岛弧型微量元素特征(图5).

4 讨论

4.1 岩石成因

本文研究的鲁西北部章丘、邹平和胶东莱阳早白垩世火山岩为玄武安山岩-安山岩(图3),具有低SiO2、高Cr和Ni含量的特征,表明这些中基性火山岩可能来自地幔源区. 它们整体具有岛弧型微量元素特征,富集LILE和LREE以及亏损HFSE,与前人对鲁西和胶东早白垩世中基性火山岩研究结果(Guo et al., 2003, 2005Xu et al., 2004Zhang et al., 2004, 2005Huang et al., 2012)一致. 针对鲁西和胶东早白垩世中基性火山岩普遍具有的岛弧型微量元素和富集Sr-Nd同位素组成,前人大多解释它们来自于富集地幔源区(Guo et al., 2003, 2005; Xu et al., 2004; Zhang et al., 2004, 2005; Huang et al., 2012). 另外,鲁西北部济南和邹平早白垩世辉长岩具有较低的Th/U和(Nb/La)N值,以及与OIB型玄武岩相当的MgO含量和高的Ni含量,也被解释为是富集岩石圈地幔熔融的产物(Huang et al., 2012). 而南部费县和方城早白垩世玄武岩具有的高Mg#和Cr、Ni含量以及与地幔一致的δ18O值,亦暗示它们来自富集岩石圈地幔(Yang et al.,2012aGuo et al., 2013). 在胶东,苏鲁造山带早白垩世钾质火山岩与胶东中基性火山岩和基性岩脉都富集LILE、LREE和亏损HFSE,且具有高(87Sr/86Sr)i、低ε Ndt)和负ε Hft)的同位素特征,同样被解释为来自交代富集岩石圈地幔(Cao et al., 2020). 同时,基于对郯庐断裂带安丘和高桥等地区早白垩世玄武安山岩-英安岩研究,Cao et al.(2019)也提出它们来自交代的富集岩石圈地幔. 因此,综合本文和前人的研究,山东这些早白垩世玄武岩-玄武安山岩为富集岩石圈地幔来源.

幔源岩浆侵位或喷发往往伴随地壳组分的混染(DePaolo, 1981),进而影响岩浆的地球化学组成. 大陆地壳具有高的SiO2和不相容性元素含量,亏损高场强元素和富集Sr-Nd同位素的特点(Rudnick and Gao, 2003). 因此,幔源岩浆若有地壳物质的同化混染,其SiO2含量会与(87Sr/86Sr)i呈正相关,而与岩石的ε Ndt),Nb、Ta等元素的含量以及Nb/U、Nb/La比值之间呈现负相关(Ma et al., 2014). 山东早白垩世幔源火山岩的SiO2含量与上述同位素、元素或元素比值之间缺乏明显相关性(图6),意味着这些幔源岩浆上升过程中遭受的地壳物质混染较为有限. Cao et al.(2019, 2020)Chang et al.(2021)的研究也揭示山东不同地区早白垩世中基性火山岩是富集岩石圈地幔起源,且受地壳物质同化混染并不显著. 因此,山东早白垩世幔源火山岩的元素地球化学及同位素组成能较好地反映其地幔源区的特征.

山东早白垩世中基性火山岩SiO2含量变化较大,表明岩浆可能存在不同程度的演化. 不同地区火山岩呈现随SiO2含量的升高,CaO、P2O5TFe2O3、TiO2逐渐降低的负相关关系(图4),意味着可能经历了单斜辉石、磷灰石和Ti-Fe氧化物的分离结晶. 山东鲁西北部章丘、邹平和胶东莱阳地区的一些火山岩有较明显的Eu负异常(图5),揭示可能存在斜长石的分离结晶. 这一认识得到前人许多研究的支持(Huang et al., 2012Guo et al., 2013庞崇进, 2015曹光跃, 2018).

因此,包括本文研究的鲁西章丘、邹平和胶东莱阳火山岩在内的山东早白垩世中基性火山岩均为富集岩石圈地幔起源,岩浆受地壳物质混染影响有限,且后期可能经历了单斜辉石、磷灰石和Ti-Fe氧化物的分离结晶.

4.2 山东早白垩世火山岩地幔源区不均一性

山东广泛发育的早白垩世幔源岩浆是岩石圈强烈伸展、华北克拉通破坏达到峰期的伴生产物(Zhang et al., 2002, 20042018孙金凤和杨进辉, 2009Huang et al., 2012Cao et al., 2019, 2020Chang et al., 2021). 不同地区火山岩Sr-Nd同位素组成存在明显差异(图7),鲁西北部早白垩世中基性火山岩(87Sr/86Sr)i<0.706,与EMⅠ特征类似(Guo et al., 2003),而鲁西中-南部、郯庐断裂带和胶东早白垩世中基性火山岩(87Sr/86Sr) i >0.706,与EMⅡ特征类似(Xu et al., 2004Zhang et al., 2004, 2005Huang et al., 2012Cao et al., 2019, 2020). 因此,鲁西邹平和章丘早白垩世玄武岩、玄武安山岩可能来自EMⅠ型源区,而胶东莱阳早白垩世玄武安山岩可能来自EMⅡ型源区. 火山岩的Sr-Nd同位素组成对比和填图(图78)进一步说明早白垩世时鲁西北部、鲁西中-南部、郯庐断裂带和胶东等四个地区可能分别具有不同性质的陆下富集岩石圈地幔(图1b).

鲁西北部早白垩世中基性火山岩的(87Sr/86Sr)i值介于0.704~0.706之间,εNdt)值变化在-20到-5,如鲁西济南辉长岩和邹平玄武岩以及辉长岩(图7a),它们被认为起源于EMⅠ型富集岩石圈地幔(Guo et al.,2003Yang et al.,2012a),该地幔可能演化自古生代蒙阴金伯利岩及其橄榄岩包体代表的华北古老难熔地幔(Zhang et al., 2002). 因此,鲁西北部陆下岩石圈地幔具有EMⅠ型的属性,以(87Sr/86Sr)i值小于0.706为特征,这可能与华北下地壳物质对地幔源区的改造有关(Yang et al.,2012a). 根据Guo et al.(2013)提供的岩石圈地幔端元参数(SCLM-1)进行Sr-Nd同位素两端元混合模拟计算,结果表明,鲁西北部早白垩世幔源岩浆的Sr-Nd同位素组成可以由华北古生代大陆岩石圈地幔中加入约3%~20%的华北下地壳物质来实现(图7a),揭示华北下地壳物质对鲁西北部陆下岩石圈地幔的不均一改造.

鲁西中-南部早白垩世中基性火山岩(87Sr/86Sr) i 值介于0.708~0.712之间,εNdt)值在-20到-10之间,如沂南、方城和费县玄武岩及辉长岩(图7a). 详细研究表明,这些地区早白垩世幔源岩石可能起源于由古生代地幔演化而来的EMⅡ型富集岩石圈地幔(Ying et al.,2005Yang et al., 2012aGuo et al.,2013). 因此,鲁西中-南部陆下岩石圈地幔具有EMⅡ的属性,以(87Sr/86Sr)i值大于0.706为特征. 根据Ying et al.(2005)提供的岩石圈地幔端元参数(SCLM-2)进行端元混合模拟计算,结果显示,鲁西中-南部火山岩Sr-Nd同位素组成可由华北古老岩石圈地幔与扬子下地壳物质混合来实现(图7a). 这一结果与Ying et al.(2005)Yang et al.(2012a)Guo et al.(2013)等人的研究相一致,他们也认为鲁西中-南部早白垩世幔源火山岩来自受扬子下地壳物质改造的富集岩石圈地幔.

郯庐断裂带早白垩世中基性火山岩(87Sr/86Sr)i值介于0.707~0.712之间,εNdt)值在-25到-5之间,与苏鲁造山带基性岩脉以及鲁西中-南部EMⅡ型地幔来源的玄武岩和辉长岩相似(图7b). 研究表明,苏鲁造山带早白垩世基性岩脉可能源自华北富集岩石圈地幔(Yang et al.,2005Zhang et al., 2012Cao et al., 2019). 因此我们认为,郯庐断裂带早白垩世幔源岩浆起源于陆下具有EMⅡ属性的富集岩石圈地幔,以(87Sr/86Sr)i值大于0.706为特征,可能由华北古老岩石圈地幔演化而来. 端元混合模拟显示,郯庐断裂带早白垩世火山岩Sr-Nd同位素组成可由华北富集岩石圈地幔中加入了扬子下地壳物质来解释(图7b). Cao et al.(2019)等人同样支持郯庐断裂带岩石圈地幔受扬子地壳物质改造这一观点.

胶东早白垩世幔源火山岩(87Sr/86Sr)i值介于0.707~0.712之间,εNdt)值在-25到-5之间,与苏鲁造山带早白垩世基性岩脉以及鲁西EMⅡ型地幔起源的基性岩浆特征一致(图7b),意味着胶东早白垩世幔源火山岩与苏鲁造山带基性岩来自类似属性的富集岩石圈地幔,该陆下岩石圈地幔以(87Sr/86Sr) i 值大于0.706的EMⅡ型为特征,由华北古老岩石圈演化而来. 端元混合模拟结果表明,胶东火山岩Sr-Nd同位素组成可能是扬子下地壳物质加入到华北富集岩石圈地幔中而形成. 对胶东早白垩世基性岩脉的研究同样也证明该区岩石圈地幔经历了扬子下地壳物质的改造(Zhao et al., 2013Wang et al., 2020).

基于火山岩的系统Sr-Nd同位素填图,山东陆下岩石圈地幔从北至南:就Sr同位素组成而言,鲁西北部(87Sr/86Sr) i 在0.704 7到0.706 1范围内变化,鲁西中-南部(87Sr/86Sr) i 值略高,在0.706 8到0.710 3范围内变化;郯庐断裂带(87Sr/86Sr) i 变化范围相对较窄,介于0.707 5和0.709 6之间,胶东(87Sr/86Sr)i介于0.707 5和0.710 3之间,比鲁西北部高(图8a). 就Nd同位素组成而言,鲁西北部εNdt)介于-12和-11之间,鲁西中-南部εNdt)在-15和-13之间变化. 而郯庐断裂带和胶东地区εNdt)分别介于-16~-13和-18~-15之间,比鲁西北部低(图8b).

值得注意的是,在鲁西和胶东,相当一部分早白垩世玄武岩、辉长岩和煌斑岩等幔源岩石具有高含水量(2%~4%)特征(Liang et al., 2019Wang et al., 2020). 即使在挥发分无逃逸的封闭体系中,三叠纪扬子板块的俯冲脱流体也无法使华北岩石圈地幔形成高含水量的岩浆(Zheng et al., 2003),因此需要另一个来源的物质使岩石圈地幔变得富水. 侏罗纪即开始俯冲的古太平洋板块交代被认为是形成这种富含水岩浆的关键因素(Zhu and Xu, 2019Wang and Liu, 2021). 大洋板片带来的海洋沉积物经历俯冲脱挥发分-脱水作用,形成大量富水的流体降低岩石圈地幔粘度,造成岩石圈地幔的弱化,并最终导致岩石圈发生破坏和减薄(Wu et al., 2014Zheng et al., 2018). 因此,古太平洋俯冲作用对华北岩石圈地幔的空间不均一性的影响同样不容忽视.

早白垩世幔源火山岩Sr-Nd同位素揭示山东陆下岩石圈地幔具有明显的空间不均一性,即:鲁西北部陆下岩石圈地幔具有EMⅠ的属性,显示受华北下地壳物质改造为主,以相对明显亏损的Sr-Nd同位素为特点;鲁西中-南部、郯庐断裂带和胶东陆下岩石圈地幔总体则显示EMⅡ的属性,以受扬子下地壳物质改造为主,Sr-Nd同位素明显较鲁西北部更为富集,但不同地区富集程度存在一定差异(图8). 如,鲁西中南部、包括与之邻近的郯庐断裂带地区,具有与胶东北部和苏鲁造山带北部更为一致的Sr同位素组成,郯庐断裂带中南段具有与胶东西部更为一致的Nd同位素组成. 这一现象可能与郯庐断裂带向东北走滑使得胶东地块位移有关. 当郯庐断裂带形成时,扬子板块已经俯冲至华北大陆下方对其进行交代改造,而胶东半岛及邻区这些直接受扬子壳源物质改造较强的区域可能在早三叠世-中三叠世已经开始沿郯庐断裂带发生左行走滑(Zhao et al., 2016). 此外,早侏罗世古太平洋板块对华北岩石圈地幔的改造可能也是造成地幔性质空间变化重要原因之一. 总之,结合本文详细的填图结果与构造运动推测,早白垩世时期,山东陆下岩石圈地幔具有自西北向东南Sr-Nd同位素富集程度逐渐升高的总体趋势,与地幔源区受不同性质壳源组分的交代改造有关.

4.3 山东早白垩世陆下岩石圈地幔不均一性记录的壳源物质差异性改造

山东不同地区早白垩世幔源火山岩的Sr-Nd同位素特征显示,克拉通内部(鲁西北部)岩石圈地幔主要以EMⅠ为特征,记录了受华北下地壳物质改造的信息,而鲁西中-南部、郯庐断裂带和胶东等位于克拉通东南部地区的岩石圈地幔主要以EMⅡ为特征,更多地是受到了扬子下地壳物质的影响(图7). 更重要的是,从同位素填图、混合模拟结果并结合郯庐断裂带左行走滑运动来看(图78),不同地区幔源火山岩揭示的地幔源区具有自西北向东南,从鲁西北部向鲁西中-南部,经郯庐断裂带到胶东,Sr-Nd同位素富集程度逐渐升高、源区壳源组分改造逐渐增强的特点(图78). 研究显示,华北东南部早白垩世玄武岩和辉长岩的Sr-Nd同位素富集程度、204Pb/206Pb以及Nb/La等一些指标与其和苏鲁造山带的距离之间存在空间上的规律变化,即越靠近苏鲁造山带,地幔源区的地壳物质含量越高(Yang et al., 2012a, 2012b),这与本文的结论相吻合.

华北作为小体积克拉通,易于受到周边块体俯冲作用的影响(Zheng et al., 2006). 普遍认为,三叠纪时扬子板块向北西俯冲与华北板块发生碰撞,对华北地块东南部岩石圈地幔的交代改造作用不容忽视(张宏福等, 2005杨进辉和吴福元, 2009),不仅使得古生代华北古老的岩石圈根部发生破坏,还产生大量富硅熔体对华北岩石圈地幔进行交代和改造,使得岩石圈地幔逐渐向EMⅡ型特征转变,这体现在苏鲁造山带、郯庐断裂带以及鲁西中南部的沂南、蒙阴和方城等靠近块体俯冲的部位. 然而,受俯冲方向和俯冲影响范围的制约,克拉通内部岩石圈地幔受俯冲扬子陆壳物质的影响逐渐趋弱(图9),岩石圈地幔Sr-Nd同位素富集程度远低于东南部地区(图789),更多反映的是受拆沉的华北下地壳物质的交代改造(Gao et al., 2004, 2008杨进辉和吴福元, 2009 ;Yang et al., 2012a, 2012b许文良等, 2013杨德彬等, 2013). 随后,侏罗纪俯冲的古太平洋板片析出流体,交代改造华北东南部岩石圈地幔,引起岩石圈地幔的水化和弱化并逐渐失稳,最终导致早白垩世华北克拉通破坏并伴随岩石圈减薄(Zhu et al, 2012a, 2012b2019Zheng et al., 2018). 因此,山东早白垩世幔源火山岩揭示的岩石圈地幔不均一性,与地幔源区不同性质壳源物质的差异性改造有关. 其中,在华北东南缘,三叠纪俯冲扬子陆壳的交代改造不仅使得华北岩石圈地幔性质发生重大转变(Zhang et al., 2002杨进辉和吴福元, 2009Huang et al., 2012),还直接促进岩石圈地幔性质弱化,引起幔源玄武质熔体的产生并向下地壳持续底侵,进一步触发广泛的下地壳再造及壳幔物质交换(Huang et al., 2012),形成类型多样的侵入岩-火山岩,并在早白垩世时期最为强烈(Wu et al., 2005Zhu et al., 2012bZheng et al., 2018),同时伴随华北东南部岩石圈地幔减薄和克拉通破坏达到峰期. 但是在大别造山带以及相邻地区并未发现三叠纪岩浆活动,可能是受区域不同以及陆陆碰撞角度等外部因素的影响(杨进辉和吴福元, 2009),因为陆陆俯冲深度可达200 km,该深度下的热扰动难以使得上覆岩石圈物质发生部分熔融(Huw Davies and von Blanckenburg, 1995). 因此,不同性质壳源组分的差异性改造,对华北东南部岩石圈地幔的减薄和克拉通破坏起着重要制约作用.

5 结论

山东鲁西、郯庐断裂带和胶东等地区的早白垩世玄武安山岩-安山岩主要经历了单斜辉石、磷灰石和Ti-Fe氧化物的分离结晶作用,且受地壳组分同化混染影响较小. 它们具有岛弧型微量元素特征和明显富集的Sr-Nd同位素组成,表明其主要来自含再循环地壳物质的富集岩石圈地幔源区. 鲁西北部火山岩呈现EMⅠ型源区为特征,而鲁西南部、郯庐断裂带和胶东火山岩则显示EMⅡ源区特点,且地幔源区的富集程度具有自西北向东南逐渐增强的趋势. 鲁西北部火山岩的EMⅠ型地幔源区可能与华北下地壳物质的交代有关,而鲁西中南部、郯庐断裂带和胶东火山岩的EMⅡ型地幔源区则可能受三叠纪俯冲扬子陆壳组分改造. 此后,俯冲古太平洋板块来源的流体进一步对华北岩石圈地幔进行水化改造. 因此,山东半岛早白垩世幔源火山岩记录了不同性质壳源组分对华北克拉通东部岩石圈地幔的差异性改造.

参考文献

[1]

Ames, L., Tilton, G. R., Zhou, G., 1993. Timing of Collision of the Sino-Korean and Yangtze Cratons: U-Pb Zircon Dating of Coesite-Bearing Eclogites. Geology, 21(4): 339-342. http://doi.org/10.1130/0091-7613(1993)021<0339:Tocots>2.3.Co;2

[2]

Cao, G. Y., 2018. Geochronology and Geochemistry of the Mesozoic Qingshan Group VolcanicRocks in Shandong Province(Dissertation). Chinese Academy of Geological Sciences,Beijing,1-96(in Chinese with English abstract).

[3]

Cao, G. Y., Xue, H. M., Liu, Z., 2020. Early Cretaceous Potassic Volcanic Rocks from the Northern Margin of the Sulu Orogenic Belt, Shandong Province, Eastern China: Constraints on Petrogenesis and Crust-Mantle Interaction. Geological Journal, 55(1): 912-933. https://doi.org/10.1002/gj.3461

[4]

Cao, G. Y., Xue, H. M., Liu, Z., et al., 2019. U-Pb Zircon, Geochemical, and Sr-Nd-Hf Isotopic Data for Late Mesozoic Volcanic Rocks along the Tan-Lu Fault Zone of Shandong Province, Eastern China: Constraints on Magma Genesis and Lithospheric Thinning. International Geology Review, 61(8): 972-996. https://doi.org/10.1080/00206814.2018.1487340

[5]

Chang, Z. G., Dong, G. C., Scott, J. M., 2021. Early Cretaceous Basalts Record the Modification of the North China Craton Lithospheric Mantle: Implications for Lithospheric Thinning. International Geology Review, 64(9): 1330-1346. https://doi.org/10.1080/00206814. 2021.1931968

[6]

Chen, J. S., Yang, Z. Z., Tian, D. X., et al., 2021. Geochronological Framework of Paleoproterozoic Intrusive Rocks and its Constraints on Tectonic Evolution of the Liao-Ji Belt, Sino-Korean Craton. Journal of Earth Science, 32(1): 8-24. https://doi.org/10.1007/s12583-020-1367-x

[7]

Dai, L. Q., Zhao, Z. F., Zheng, Y. F., et al., 2011. Zircon Hf-O Isotope Evidence for Crust-Mantle Interaction during Continental Deep Subduction. Earth and Planetary Science Letters, 308(1/2): 229-244. https://doi.org/10.1016/j.epsl.2011.06.001

[8]

DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189-202. https://doi.org/10.1016/0012-821x(81)90153-9

[9]

Fan, Q., Hooper, P. R., 1989. The Mineral Chemistry of Ultramafic Xenoliths of Eastern China: Implications for Upper Mantle Composition and the Paleogeotherms. Journal of Petrology, 30(5): 1117-1158. https://doi.org/10.1093/petrology/30.5.1117

[10]

Gao, S., Rudnick, R. L., Xu, W. L., et al., 2008. Recycling Deep Cratonic Lithosphere and Generation of Intraplate Magmatism in the North China Craton. Earth and Planetary Science Letters, 270(1/2): 41-53. https://doi.org/10.1016/j.epsl.2008.03.008

[11]

Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162

[12]

Griffin, W. L, Andi, Z., O'reilly, S. Y., et al., 1998. Phanerozoic Evolution of the Lithosphere Beneaththe Sino-Korean Craton. Conference on Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union,1998:107-126. https://doi.org/10.1029/GD027p0107

[13]

Guo, F., Fan, W. M., Wang, Y. J., et al., 2003. Geochemistry of Late Mesozoic Mafic Magmatism in West Shandong Province, Eastern China: Characterizing the Lost Lithospheric Mantle beneath the North China Block. Geochemical Journal,37(1):63-77.https://doi.org/10.2343/geochemj.37.63

[14]

Guo, F., Fan, W. M., Wang, Y. J., et al., 2005. Petrogenesis and Tectonic Implications of Early Cretaceous High-K Calc-Alkaline Volcanic Rocks in the Laiyang Basin of the Sulu Belt, Eastern China. The Island Arc, 14(2): 69-90. https://doi.org/10.1111/j.1440-1738.2005.00458.x

[15]

Guo, J. F., Ma, Q., Zheng, J. P., et al., 2022. Spatial and Temporal Evolution of Lithospheric Mantle beneath the Eastern North China Craton: Constraints from Mineral Chemistry of Peridotite Xenoliths from the Miocene Qingyuan Basalts and A Regional Synthesis. Journal of Earth Science. http://doi.org/10.1007/s12583-022-1691-4

[16]

Guo, J. T., Guo, F., Wang, C.Y., et al., 2013. Crustal Recycling Processes in Generating the Early Cretaceous Fangcheng Basalts, North China Craton: New Constraints from Mineral Chemistry, Oxygen Isotopes of Olivine and Whole-Rock Geochemistry. Lithos, 170-171: 1-16. https://doi.org/10.1016/j.lithos.2013.02.015

[17]

Huang, J., Zheng, Y.F., Zhao, Z.F., et al., 2006. Melting of Subducted Continent: Element and Isotopic Evidence for AGenetic Relationship between Neoproterozoic and Mesozoic Granitoids in the Sulu Orogen. Chemical Geology, 229(4):227-256.https://doi.org/10.1016/j.chemgeo.2005.11.007

[18]

Huang, X. L., Zhong, J. W., Xu, Y. G., 2012. Two Tales of the Continental Lithospheric Mantle Prior to the Destruction of the North China Craton: Insights from Early Cretaceous Mafic Intrusions in Western Shandong, East China. Geochimica et Cosmochimica Acta, 96: 193-214. https://doi.org/10.1016/j.gca.2012.08.014

[19]

Huw Davies, J., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1/2/3/4): 85-102. https://doi.org/10.1016/0012-821x(94)00237-s

[20]

Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055

[21]

Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119-146. https://doi.org/10.1016/s0009-2541(98)00197-1

[22]

Lan, T. G., Hu, R. Z., Bi, X. W., et al., 2018. Metasomatized Asthenospheric Mantle Contributing to the Generation of Cu-Mo Deposits within an Intracontinental Setting: A Case Study of the ∼128 Ma Wangjiazhuang Cu-Mo Deposit, Eastern North China Craton. Journal of Asian Earth Sciences, 160: 460-489. https://doi.org/10.1016/j.jseaes.2017.07.014

[23]

Le Bas, M. J., Le Maitre, R. W., Streckeisen A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3):745-750.http://doi.org/10.1093/petrology/27.3.745

[24]

Li, J. Y., Qian, Y., Tekoumc, L., et al., 2021. Petrogenesis of Jurassic Granitoids on Liaodong Peninsula, Northeast China: Constraints on the Evolution of the Mongol-Okhotsk and Pacific Tectonic Regimes. Journal of Earth Science, 32(1): 127-143. https://doi.org/10.1007/s12583-020-1372-0

[25]

Liang, Y. Y., Deng, J., Liu, X. F., et al., 2019. Water Contents of Early Cretaceous Mafic Dikes in the Jiaodong Peninsula, Eastern North China Craton: Insights into an Enriched Lithospheric Mantle Source Metasomatized by Paleo-Pacific Plate Subduction-Related Fluids. The Journal of Geology, 127(3): 343-362. https://doi.org/10.1086/702648

[26]

Liu, Y. D., Ying, J. F., Li, J., et al., 2020. Diverse Origins of Pyroxenite Xenoliths from Yangyuan, North China Craton: Implications for the Modification of Lithosphere by Magma Underplating and Melt-Rock Interactions. Lithos, 372-373(5): 105680. https://doi.org/10.1016/j.lithos.2020.105680

[27]

Liu, Y. S., Gao, S., Gao, C. G., et al., 2010. Garnet-Rich Granulite Xenoliths from the Hannuoba Basalts, North China: Petrogenesis and Implications for the Mesozoic Crust-Mantle Interaction. Journal of Earth Science, 21(5): 669-691. https://doi.org/10.1007/s12583-010-0125-x

[28]

Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1/2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016

[29]

Ma, L., Jiang, S. Y., Hofmann, A. W., et al., 2014. Lithospheric and Asthenospheric Sources of Lamprophyres in the Jiaodong Peninsula: A Consequence of Rapid Lithospheric Thinning beneath the North China Craton? Geochimica et Cosmochimica Acta, 124: 250-271. https://doi.org/10.1016/j.gca.2013.09.035

[30]

Niu, S. Y., Hu, H. B., Mao, J. W., et al., 2003. Stratigraphic (Rock) Distribution and Its Genesis in Western Shandong. Geoscience Front, 1(4): 371-372 (in Chinese).

[31]

Okay, A. I., Celal Şengör, A. M., 1992. Evidence for Intracontinental Thrust-Related Exhumation of the Ultra-High-Pressure Rocks in China. Geology, 20(5): 411. https://doi.org/10.1130/0091-7613(1992)020<0411:efitre>2.3.co;2

[32]

Pang, C. J., 2015. Geochronology and Geochemistry of the Cretaceous Mafic to Intermediate Volcanic Rocks in the Eastern North China Craton(Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 1-119 (in Chinese with English abstract).

[33]

Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: H. D. Holland, K. K. Turekian.Treatise on Geochemistry. Pergamon, Oxford, 1-64. https://doi.org/10.1016/B0-08-043751-6/03016-4

[34]

Sun, J. F., Yang, J. H., 2009. Early Cretaceous A-Type Granites in the Eastern North China Block with Relation to Destruction of the Craton. Earth Science, 18(1): 138-147 (in Chinese with English abstract).

[35]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

[36]

Wan, Y. S., Xie, H. Q., Dong, C. Y., et al.,2020. Timing of Tectonothermal Events in Archean Basement of the North China Craton. Earth Science, 45(9): 3119-3160 (in Chinese with English abstract).

[37]

Wang, X., Wang, Z. C., Cheng, H., et al., 2020. Early Cretaceous Lamprophyre Dyke Swarms in Jiaodong Peninsula, Eastern North China Craton, and Implications for Mantle Metasomatism Related to Subduction. Lithos, 368-369(4): 105593. https://doi.org/10.1016/j.lithos.2020.105593

[38]

Wang, Z. Z., Liu, S. A., 2021. Evolution of Intraplate Alkaline to Tholeiitic Basalts Via Interaction between Carbonated Melt and Lithospheric Mantle. Journal of Petrology, 62(4): egab02. https://doi.org/10.1093/petrology/egab025

[39]

Wu, F. Y., Xu, Y. G., Zhu, R. X., et al., 2014. Thinning and Destruction of the Cratonic Lithosphere: A Global Perspective. Science China Earth Sciences, 57(12): 2878-2890. https://doi.org/10.1007/s11430-014-4995-0

[40]

Wu, F., Lin, J., Wilde, S., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1/2): 103-119. https://doi.org/10.1016/j.epsl.2005.02.019

[41]

Xia, Q. K., Cheng, H., Liu, J., 2017. The Distribution of the Early Cretaceous Hydrous Lithospheric Mantle in the North China Craton: Constraints from Water Content in Peridotites of Tietonggou. Earth Science, 42(6): 853-861 (in Chinese with English abstract).

[42]

Xu, G. Z., Zhou, R., Yan, Z., et al., 2001. Discussion on the Evidences of Mesozioc Lithosphere Thining and Its Dynamic Mechanism in Jiaodong Area. Geotectonica et Metallogenia, 25(4):368-380 (in Chinese with English abstract).

[43]

Xu, H. J., Zhang, J. F., 2018. Zircon Geochronological Evidence for Participation of the North China Craton in the Protolith of Migmatite of the North Dabie Terrane. Journal of Earth Science, 29(1):30-42. https://doi.org/10.1007/s12583-017-0805-x

[44]

Xu, W. L., Zhou, Q. J., Yang, D. B., et al. 2013. Timing, Style, and Process of Modification Adjacent Lithosphere Mantle by Melts Derived from Deeply Subducted Continental Crust: Evidence from Peridotite and Xenoliths in Western Shandong. Chinese Science Bulletin,58(23):2300-2305 (in Chinese).

[45]

Xu, Y. G., Ma, J. L., Huang, X. L., et al., 2004. Early Cretaceous Gabbroic Complex from Yinan, Shandong Province: Petrogenesis and Mantle Domains beneath the North China Craton. International Journal of Earth Sciences, 93(6): 1025-1041. https://doi.org/10.1007/s00531-004-0430-7

[46]

Yang, D. B., Xu, W. L., Pei, F. P., et al. 2012a. Spatial Extent of the Influence of the Deeply Subducted South China Block on the Southeastern North China Block: Constraints from Sr-Nd-Pb Isotopes in Mesozoic Mafic Igneous Rocks. Lithos, 136:246-260.http://doi.org/10.1016/j.lithos.2011.06.004

[47]

Yang, D. B., Yang, J. H., Xu, W. L., et al. 2013. Spatial and Temporal Extents of the Influence of Deep Continental Subduction on the Adjacent Lithosphere Mantle: An Example from the Southeast North China Block. Chinese Science Bulletin, 58(23):2306-2309 (in Chinese).

[48]

Yang, J. H., Wu, F. Y., 2009. Triassic Magmatism and Its Relation to Decratonization in the Eastern North China Craton. Science China (Series D), 39(7):910-921 (in Chinese).

[49]

Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2005. Petrogenesis of Early Cretaceous Intrusions in the Sulu Ultrahigh-Pressure Orogenic Belt, East China and their Relationship to Lithospheric Thinning. Chemical Geology, 222(3/4): 200-231. https://doi.org/10.1016/j.chemgeo.2005.07.006

[50]

Yang, Q. L., Zhao, Z. F., Zheng, Y. F., 2012b. Slab-Mantle Interaction in Continental Subduction Channel: Geochemical Evidence from Mesozoic Gabbroic Intrusives in SoutheasternNorth China. Lithos, 155:442-460.http://doi.org/10.1016/j.lithos.2012.10.003

[51]

Yang, Y., Sun, G. C., Zhao Z. F., 2021. Petrogenesis of Jingshan Granites from Southeast Margin of North China Block and Its Tectonic Implications. Earth Science, 46(6): 1993-2015 (in Chinese with English abstract).

[52]

Ying, J. F., Zhou, X. H., Zhang, H. F., 2005. The Geochemical Variations of Mid-Cretaceous Lavas Across Western Shandong Province, China and their Tectonic Implications. International Journal of Earth Sciences, 95(1): 68-79. https://doi.org/10.1007/s00531-005-0509-9

[53]

Zhai, M. G., 2011. Cratonization and the Ancient North China Continent: A Summary and Review. Science China-Earth Sciences, 54(8): 1110-1120. http://doi.org/10.1007/s11430-011-4250-x

[54]

Zhai, Y. Y., Gao, S,. Zeng, Q. D., et al. 2020. Geochronology, Geochemistry and Hf Isotope of the Late Mesozoic Granitoids from the Lushi Polymetal Mineralization Area: Implication for the Destruction of Southern North China Craton. Journal of Earth Science, 31(2):313-329. http://doi.org/10.1007/s12583-020-1277-y

[55]

Zhang Y Q, Ling W L, Zhang J B, et al. 2019. Zircon U-Pb Geochronology of the Mesozoic Volcanic Rocks from Qingshan Group in the Eastern Shandong. Earth Science, 44(1): 344-354 (in Chinese with English abstract).

[56]

Zhang, H. F., Sun, M., Zhou, M. F., et al. 2004. Highly Heterogeneous Late Mesozoic Lithospheric Mantle beneath the North China Craton: Evidence from Sr-Nd-Pb Isotopic Systematics of Mafic Igneous Rocks. Geological Magazine, 141(1):55-62.http://doi.org/10.1017/S0016756803008331

[57]

Zhang, H. F., Sun, M., Zhou, X. H., et al. 2002. Mesozoic Lithosphere Destruction beneath the North China Craton: Evidence from Major-, Trace-Element and Sr-Nd-Pb Isotope Studiesof Fangcheng Basalts. Contributions to Mineralogy and Petrology, 144(2):241-254.http://doi.org/10.1007/s00410-002-0395-0

[58]

Zhang, H. F., Zhou, X. H., Fan, W. M., et al. 2005. Nature, Composition, Enrichment Processes and Its Mechanism of the Mesozoic Lithospheric Mantle beneath the Southern North China Craton. Acta Petrologica sinica, 21(4):1271-1280 (in Chinese with English abstract).

[59]

Zhang, J., Zhao, Z.F., Zheng, Y.F., et al. 2010. Postcollisional Magmatism: Geochemical Constraints on the Petrogenesis of Mesozoic Granitoids in the Sulu Orogen, China. Lithos, 119(3):512-536.http://doi.org/10.1016/j.lithos.2010.08.005

[60]

Zhang, J., Zhao, Z.F., Zheng, Y.F., et al. 2012. Zircon Hf-O Isotope and Whole-Rock geochemical Constraints on Origin of Postcollisional Mafic to Felsic Dykes in the Sulu Orogen.Lithos, 136-139:225-245.http://doi.org/10.1016/j.lithos.2011.06.006

[61]

Zhang, Y. Q., Ling, W. L., Zhang, J. B., et al. 2017. Geochemistry and Petrogenesis of the Mesozoic Volcanic Rocks from the Qingshan Group in Western Shandong Province.Acta Geological Sinica, 91(12):2697-2709 (in Chinese with English abstract).

[62]

Zhao, G. C., Wilde, S. A., Cawood P A, et al. 2001. Archean Blocks and Their Boundaries the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints,and Tectonic Evolution. Precambrian Research, 107(1-2):45-73.http://doi.org/10.1016/S0301-9268(00)00154-6

[63]

Zhao, T., Zhu, G., Lin, S., et al. 2016. Indentation-Induced Tearing of a Subducting Continent: Evidence from the Tan-Lu Fault Zone, East China. Earth-Science Reviews, 152:14-36.http://doi.org/10.1016/j.earscirev.2015.11.003

[64]

Zhao, Z. F., Dai, L. Q., Zheng, Y. F., 2013. Postcollisional Mafic Igneous Rocks Record Crust-Mantle Interaction during Continental Deep Subduction. Scientific Reports, 3(1):3413.http://doi.org/10.1038/srep03413

[65]

Zhao, Z. F., Zheng, Y. F., 2009. Remelting of Subducted Continental Lithosphere: Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt. Science China(Series D),52(9):1295-1318.http://doi.org/10.1007/s11430-009-0134-8

[66]

Zheng, J. P., Griffin, W. L., O’Reilly, S. Y., et al., 2007. Mechanism and Timing of Lithospheric Modification and Replacement beneath the Eastern North China Craton: Peridotitic Xenoliths from the 100 Ma Fuxin Basalts and ARegional Synthesis. Geochimica et Cosmochimica Acta, 71(21):5203-5225. http://doi.org/10.1016/j.gca. 2007. 07.028

[67]

Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2006. Mineral Chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere: Constraints on Mantle Evolution beneath Eastern China. Journal of Petrology, 47(11): 2233-2256. http://doi.org/10.1093/petrology/egl042

[68]

Zheng, Y. F., Xu, Z., Zhao, Z. F., et al. 2018. Mesozoic Mafic Magmatism in North China: Implications for Thinning and Destruction of Cratonic Lithosphere. Science China-Earth Sciences, 61(4):353-385.http://doi.org/10.1007/s11430-017-9160-3

[69]

Zheng. Y. F., Zhou, J. B., Wu, Y. B., et al. 2005. Low-Grade Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: A Passive-Margin Accretionary Wedge Deformed during Continent Subduction. International Geology Review, 47:851-871.http://doi.org/10.2747/0020-6814.47.8.851

[70]

Zhu, R. X., Chen, L., Wu, F. Y., et al. 2011. Timing, Scale, and Mechanism of the Destruction of the North China Craton. Science China-Earth Sciences, 54(6):789-797.http://doi.org/10.1007/s11430-011-4203-4

[71]

Zhu, R. X., Xu, Y. G., Zhu, G., et al. 2012a. Destruction of the North China Craton. Science China-Earth Sciences, 55(10):1565-1587.http://doi.org/10.1007/s11430-012-4516-y

[72]

Zhu, R. X., Yang, J. H., Wu, F. Y., 2012b. Timing of Destruction of the North China Craton. Lithos, 149:51-60.http://doi.org/10.1016/j.lithos.2012.05.013

[73]

Zhu,R. X., Xu, Y. G., 2019. The Subduction of the West Pacific Plate and the Destruction of the North China Craton. Science China-Earth Sciences, 62(9): 1340-1350. https://doi.org/10.1007/s11430-018-9356-y

[74]

曹光跃, 2018. 山东中生代青山群火山岩的年代学及地球化学研究(博士学位论文).北京:中国地质科学院,1-96.

[75]

庞崇进, 2015.华北克拉通东部白垩纪中基性火山岩的年代学和地球化学特征(博士学位论文).广州:中国科学院大学广州地球化学研究所,1-119.

[76]

牛树银,胡华斌,毛景文,等, 2003. 鲁西地区地层(岩石)展布及其成因.地学前缘, 10(4): 371-372.

[77]

许文良, 周群君, 杨德彬, 等,2013. 大陆深俯冲作用对邻区岩石圈地幔改造的时间、方式与过程:鲁西橄榄岩类与辉石岩类捕虏体证据.科学通报,58(23):2300-2305.

[78]

夏群科, 程徽,刘佳, 2017. 山东铁铜沟橄榄岩的水含量:华北克拉通早白垩世富水岩石圈的分布. 地球科学, 42(6): 853-861.

[79]

万渝生, 颉颃强, 董春艳, 等, 2020. 华北克拉通太古宙构造热事件时代及演化. 地球科学, 45(9): 3119-3160.

[80]

徐贵忠,周瑞,闫臻,等, 2001. 论胶东地区中生代岩石圈减薄的证据及其动力学机制.大地构造与成矿学, 25(4): 368-380.

[81]

杨德彬, 杨进辉, 许文良, 等,2013. 大陆深俯冲作用对邻区岩石圈地幔影响的时空范围:以华北陆块东南部为例.科学通报,58(23):2306-2309.

[82]

杨进辉, 吴福元, 2009.华北东部三叠纪岩浆作用与克拉通破坏.中国科学(D辑),39(7):910-921.

[83]

杨阳, 孙国超, 赵子福, 2021. 华北东南缘荆山花岗岩成因及其构造意义. 地球科学, 46(6): 1993-2015.

[84]

孙金凤, 杨进辉, 2009. 华北东部早白垩世A型花岗岩与克拉通破坏. 地球科学, 18(1): 138-147.

[85]

张宏福, 周新华, 范蔚茗, 等, 2005. 华北东南部中生代岩石圈地幔性质、组成、富集过程及其形成机理. 岩石学报, 21(4):1271-1280.

[86]

张永清, 凌文黎, 张军波, 等,2017. 山东西部中生代青山群火山岩的地球化学特征及其岩石成因.地质学报, 91(12): 2697-2709.

[87]

张永清, 凌文黎, 张军波, 等, 2019. 鲁东中生代青山群火山岩锆石U-Pb年代学. 地球科学, 44(1): 344-354.

基金资助

国家自然科学基金面上项目(41873042)

AI Summary AI Mindmap
PDF (8181KB)

152

访问

0

被引

详细

导航
相关文章

AI思维导图

/