湖北庙垭碳酸岩杂岩体中铌赋存状态及富集机制:矿物化学制约

王珂 ,  王连训 ,  朱煜翔 ,  马昌前 ,  黄宏业

地球科学 ›› 2024, Vol. 49 ›› Issue (02) : 594 -611.

PDF (9121KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (02) : 594 -611. DOI: 10.3799/dqkx.2022.345

湖北庙垭碳酸岩杂岩体中铌赋存状态及富集机制:矿物化学制约

作者信息 +

Occurrences and Enrichment Mechanism of Niobium in Miaoya Carbonatite Complex, Hubei Province, China:Constrains from Mineral Chemistry

Author information +
文章历史 +
PDF (9339K)

摘要

庙垭碳酸岩杂岩体位于南秦岭武当地块西南缘,主要由富铌、稀土的碳酸岩和正长岩组成,是我国第二大碳酸岩型铌矿床. 前人对碳酸岩中稀土元素的矿化机理进行了详细的研究,但铌元素的富集机制还尚未清楚. 因此对其开展了详细的岩石学、矿物学及矿物化学研究. 庙垭杂岩体主要由碳酸岩和正长岩组成,碳酸岩多呈岩脉或岩株状侵入正长岩中. 庙垭铌-稀土矿床含铌矿物主要有铌金红石、含Nb-Ti-Zr矿物、铌铁矿、富铀烧绿石和铌钛铀矿等. 铌金红石和Nb-Ti-Zr氧化物呈自形-半自形,Nb2O5含量较高(分别为1.10%~3.35%和8.58%~18.64%). Nb-Ti-Zr硅酸盐赋存于Nb-Ti-Zr氧化物裂隙内或沿其边缘分布,常与钠长石细脉伴生,Nb2O5含量为1.75%~6.00%. 铌铁矿呈它形细粒状结构,空间上与含Nb-Ti-Zr氧化物共生,显示较高的Nb2O5及FeO含量(72.30%~75.75%和18.52%~18.81%). 富铀烧绿石呈不规则粒状或者交生结构,具有较高含量的Nb2O5(35.42%~36.45%)和UO2(25.68%~26.76%),高的A位空缺值(0.55~0.74 apfu)和低的Na2O、F含量(低于检测线和0.32%~0.79%). 铌钛铀矿呈残骸状或椭圆状假晶,空间上依次伴生赤铁矿和黄铁矿,显著富集Nb2O5、UO2和TiO2. (结论). 综上,初步认为庙垭碳酸岩杂岩体中铌富集受控于岩浆和热液过程. 贫铌矿物和富F矿物在富Nb母岩浆中早先结晶导致残余熔体中Nb含量逐渐升高,最终结晶出铌金红石、Nb-Ti-Zr氧化物、富铀烧绿石、铌钛铀矿. 后期富Na、Si、Fe热液沿裂隙交代原生含铌矿物,经活化、迁移、沉淀形成了次生含铌矿物(Nb-Ti-Zr硅酸盐、铌铁矿等).

关键词

庙垭碳酸岩杂岩体 / 铌富集机制 / 结晶分异 / 热液交代 / 岩浆-热液过程 / 矿床学

Key words

Miaoya carbonatite complex / Nb enrichment mechanism / fractional crystallization / hydrothermal metasomatism / magmatic and hydrothermal processes / ore deposit

引用本文

引用格式 ▾
王珂,王连训,朱煜翔,马昌前,黄宏业. 湖北庙垭碳酸岩杂岩体中铌赋存状态及富集机制:矿物化学制约[J]. 地球科学, 2024, 49(02): 594-611 DOI:10.3799/dqkx.2022.345

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

碳酸岩-碱性岩杂岩体在地表中分布较为稀少,却有着非常重要的地质意义. 该类岩石起源于地幔深处,其岩浆具有低粘度,富集挥发分、高场强元素和不相容元素的特点,因此,它被认为是揭示深部过程地球化学的“探针岩石”( 李石,1980吴敏等,2011Wang et al., 2014Xu et al., 2014, 2015许成等,2017应元灿,2018Su et al., 2019Zhu et al., 2020). 近年来,随着稀有金属矿产(如Nb、Ta等)的增长量与市场需求严重失衡,碳酸岩-碱性岩稀有金属成矿作用也越来越受到人们的关注,寻找经济型铌矿床迫在眉睫(Schulz et al., 2017). 目前与碳酸岩-碱性岩相关的Nb-REE矿床在国内外已经有大量的报道,比如:加拿大Saint-Honore Nb-REE矿床(Tremblay et al., 2017)、安哥拉Bonga REE-Nb矿床(郑硌等,2014)、内蒙古白云鄂博RRE-Nb-Fe-U矿床(宋文磊等,2013Liu et al., 2020)和湖北庙垭REE-Nb矿床(李石,1990Xu et al., 2014, 2015Ying et al., 2017, 2020应元灿,2018Wu et al., 2021). 然而,对碳酸岩-碱性岩中矿物学的精细研究还不够透彻,甚至对其Nb元素的富集机制仍存在许多争议(Wang et al., 2021). 一些学者认为岩浆持续结晶分异是控制Nb富集的主要因素(Huang et al., 2014Stepanov et al., 2014; Xu et al., 2014, 2015; 邬斌等,2018Xue et al., 2020Wang et al., 2021);而部分学者则认为Nb富集主要与晚期富F、Nb、Si热液流体的交代作用有关(王汾连等,2012Dostal et al., 2014应元灿等,2018Zhu et al., 2020).

对碳酸岩-碱性岩型Nb-REE矿床中矿石矿物进行精细矿物学结构及成分研究,可以为矿床开采及选冶提供重要的信息,更重要是在探究其Nb-REE矿化机制方面起到重要作用(Chakhmouradian et al., 2015Mitchell,2015Tremblay et al., 2017邬斌等,2018Xue et al., 2020Ying et al., 2020Zhu et al., 2020Wu et al., 2021). 世界上多数碳酸岩-碱性岩型Nb-REE矿床中铌主要以氧化物的形式产出,如烧绿石、铌铁矿、金红石、易解石、铌钙矿、钠铌矿等(李石等,1990Tremblay et al., 2017Ying et al., 2017; 邬斌等,2018;应元灿,2018Zhu et al., 2020Wang et al., 2021Wu et al., 2021),少量进入硅酸盐矿物晶格中,如黑云母、榍石等(Mitchell, 2015Wang et al., 2021李志丹等,2022). 地质学家们对上述含铌矿物进行了大量的结构和化学成分特征研究,针对Nb富集机制等科学问题也取得了丰硕成果(郑硌等,2014Tremblay et al., 2017Xue et al., 2020; Wang et al., 2021). 如:Tremblay et al.(2017)对Saint-Honoré碳酸岩杂岩体中烧绿石和铌铁矿进行精细矿物学研究,揭露了多期次Nb富集过程;郑硌等(2014)通过对安哥拉Bonga碳酸岩杂岩体中烧绿石进行系统的矿物学和化学成分研究,查明了岩浆-热液过程中Nb元素的地球化学行为;Xue et al.(2020)通过对华阳川碳酸岩型Nb-U矿床中铌钛铀矿的精细结构研究,揭示了Nb和U的来源及富集过程.

湖北庙垭碳酸岩杂岩体因富集铌、稀土而被视为中国超大型铌-稀土矿床储备基地(0.93 Mt@0.11% Nb2O5和 1.21 Mt@1.02% TREO,鲁显松等,2021). 前人对其进行过大量的年代学(Xu et al., 2014Ying et al., 2017Zhu et al., 2017应元灿,2018Su et al., 2019Zhang et al., 2019b)、成矿地质特征和同位素地球化学等方面的研究(李石,1980吴敏等,2011 ;Xu et al., 2014, 2015晁会霞等,2016应元灿,2018Su et al., 2019Zhang et al., 2019a),表明碳酸岩岩浆起源于深部地幔,形成于富CO2硅酸盐熔体的液态不混溶作用(Zhu et al., 2017; 应元灿,2018; Su et al., 2019). 此外,部分学者通过对磷灰石、独居石和氟碳(钙)铈矿等稀土矿物进行原位矿物分析研究,厘定了庙垭矿床中稀土在岩浆-热液过程中的富集机制(Xu et al., 2015Zhang et al., 2019bYing et al., 2020). 然而,关于庙垭碳酸岩型Nb-REE矿床中Nb元素的富集机理研究仍较为薄弱. 因此,本文在系统的野外调查和岩相学观察的基础上,进行岩石学、矿物学和矿物化学研究,旨在解决庙垭碳酸岩杂岩体中Nb的赋存状态及富集机制,进而深化对秦岭造山带区域铌成矿规律的理解,同时也为下一步找矿及开采提供理论依据.

1 地质背景

秦岭造山带是横亘中国大陆中部的中央造山系的重要组成部分,具有复杂的物质组成和结构构造(张国伟等,1995). 从北向南,秦岭造山带可划分为华北陆块南缘、北秦岭、南秦岭和扬子陆块北缘4个构造单元(王宗起等,2009图1a1b). 在早古生代时期,商丹洋壳北向俯冲并与华北陆块发生碰撞拼接,与此同时,勉略洋逐渐打开形成南秦岭独立微陆块;从晚古生代至中生代,勉略洋壳开始向北俯冲,导致南秦岭微陆块与扬子陆块发生碰撞拼接;随后秦岭地区造山运动基本结束,大地构造格局基本完成(Dong et al., 2011). 本文研究区位于南秦岭地体,其夹持于商丹缝合带和勉略缝合带之间. 区域内出露的地层主要为震旦系耀岭河群和武当群,其次为下寒武统碳质绢云母片岩(李石,1980Wang et al., 2018). 区域内岩浆活动从新元古代到中生代均有发育,岩石以辉长岩和花岗岩为主,少量为古生代碱性岩-碳酸岩类. 碱性岩-碳酸岩包括紫阳-岚皋一带的基性岩脉群、竹溪地区的粗面质火山岩、庙垭碳酸岩杂岩体和随州-枣阳地区的碱性花岗岩等(王刚,2014 ;Xu et al., 2014, 2015杨成等,2017Wang et al., 2021).

本文的研究对象庙垭碳酸岩杂岩体位于南秦岭武当地块的西南缘,靠近勉略缝合带(图1b),主要受竹山-安康大断裂控制. 前人对该套杂岩体做过大量的同位素年代学研究,发现其存在两期成岩成矿作用,分别为岩浆期(450~430 Ma; Ying et al., 2017; Zhu et al., 2017; 应元灿,2018; Su et al., 2019)和热液期(240~230 Ma; Xu et al., 2014Ying et al., 2017, 2020应元灿,2018Zhang et al., 2019b). 此外,前人通过人工重砂和扫描电镜等手段发现庙垭碳酸岩杂岩体中显著富集铌、稀土矿物,如铌铁矿、铌金红石、烧绿石、独居石、氟碳(钙)铈矿、褐帘石等(李石,1990应元灿,2018).

2 野外地质及岩相学特征

2.1 岩体地质

庙垭碳酸杂岩体在平面上呈纺锤状出露于湖北竹山县得胜镇境内,长轴约3 km,短轴为0.5~0.8 km,总体沿NWW向展布(图1c),与区域构造线方向一致. 碳酸岩呈岩脉或岩株状侵入碱性正长岩中构成一个复合杂岩体,沿震旦系耀岭河组石英角斑岩和下寒武统梅子垭组绢云母片岩的构造脆弱带分布(图1c李石,1980晁会霞等,2016). 正长岩类分布面积大,占杂岩体90%以上,岩石类型包括正长岩、混染正长岩和正长斑岩;碳酸岩类常呈大小不等的透镜体或微细脉侵入正长岩类中(图2a2b),占杂岩体仅10%,主要由方解石碳酸岩、含碳方解石碳酸岩和铁白云石碳酸岩组成. 庙垭碳酸岩杂岩体经历的围岩蚀变主要有方解石化、绢云母化、黄铁矿化和萤石化等(晁会霞等,2016应元灿,2018).

2.2 岩相学特征

本文研究的正长岩类样品主要为混染正长岩(MY01-4,MY01-4-1和MY02-9). 岩石呈灰黑色,中细粒结构,块状构造(图2c),主要矿物为碱性长石(>80%)和少量的黑云母、方解石等,副矿物有锆石、磁铁矿、钛铁矿、黄铁矿、磷灰石等(图2e). 方解石和黑云母常产于原生结晶矿物的间隙中,为晚期热液充填的的产物(图2e).

本文研究的碳酸岩类样品主要为方解石碳酸岩(MY02-1和MY02-8). 岩石通常呈灰白色,中细粒结构,块状构造(图2d),主要由中细粒方解石组成(>85%),次要矿物和副矿物为黑云母、碱性长石、石英、磷灰石、钛铁矿、黄铁矿、独居石、铀烧绿石和铌金红石等(图2f). 磷灰石常呈自形-半自形,椭圆状,粒径为0.5~2 mm,含量较高(3%~5%).

庙垭混染正长岩中含铌矿物为铌金红石、Nb-Ti-Zr氧化物、Nb-Ti-Zr硅酸盐、富铀烧绿石以及铌钛铀矿;方解石碳酸岩中含铌矿物为铌金红石、铌铁矿、富铀烧绿石. 两种岩性中铌金红石均以自形-半自形结构产出,富铀烧绿石则以它形及交代结构为主. 为了探究上述含铌矿物的结构和化学成分变化,本文拟对其开展背散射观察、能谱分析及电子探针分析.

3 分析方法

本次研究选择了5个探针片进行实验分析,其中含铌矿物的扫描电镜背散射拍照与能谱分析均在中国地质大学(武汉)生物地质与环境地质国家重点实验室完成,扫描电镜仪器型号为VEGA3,能谱仪型号为AZtecOne XT. 矿物原位电子探针分析在武汉理工大学材料研究与测试中心和武汉上谱科技分析有限责任公司完成,仪器型号均为JEOL JXA-8230,实验过程配备15 kV加速电压、10 nA加速电流和5 μm束斑直径. 利用JEOL ZAF软件对所有标样进行自动校正,从而使实验精度控制在1%以内. 测试中所用标样为正长石(Ca)、硬玉(Si、Na、Al)、重晶石(Ba)、金红石(Ti)、磁铁矿(Fe)、橄榄石(Mn)、独居石(Ce、Nd、Th)、磷钇矿(Y)、磷灰石(F)、锆石(Zr)和合成金属氧化物(U、Ta、Nb)等.

4 测试结果

4.1 铌金红石

铌金红石是庙垭碳酸岩杂岩体重要的铌矿物之一,在方解石碳酸岩和混染正长岩中普遍可见. 在单偏光镜下,一般呈黑褐色或黑色,自形-半自形,粒径较大(200~500 μm),常分布于中细粒方解石之间(图3a3b). 铌金红石具有高的TiO2(85.9%~97.6%)和 Nb2O5含量(1.10%~3.35%,平均值为2.40%)以及低含量的FeOT(0.5%~1.27%,平均值为1.04%,表1).

4.2 含Nb-Ti-Zr矿物

含Nb-Ti-Zr矿物主要分布于混染正长岩中,主要由Nb-Ti-Zr氧化物和Nb-Ti-Zr硅酸盐组成. 在单偏光镜下,Nb-Ti-Zr氧化物呈黑色不透明,长柱状或厚板状,自形-半自形,粒径较大(长×宽约0.5×1.0 mm),普遍与早期自形方解石共生,可能是早期岩浆结晶的产物(图3c~3e). 在背散射图像下,Nb-Ti-Zr硅酸盐矿物呈亮色细粒状赋存于Nb-Ti-Zr氧化物的裂隙或边缘,粒度极其细小(5~50 μm)(图3d3e). Nb-Ti-Zr氧化物局部被钠长石细脉沿裂隙不规则交代,空间上与氟磷灰石伴生,氟磷灰石间隙及边缘分布脉状独居石(图3f),以上特征可能与晚期流体交代作用有关.

Nb-Ti-Zr氧化物具有高的TiO2(20.47%~47.49%,平均值为33.07%)、ZrO2(11.48% ~49.41%,平均值为36.00%)和Nb2O5(8.58%~18.64%,平均值为13.87%)以及低的SiO2(0.10%~7.62%,平均值为4.85%;表2). 与Nb-Ti-Zr氧化物相比,Nb-Ti-Zr硅酸盐显示出更高的ZrO2(37.47%~55.15%,平均值为49.11%)和SiO2(20.88%~29.31%)以及更低的TiO2(5.84%~26.78%,平均值为14.78%)和Nb2O5(1.75%~6.00%,平均值为3.65%).

4.3 铌铁矿

铌铁矿是庙垭碳酸岩杂岩体重要的工业铌矿物,主要产出于灰白色中细粒方解石碳酸岩中. 在BSE图像中(图3g~3i),铌铁矿呈不规则它形粒状,粒度极小(5~15 μm),分布于方解石的间隙之中,空间上与含Nb-Ti-Zr矿物紧密共生;以含Si-Fe-Nb细脉相连,可能与后期热液交代密切相关. 电子探针数据结果显示(表2),铌铁矿具有高的Nb2O5和FeOT(72.30%~75.75%和18.52%~18.81%)以及低的Ta2O5和MnO(1.30%~6.45%和1.86%~2.27%).

4.4 烧绿石超族矿物

烧绿石超族矿物多为八面体单形,集合体为粒状,化学通式为(Ca, Na)(Nb, Ta)2O6(OH, F, O),主要矿物族类型有烧绿石族、细晶石族、贝塔石族、锑钙石族和脆钨石族(李国武等,2014). 烧绿石超族矿物一般产于碳酸岩、碱性岩、伟晶岩和富Li-F花岗岩中,是主要的铌工业矿物. 庙垭杂岩体中烧绿石超族矿物主要为富铀烧绿石和铌钛铀矿,其特征描述如下.

4.4.1 富铀烧绿石

方解石碳酸岩中烧绿石呈浅黄色、黄褐色,不规则粒状,粒径为25~50 μm,常与方解石共生(图4a4b). 在背散射图像下,烧绿石可划分为两类:类型1呈它形,边缘常被次生钛铁矿交代(图4c);类型2发育明显的交生结构,被磷钇矿呈不规则交代(图4d),两种类型的烧绿石可能受到后期热液蚀变的改造形成.

本文研究对象富铀烧绿石的化学成分见表4. 类型1烧绿石具有明显较高的Nb2O5(35.42%~36.45%)、Ta2O5(8.36%~9.22%)和低的TiO2含量(10.41%~10.85%)(表3),属于烧绿石族矿物,这与Nb-Ta-(Ti+Zr)三角图(Atencio et al., 2010)显示结果是一致的. 另外,类型1烧绿石也具有较高的UO2含量(25.68%~26.76%),属于富铀烧绿石. 类型2烧绿石由于内部结构复杂,无法满足电子探针的测试精度,为此进行了EDS能谱分析,结果显示其相对富集Nb、Ta、U、Ti,化学成分应与类型1烧绿石较为一致,也属于富铀烧绿石族矿物.

4.4.2 铌钛铀矿

铌钛铀矿主要赋存于庙垭混染正长岩中,单偏光镜下核部呈黄褐色,粒度为50~100 μm,多呈不规则粒状或近椭圆状产出(图5a). 在背散射图下,铌钛铀矿呈明显的港湾状和残骸状,局部含有粒度极小的含铀矿物颗粒,平面上从内到外依次与赤铁矿、黄铁矿共生(图5a5b),显示明显后期热液交代特征. EDS能谱仪显示铌钛铀矿以富Nb、Ti和U为特征(图5c),与电子探针测试结果基本一致(Nb2O5、TiO2和UO2平均值分别为14.70%、35.62%和32.05%,项目组未发表数据).

5 讨论

以往的研究对Nb富集成矿的机制主要存在两种认识. 多数学者认为在碱质/碳酸质岩浆系统中,方解石和钾长石等贫铌矿物的早期结晶会导致残余熔体中Nb含量逐渐富集,最终形成独立的含铌矿物(Moghazi et al., 2011Huang et al., 2014; Stepanov et al., 2014; Spandler and Morris, 2016),如澳大利亚Toongi碱性岩型 Nb-REE矿床(Spandler and Morris, 2016)和新疆波孜果尔碱性花岗岩型Nb-Ta矿床(Huang et al., 2014). 一些学者则认为铌富集与后期热液交代作用有关,晚期富Na、F流体沿裂隙交代早期结晶含铌矿物,发生热液交代作用,从而导致残余流体成分改变,铌络合物瓦解,促使富铌矿物沉淀析出(王汾连等,2012Tremblay et al., 2017杨成等,2017Yang et al., 2020Zhu et al., 2020). 如加拿大Saint Honore Nb-REE矿床(Tremblay et al., 2017)、中国白云-鄂博REE-Nb-Fe矿床(Liu et al., 2020)和巴尔哲Nb-REE-Zr矿床(Yang et al., 2020杨武斌等,2011)被认为是流体交代成因的代表.

庙垭碳酸岩杂岩体普遍具有高的全岩铌含量(平均值约为700×10-6,最高可达8 269×10-6图6a),显示明显的铌钽矿化特征(Xu et al., 2014, 2015Zhu et al., 2017Su et al., 2019; Zhang et al., 2019b). 大量学者对该杂岩体中锆石、磷灰石、独居石、铌铁矿、晶质铀矿等矿物进行了详细的年代学研究(Xu et al., 2014Zhu et al., 2017Ying et al., 2017, 2020应元灿, 2018Su et al., 2019; Zhang et al., 2019b),发现其存在两期成岩成矿作用(分别为430~450 Ma和230~240 Ma;图6b). 在前人的年代学研究基础上,本文对庙垭碳酸杂岩体的岩石学特征、铌矿物赋存状态以及蚀变矿物组合的分析结果表明,其Nb富集存在明显的早期岩浆阶段和后期热液交代阶段.

5.1 结晶分异对Nb富集的影响

在岩浆过程中,铌对多数矿物而言具有相对高的相容性,因此可以在多种矿物中以不同形式和不同量级存在(Linnen and Keppler, 1997Mitchell, 2015). 烧绿石和铌铁矿作为碳酸岩-碱性岩型铌矿床中主要的铌矿物,是反映其含Nb能力的重要标志(Chakhmouradian et al., 2015). 其次,部分Nb以类质同象的形式进入金红石、榍石和钛铁矿等含Ti矿物中(Mitchell,2015). 在庙垭Nb-REE矿床中,含铌矿物以铌铁矿和铌金红石为主(李石,1990Xu et al., 2015Ying et al., 2017应元灿,2018),而烧绿石则分布稀少,显著不同于世界上其他碳酸岩型铌矿床(Mitchell, 2015).

庙垭铌金红石具有近四边形的横截面,自形-半自形,常与早期方解石相互伴生,显示典型的岩浆期矿物特征. 庙垭铌金红石具有相对高的Nb2O5含量(1.09%~3.35%),与北大巴山粗面质火山岩中岩浆成因的铌金红石相似(Nb2O5=0.75%~2.34%, Nie et al., 2019),表明它们是岩浆早期结晶的产物. 在TiO2与FeO+Nb2O5+V2O5图解上(图7a),两者显示明显的线性负相关,表明铌金红石存在的离子替位为:Fe2++2(Nb, V)5+=3Ti4+,该机制是Nb在岩浆演化过程中进入金红石晶格的主要方式(Cerny et al., 2007Nie et al., 2020). Nb-Ti-Zr氧化物常呈自形长柱状,与方解石、钾长石和氟磷灰石等早期矿物共生,为岩浆结晶的产物. 它们也具有高含量的Nb2O5(~19%)、TiO2(~48%)和ZrO2(~49 %),表明残余熔体中强烈富集Nb、Zr等元素(图8bAckerman et al., 2015). 另外,在岩相学的观察的基础上,富铀烧绿石及铌钛铀矿与原生方解石伴生,并且呈现出梯形状或者椭圆状的假晶(图4b图5b),推测可能在岩浆晚期阶段结晶出原生的富铀烧绿石与铌钛铀矿,这与前人在庙垭地区观察的原生含铌矿物形态一致(Xu et al., 2015Wu et al., 2021).

以往的研究表明,高含量挥发分(F、H2O等)可以有效增大高场强元素(Nb、Ta、Zr、U等)在碱质/碳酸岩岩浆中的溶解度和运移能力,同时降低其液相线温度、活度系数和晶体/熔体分配系数,使之成为强不相容元素(Lukyanova et al., 2017). 最近的研究也认为Nb元素的大量运移要在高浓度F溶液中才能进行(Dumanska-Słowik et al., 2014). 实验岩石学研究也表明,在0.1 GPa CaCO3-Ca(OH)2-NaNbO3岩浆体系中,含F溶液溶解Nb的能力最高可达13.8%(Mitchell and Kjarsgarrd, 2004). 庙垭碳酸岩杂岩体中含有大量岩浆氟磷灰石(2.82%~3.76%,项目组未发表数据),表明原始碳酸岩岩浆具有高的F含量(Brenan, 1993). 基于磷灰石的矿物/熔体分配系数(Webster et al., 2009),计算获得获得庙垭杂岩体中初始熔体的F含量为2 119×10-6~2 947×10-6,与邻区竹溪富铌粗面岩初始熔体中F的含量基本一致(123×10-6~3 090×10-6Wang et al., 2021),表明其起源于富F、Nb的地幔源区,这也是庙垭杂岩体显示铌富集的基本原因(Wang et al., 2018Wang et al., 2021). 其次,随着早期的氟磷灰石的大量结晶,造成庙垭碱性熔体中F的含量显著降低,从而诱发早期的含铌矿物的结晶(如铌金红石、Nb-Ti-Zr氧化物等),这与本文岩相学观察的现象一致(图3c). 另外,U作为强不相容元素,在岩浆演化晚期高度富集(Lukyanova et al., 2017),并且随着岩浆演化过程中Nb元素的不断消耗,晚期残余熔体表现相对富U贫Nb的特征,这一定程度为庙垭碳酸岩杂岩体岩浆作用晚期烧绿石族矿物(如:富铀烧绿石、铌钛铀矿)的结晶创造了有利的条件(Wu et al., 2021).

综上,本文认为庙垭杂岩体起源于原始富Nb、F的岩浆,随着贫铌矿物(如方解石、钾长石、氟磷灰石)的持续分离结晶,残余熔体中Nb含量将逐渐升高,从岩浆早期至晚期阶段结晶出原生含铌金红石、Nb-Ti-Zr氧化物、铌铁矿、富铀烧绿石以及铌钛铀矿等含铌矿物.

5.2 热液交代对Nb富集的影响

虽然部分学者认为Nb富集主要发生在岩浆过程,但是Nb矿化与后期热液交代作用也密切相关(Liu et al., 2020). 碳酸岩常被后期钠长石细脉、方解石细脉和萤石细脉等切穿(晁会霞等,2016),该特征与美国Moutain Pass Nb-REE矿床十分相似,表明庙垭碳酸岩杂岩体经历了后期富挥发分(CO2、F等)流体的强烈交代蚀变. 在背散射图像下,MY02-9富铌样品中可见磷灰石裂隙内或者边缘见明显的脉状或者粒状集合体形式的独居石,这一定程度上证明后期铌受热液改造与三叠纪稀土富集的时限基本一致(图3f). 另外,近年来大量学者在年代学上也证明了庙垭碳酸岩杂岩体中三叠纪的热液活动与Nb富集具有一定的成因联系(图6b应元灿,2018Wu et al., 2021),如应元灿(2018)对庙垭杂岩体的方解石碳酸岩基质中的铌铁矿进行了U-Pb定年,获得了(233±5) Ma的成矿年龄,这一定程度上限定了庙垭碳酸岩杂岩体的铌成矿时代;Wu et al. (2021) 对庙垭杂岩体中富铀烧绿石的蚀变产物晶质铀矿进行了U-Th-Pb定年,获得了铌发生二次迁移的时间为(235±4) Ma,间接说明了热液交代过程可能存在对铌的二次富集.

在本次研究中,庙垭碳酸岩杂岩体中的铌铁矿产出与方解石矿物的间隙之中,空间上与受交代的Nb-Ti-Zr矿物空间上具有紧密联系,应属于后期热液交代的产物. 化学成分上具有高的Nb与Fe含量(1.87~1.93 apfu与0.88~0.91 apfu),并且Mn/(Mn+Fe)和Ta/(Nb+Ta)比值(0.09~0.11和0.01~0.03)与Wu et al.(2021)获得的热液型铌铁矿的元素比值(0.03~0.10和0.01~0.04)几乎一致,均属于晚期热液交代的产物. 庙垭碳酸岩杂岩体中Nb-Ti-Zr硅酸盐产出于Nb-Ti-Zr氧化物的裂隙内或边缘,伴生后期钠长石细脉,且相对富Si贫Nb(图7b7c). 这些特征表明庙垭碳酸岩杂岩体经历了强烈的后期热液蚀变,流体成分以富Na、Si为特征,而Nb-Ti-Zr硅酸盐可能为Nb-Ti-Zr氧化物受后期热液交代的产物. 庙垭碳酸岩杂岩体中的富铀烧绿石,结构上以不规则粒状或交生结构产出居多,显示明显后期热液交代残余特征. 在化学成分上,类型1富铀烧绿石具有相对低的Nb2O5(35.42%~36.45%)和高的Ta2O5(8.36%~9.22%)含量,与庙垭典型的原生富铀烧绿石(Nb2O5=34.12%~38.74%;Ta2O5=2.72%~4.60%;Wu et al., 2021)成分有所不同(图7d). 其次,类型1富铀烧绿石也具有低的Na(低于检测限)和F含量(0.32%~0.79%),高的A位晶格空缺(0.55~0.74 apfu),而原生富铀烧绿石展示明显的高Na(0.36~0.61 apfu)、F(0.97~2.04 apfu)及低的A位晶格空缺(0~0.01 apfu)(Wu et al., 2021)(图7e),以上化学成分的差异可能与原生富铀烧绿石在热液交代过程中Na、F、Nb等元素发了一定迁移有关,此时的热液流体可能具有贫Na+、HF及富水的物理化学环境(Lumpkin and Ewing, 1995). 另外,在烧绿石成因判别图解上(图7f),所有点基本投落在热液型的区域,表示原生烧绿石受到后期热液流体强烈交代(Tremblay et al., 2017). 综合其结构及化学成分的变化,本文认为庙垭杂岩体中富铀烧绿石受到明显的后期热液改造,矿物内部元素发生了一定的重置. 另外,在图7d7e上,类型1烧绿石的Nb2O5与Ta2O5A□与Na+Ca显示一定的负相关,表明其存在热液交代过程中存在离子替换机制为:Nb5+→Ta5+和 Na++Ca2+A□(郑硌等,2014). 庙垭碳酸岩中的铌钛铀矿常呈残骸状、港湾状,但仍然保留粒状假晶,与富铀烧绿石一样也显示明显的热液交代残余结构特征(图5b). 在扫描电镜观察下,铌钛铀矿平面上依次与赤铁矿和黄铁矿伴生,并且在其内部或边缘可观察到细小的含铀矿物包裹体,本文认为此现象可能与后期黄铁矿化作用有关. 当含Fe2+的热液流体交代铌钛铀矿时,可能发生了氧化还原反应,从而生成了赤铁矿及含铀氧化物等(图5b高龙刚等,2019). 这一定程度上可能指示后期热液流体中可能含有Fe、S等离子. 前人实验学表明富Fe的流体有利于流体中Nb、U等元素的迁移(Wu et al., 2017),该也与前人在庙垭杂岩体发现有纳米级Fe-Si-U-Nb纳米级细脉基本一致(Wu et al., 2021).

大量年代学研究表明,庙垭杂岩体在三叠纪发生了一次大规模的热液改造成矿事件,与区域上的Nb、REE矿化关系密切(Ying et al., 2017, 2020Zhu et al., 2017应元灿,2018Wu et al., 2021). 因此,本文认为此次热液活动产生的富Fe、Si、Na流体可能沿裂隙交代了早先结晶的含铌矿物(富铀烧绿石、铌钛铀矿、Nb-Ti-Zr氧化物等),导致残余流体中Nb等元素含量升高,最终迁移富集成矿,但是可以观察该次热液改造事件对铌Nb富集的影响较弱(Wu et al., 2021).

5.3 庙垭铌矿化模式探讨

湖北庙垭碳酸岩杂岩体因稀土矿化而闻名,近年来精细的矿物学研究厘定了稀土不同阶段的矿化过程(Xu et al., 2015; Zhang et al., 2019b;Ying et al., 2020),而对其铌矿化模式鲜有报道. 结合前人(李石,1980张国伟等,1995Xu et al., 2015晁会霞等,2016Zhu et al., 2017;应元灿,2018; Su et al., 2019; Zhang et al., 2019b)以及本文的研究成果,将庙垭铌矿化模式总结如下:(1)早古生代时期(450~430 Ma),富集岩石圈地幔低程度部分熔融产生富集HFSEs和REE等不相容元素的碱质/碳酸岩岩浆,然后经高程度的结晶分异和液相不混溶作用形成了正长岩类和碳酸岩类岩石(Su et al., 2019). 在岩浆演化过程中,早期贫铌矿物(方解石、钾长石等)分离结晶导致残余熔体中Nb含量逐渐升高,随后结晶形成原生铌金红石、Nb-Ti-Zr氧化物、富铀烧绿石、铌钛铀矿(图8a~8c);(2)中生代时期(240~230 Ma),受南秦岭地体大规模构造-热事件的影响,庙垭碳酸岩杂岩体经历了一定程度的热液蚀变(李石,1980),在此期间产生的富Na、Si流体叠加改造了早期的含铌矿物(如:Nb-Ti-Zr氧化物、富铀烧绿石、铌钛铀矿)并导致其溶解,经流体迁移沉淀形成含铌矿物(如:Nb-Ti-Zr硅酸盐矿物、铌铁矿)(图8d).

6 结论

(1)庙垭混染正长岩中含铌矿物主要为铌金红石、富铀烧绿石、铌钛铀矿、含Nb-Ti-Zr矿物;方解石碳酸岩中含铌矿物主要为铌金红石、铌铁矿、富铀烧绿石.

(2)庙垭碳酸岩杂岩体中Nb富集过程与古生代岩浆作用关系密切. 早期碱性岩浆中贫铌矿物(方解石、钾长石等)大量结晶,导致残余熔体中Nb元素强烈富集,从而诱发原生铌金红石、富铀烧绿石、铌钛铀矿、含Nb-Ti-Zr氧化物的结晶.

(3)庙垭碳酸岩杂岩体受三叠纪热液蚀变影响,富Fe、Na、Si等流体交代早期含铌矿物(Nb-Ti-Zr氧化物、富铀烧绿石、铌钛铀矿)后,经溶解、迁移、沉淀而形成次生含铌矿物(如:Nb-Ti-Zr硅酸盐、铌铁矿),但后期热液对Nb富集的影响较弱.

(4)庙垭碳酸岩杂岩体中富F矿物(磷灰石、黑云母等)的大量结晶,表明其初始岩浆中强烈富集不相容元素F,这为富铌矿物的结晶(富铀烧绿石、铌钛铀矿等)创造了有利的条件.

参考文献

[1]

Ackerman, L., Ulrych, J., Řanda, Z., et al., 2015. Geochemical Characteristics and Petrogenesis of Phonolites and Trachytic Rocks from the České Středohoří Volcanic Complex, the Ohře Rift, Bohemian Massif. Lithos, 224: 256-271. https://doi.org/10.1016/j.lithos.2015.03.014

[2]

Atencio, D., Andrade, M. B., Christy, A. G., et al., 2010. The Pyrochlore Supergroup of Minerals: Nomenclature. The Canadian Mineralogist, 48(3): 673-698. https://doi.org/10.3749/canmin.51.5.803

[3]

Brenan, J., 1993. Kinetics of Fluorine, Chlorine and Hydroxyl Exchange in Fluorapatite. Chemical Geology, 110(1):195-210. https://doi.org/10.1016/0009-2541(93)90254-G

[4]

Cerny, P., Novak, M., Chapman, R., et al., 2007. Subsolidus Behavior of Niobian Rutile from the Písek Region, Czech Republic: a Model for Exsolution in W- and Fe2+ >> Fe3+-Rich Phases. Journal of Geosciences, 52(1-2): 143-159. https://doi.org/10.3190/jgeosci.008

[5]

Chakhmouradian, A. R., Reguir, E. P., Kressall, R. D., et al., 2015. Carbonatite-Hosted Niobium Deposit at Aley, Northern British Columbia (Canada): Mineralogy, Geochemistry and Petrogenesis. Ore Geology Reviews, 64:642-666. https://doi.org/10.1016/j.oregeorev. 2014. 04.020

[6]

Chao, H., Su, S., Yang, X., et al., 2016. Research on the Geological Characteristics of the Miaoya REE Deposit, Hubei Province. Earth Science Frontiers, 23(4): 102-108 (in Chinese with English abstract).

[7]

Dong, Y. P., Zhang, G. W., Neubauer, F, et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3), 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002

[8]

Dumanska-Słowik, M., Pieczka, A., Tempesta, G., et al., 2014. “Silicified” Pyrochlore from Nepheline Syenite (Mariupolite) of the Mariupol Massif, SE Ukraine: A New Insight into the Role of Silicon in the Pyrochlore Structure. American Mineralogist, 99(10): 2008-2017. https://doi.org/10.2138/am-2014-4896

[9]

Dostal, J., Kontak, D.J., Karl, S.M., 2014. The Early Jurassic Bokan Mountain Peralkaline Granitic Complex (Southeastern Alaska): Geochemistry, Petrogenesis and Rare-Metal Mineralization. Lithos, 202:395-412. https://doi.org/10.1016/j.lithos.2014.06.005

[10]

Gao, L. G., Chen, Y. W., Bi, X. W., et al., 2019. Chronology and Mineral Chemistry of the Uranium Minerals in Huayangchuan Uranium-Niobium Deposit, Shaanxi Province and Its Implications for Uranium Mineralization. Acta Geologica Sinica, 93(9), 2273-2291 (in Chinese with English abstract).

[11]

Huang, H., Zhang, Z., Santosh, M., et al., 2014.Geochronology, Geochemistry and Metallogenic Implications of the Boziguo'er Rare Metal-Bearing Peralkaline Granitic Intrusion in South Tianshan, NW China. Ore Geology Reviews, 61: 157-174. https://doi.org/10.1016/j.oregeorev.2014.01.011

[12]

Li, G. G., Yang, G. M., Xiong, M., 2014. A New Mineral Classification and of Pyrochlore Super-Group Characteristics of Pyrochlore Super-Group Minerals in China. Acta Mineralogica Sinica, 34(2): 153-158 (in Chinese with English abstract).

[13]

Linnen, R. L., Keppler, H., 1997. Columbite Solubility in Granitic Melts: Consequences for the Enrichment and Fractionation of Nb and Ta in the Earth’s Crust. Contributions to Mineralogy and Petrology, 128:213-227. https://doi.org/10.1007/s004100050304

[14]

Li, S., 1980. Geochemical Features and Petrogenesis of Miaoya Carbonatites, Hubei Province. Chinese Journal of Geochemistry, 1(4): 409-420 (in Chinese with English abstract).

[15]

Li, S., 1990. Age and Genesis of the Alkaline Rocks in Northern Hubei Province. Acta Petrologica Sinica, 6(5): 286-292 (in Chinese with English abstract).

[16]

Li, Z. D., Li, S. P., Guo, H., et al., 2022. Geochemical, U-Pb Age and Nd-Isotopic Characteristics of Titanite in Alkaline Rocks from Dazhuang Nb-REE Deposit in Southern Margin of North China Craton. Earth Science, 47(04): 1415-1434 (in Chinese with English abstract).

[17]

Liu, S., Ding, L., Fan, H. R., et al., 2020. Hydrothermal Genesis of Nb Mineralization in the Giant Bayan Obo REE-Nb-Fe Deposit (China): Implicated by Petrography and Geochemistry of Nb-Bearing Minerals. Precambrian Research, 348:105864.https://doi.org/10.1016/j.precamres. 2020.105864

[18]

Lu, X. S., Zhou, B., Sun, T., et al., 2021. Research and Exploration Progress of Alkaline Carbonatite and Related Nb-Ta-REE Deposits in Northwest Hubei Province. Resources Environment & Engineering, 35(03):279-284+312 (in Chinese with English abstract).

[19]

Lukyanova, E. V., Akinfiev, N. N., Zotov, A. V, et al., 2017. Niobium in Hydrothermal Systems Related to Alkali Granites: Thermodynamic Description of Hydroxo and Hydroxofluoride Complexes. Geology of Ore Deposits, 59(4): 305-314. https://doi.org/10.1134/S1075701517040031

[20]

Lumpkin, G.R., Ewing, R.C., 1995. Geochemical Alteration of Pyrochlore Group Minerals: Pyrochlore Subgroup. American. Mineralist, 80:732-743.

[21]

Khromova, E. A., Doroshkevich, A. G., Sharygin, V. V., et al., 2017. Compositional Evolution of Pyrochlore-Group Minerals in Carbonatites of the Belaya Zima Pluton, Eastern Sayan. Geology of Ore Deposits, 59(8): 752-764. https://doi.org/10.1134/S1075701517080037

[22]

Mccreath, J. A., Finch, A. A., Herd, D. A., et al., 2013. Geochemistry of Pyrochlore Minerals from the Motzfeldt Center, South Greenland: The Mineralogy of a Syenite-Hosted Ta, Nb Deposit. American Mineralogist, 98(2-3): 426-438. https://doi.org/10.2138/am.2013.4068

[23]

Mitchell, R. H., Kjarsgaard, B. A., 2004. Solubility of Niobium in the System CaCO3-CaF2-NaNbO3 at 0.1 GPa Pressure: Implications for the Crystallization of Pyrochlore from Carbonatite Magma. Contributions to Mineralogy and Petrology, 148(3): 281-287. https://doi.org/10.1007/s00410-004-0603-1

[24]

Mitchell, R. H., 2015. Primary and Secondary Niobium Mineral Deposits Associated with Carbonatites. Ore Geology Reviews, 64: 626-641. https://doi.org/10.1016/j.oregeorev.2014.03.010

[25]

Migdisov, A., Williams-Jones, A. E., Brugger, J, et al., 2016. Hydrothermal Transport, Deposition, and Fractionation of the REE: Experimental Data and Thermodynamic Calculations. Chemical Geology, 439, 13-42. https://doi.org/10.1016/j.chemgeo.2016.06.005

[26]

Moghazi, A. M., Harbi, H. M., Ali, K. A., 2011. Geochemistry of the Late Neoproterozoic Hadb Adh Dayheen Ring Complex, Central Arabian Shield: Implications for the Origin of Rare-Metal-Bearing Post-Orogenic A-Type Granites. Journal of Asian Earth Sciences, 42:1324-1340. https://doi.org/10.1016/j.jseaes.2011.07.018

[27]

Nie, X., Wang, Z., Chen, L., et al., 2020. Mineralogical Constraints on Nb-REE Mineralization of the Zhujiayuan Nb (-REE) Deposit in the North Daba Mountain, South Qinling, China. Geological Journal, 55(6): 4845-4863. https://doi.org/10.1002/gj.3710

[28]

Schulz, K. J., Deyoung, J. H., Seal, R. R., et al., 2017. Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply. Geological Survey. https://doi.org/10.3133/pp1802

[29]

Sharygin, V. V., Sobolev, N. V., Channer, D. M. D. R., 2009. Oscillatory-Zoned Crystals of Pyrochlore-Group Minerals from the Guaniamo Kimberlites, Venezuela. Lithos, 112: 976-985. https://doi.org/10.1016/j.lithos.2009.03.049

[30]

Song, W. L., Xu, C., Wang, L. J., et al., 2013. Review of the Metallogenesis of the Endogenetic Rare Earth Elements Deposits Related to Carbonatite-Alkaline Complex. Acta Entiarum Naturalium Universitatis Pekinensis, 49(4): 725-740 (in Chinese with English abstract).

[31]

Spandler, C., Morris, C., 2016. Geology and Genesis of the Toongi Rare Metal (Zr, Hf, Nb, Ta, Y and REE) Deposit, NSW, Australia, and Implications for Rare Metal Mineralization in Peralkaline Igneous Rocks. Contributions to Mineralogy and Petrology, 171(12): 104. https://doi.org/10.1007/s00410-016-1316-y

[32]

Stepanov, A., Mavrogenes, J.A., Meffre, S., et al., 2014. The Key Role of Mica during Igneous Concentration of Tantalum. Contributions to Mineralogy and Petrology, 167:1-8. https://doi.org/10.1007/s00410-014-1009-3

[33]

Su, J. H., Zhao, X. F., Li, X. C., et al., 2019. Geological and Geochemical Characteristics of the Miaoya Syenite-Carbonatite Complex, Central China: Implications for the origin of REE-Nb-Enriched Carbonatite. Ore Geology Reviews, 113:103101. https://doi.org/10.1016/j.oregeorev.2019.103101

[34]

Tremblay, J., Bédard, L. P., Matton, G., 2017. Columbitization of Fluorcalciopyrochlore by Hydrothermalism at the Saint-Honoré Alkaline Complex, Québec (Canada): New Insights on Halite in Carbonatites. Ore Geology Reviews, 91: 695-707. https://doi.org/10.1016/j.oregeorev. 2017.08.027

[35]

Wang, F. L., Zhao, T. P., Chen, W., 2012. Advances in Study of Nb-Ta Ore Deposits in Panxi Area and Tentative Discussion on Genesis of These Ore Deposits. Mineral Deposits, 31(2): 293-308 (in Chinese with English abstract).

[36]

Wang, G., 2014. Metallogeny of the Mesozoic and Paleozoic Volcanic Igneous Event in Ziyang-Langao Areas, North Dabashan(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).

[37]

Wang, K., Wang, L. X., Ma, C. Q., et al., 2021. Mineralogy and Geochemistry of the Zhuxi Nb-Rich Trachytic Rocks, South Qinling (China): Insights into the Niobium Mineralization during Magmatic-Hydrothermal Processes. Ore Geology Reviews, 104346. https://doi.org/10.1016/j.oregeorev.2021.104346

[38]

Wang, L. X., Ma, C. Q., Zhang, C., et al., 2018. Halogen Geochemistry of I- and A-Type Granites from Jiuhuashan Region (South China): Insights into the Elevated Fluorine in A-Type Granite. Chemical Geology, 478:164-182. https://doi.org/10.1016/j.chemgeo.2017.09.033

[39]

Wang, Z. Q., Yan, Q. R., Yan. Z., et al., 2009. New Division of the Main Tectonic Units of the Qinling Orogenic Belt,Central China. Acta Geologica Sinica, 83(11): 5-24 (in Chinese with English abstract).

[40]

Webster, J. D., Tappen, C. M., Mandeville, C. W., 2009. Partitioning Behavior of Chlorine and Fluorine in the System Apatite-Melt-Fluid. II: Felsic Silicate Systems at 200 MPa. Geochimica et Cosmochimica Acta, 73(3): 559-581. https://doi.org/10.1016/j.gca.2008.10.034

[41]

Wu, B., Wang, R. C., Liu, X. D., et al., 2018. Chemical Composition and Alteration Assemblages of Eudialyte in the Saima Alkaline Complex, Liaoning Province, and Its Implication for Alkaline Magmatic-Hydrothermal Evolution. Acta Petrologica Sinica, 34(6): 1741-1757 (in Chinese with English abstract).

[42]

Wu, B., Wang, R. C., Guo, G. L., et al., 2020. Compositional Variations of Rinkite in the Saima Alkaline Complex, Liaoning Province, and Its Implications for Alkaline Magma Evolution. Earth Science, 45(2): 467-478 (in Chinese with English abstract).

[43]

Wu, B., Hu, Y. Q., Bonnetti, C., et al., 2021. Hydrothermal Alteration of Pyrochlore Group Minerals from the Miaoya Carbonatite Complex, Central China and Its Implications for Nb Mineralization. Ore Geology Reviews, 132: 104059. https://doi.org/10.1016/j.oregeorev.2021.104059

[44]

Wu, M., Xu, C., Wang, L. J., et al., 2011.A Preliminary Study on Genesis of REE Deposit in Miaoya. Acta Mineralogica Sinica, 31(3): 478-484 (in Chinese with English abstract).

[45]

Wu, M.Q., Samson, I.M., Zhang, D.H., 2017. Textural and Chemical Constrains on the Formation of Disseminated Granite-Hosted W-Ta-Nb Mineralization at the Dajishan Deposit, Nanling Range, Southeastern China. Economic Geology. 112:855-887.

[46]

Xu, C., Chakhmouradian, A. R., Taylor, R. N., et al., 2014. Origin of Carbonatites in the South Qinling Orogen: Implications for Crustal Recycling and Timing of Collision between the South and North China Blocks. Geochimica et Cosmochimica Acta, 143:189-206. https://doi.org/10.1016/j.gca.2014.03.041

[47]

Xu, C., Kynicky, J., Chakhmouradian, A. R., et al., 2015. A Case Example of the Importance of Multi-Analytical Approach in Deciphering Carbonatite Petrogenesis in South Qinling Orogen: Miaoya Rare-Metal Deposit, Central China. Lithos, 227: 107-121. https://doi.org/10.1016/j.lithos.2015.03.024

[48]

Xu, C., Zeng, L., Song, W. L., et al., 2017. Orogenic Carbonatite Petrogenesis and Deep Carbon Recycle. Bulletin of Mineralogy Petrology and Geochemistry, 36(2): 213-221 (in Chinese with English abstract).

[49]

Xue, S., Ling, M. X., Liu, Y. L., et al., 2020. The Formation of the Giant Huayangchuan U-Nb Deposit Associated with Carbonatite in the Qingling Orogenic Belt. Ore Geology Reviews, 122: 103498. https://doi.org/10.1016/j.oregeorev.2020.103498

[50]

Yang, C., Liu, C. X., Liu, W. L., et al., 2017. Geochemical Characteristics of Trachyte and Nb Mineralization Process in Tianbao Township, Zhuxi County,Southern Qinling. Acta Petrologica et Mineralogica, 36(5): 605-618 (in Chinese with English abstract).

[51]

Yang, W. B., Shang, Q., Zhao, Z. H., et al., 2011. Petrogenic and Metallogenic Action of the Alkaline Granitoids in Baerzhe Area: A Comparison Between Mineralized and Barren Plutons. Journal of Jilin University (Earth Science Edition), 41(6):1689-1704 (in Chinese with English abstract).

[52]

Yang, W. B., Niu, H. C., Li, N. B., et al., 2020. Enrichment of REE and HFSE during the Magmatic-Hydrothermal Evolution of the Baerzhe Alkaline Granite, NE China: Implications for Rare Metal Mineralization. Lithos, 358: 105411. https://doi.org/10.1016/j.lithos.2020.105411

[53]

Ying, Y. C., Chen, W., Lu, J., et al., 2017. In Situ U-Th-Pb Ages of the Miaoya Carbonatite Complex in the South Qinling Orogenic Belt, Central China. Lithos, 290: 159-171. https://doi.org/0.1016/j.lithos.2017.08.003

[54]

Ying, Y. C., 2018. Geochronology and Geochemistry of the Miaoya Carbonatite Complex (Hubei Province): Implications for Petrogenesis and Metallogenesis(Dissertation). China University of Geoscienc, Wuhan (in Chinese with English abstract).

[55]

Ying, Y. C., Chen, W., Simonetti, A., et al., 2020. Significance of Hydrothermal Reworking for REE Mineralization Associated with Carbonatite: Constraints from in situ Trace Element and C-Sr Isotope Study of Calcite and Apatite from the Miaoya Carbonatite Complex (China). Geochimica et Cosmochimica Acta, 280: 340-359. https://doi.org/10.1016/j.gca.2020.04.028

[56]

Zaitsev, A. N., Williams, C. T., Wall, F., et al., 2012. Evolution of Chemical Composition of Pyrochlore Group Minerals from Phoscorites and Carbonatites of the Khibina Alkaline Massif. Geology of Ore Deposits, 54(7): 503-515.

[57]

Zhang, D., Liu, Y., Pan, J., et al., 2019a. Mineralogical and Geochemical Characteristics of the Miaoya REE Prospect, Qinling Orogenic Belt, China: Insights from Sr-Nd-C-O Isotopes and LA-ICP-MS Mineral Chemistry. Ore Geology Reviews, 110: 102932. https://doi.org/10.1016/j.oregeorev.2019.05.018

[58]

Zhang, G.W., 1995. Orogenic Process and Dynamic Characteristics of Qinling Orogenic Belt. Sci. China (Ser. D), 26:193-200 (in Chinese with English abstract).

[59]

Zhang, W., Chen, W. T., Gao, J. F., et al., 2019b. Two Episodes of REE Mineralization in the Qinling Orogenic Belt, Central China: In-Situ U-Th-Pb Dating of Bastnäsite and Monazite. Mineralium Deposita, 54(8): 1265-1280. https://doi.org/10.1007/s00126-019-00875-7

[60]

Zheng, L., Gu, X. X., Zhang, Y. M., et al., 2014. Geochemical Compositions and Evolution of Pyrochlore and Their Relationships with Magmatic-Hydrothermal Processes in the Bonga Carbonatite-Type Nb Deposit, Huila Province, Angola. Earth Science Frontiers, 21(5): 69-89 (in Chinese with English abstract).

[61]

Zhu, J., Wang, L., Peng, S., et al., 2017. U-Pb Zircon Age, Geochemical and Isotopic Characteristics of the Miaoya Syenite and Carbonatite Complex, Central China. Geological Journal, 52(6):938-954. https://doi.org/10.1002/gj.2859

[62]

Zhu, Y. X., Wang, L. X., Ma, C. Q., et al., 2020. The Neoproterozoic Alkaline Rocks from Fangcheng Area, East Qinling (China) and Their Implications for Regional Nb Mineralization and Tectonic Evolution. Precambrian Research, 350: 105852. https://doi.org/10.1016/j.precamres.2020.105852

[63]

高龙刚, 陈佑纬, 毕献武, 等, 2019. 陕西华阳川铀铌矿床中铀矿物的年代学与矿物化学研究及其对铀成矿的启示. 地质学报, 93(9): 2273-2291.

[64]

李国武, 杨光明, 熊明, 等, 2014. 烧绿石超族矿物分类新方案及烧绿石超族矿物. 矿物学报, 34(2): 153-158.

[65]

李石, 1980. 湖北庙垭碳酸岩地球化学特征及岩石成因探讨. 地球化学, (4): 345-355.

[66]

李石, 1990.湖北庙垭正长岩—碳酸岩杂岩体铌和稀土元素赋存状态研究. 地质实验室, 6(5):286-292.

[67]

李志丹,李山坡,郭虎,等,2022. 华北克拉通南缘大庄铌-稀土矿床碱性岩中榍石的地球化学、U-Pb年龄和 Nd 同位素特征.地球科学, 47(4): 1415-1434.

[68]

鲁显松, 周豹, 孙腾, 等, 2021. 鄂西北地区碱性岩-碳酸岩及相关铌钽-稀土矿研究与勘查进展.资源环境与工程,35(3):279-284+312.

[69]

宋文磊, 许成, 王林均, 等, 2013.与碳酸岩碱性杂岩体相关的内生稀土矿床成矿作用研究进展. 北京大学学报:自然科学版, 4(4):725-725.

[70]

王汾连, 赵太平, 陈伟, 2012. 铌钽矿研究进展和攀西地区铌钽矿成因初探. 矿床地质, 31(2): 293-308.

[71]

王刚, 2014.北大巴山紫阳-岚皋地区古生代火山岩浆事件与中生代成矿作用(博士学位论文). 北京:中国地质大学.

[72]

王宗起, 闫全人, 闫臻, 等, 2009. 秦岭造山带主要大地构造单元的新划分. 地质学报, (11):5-24.

[73]

邬斌, 王汝成, 刘晓东, 等, 2018. 辽宁赛马碱性岩体异性石化学成分特征及其蚀变组合对碱性岩浆-热液演化的指示意义. 岩石学报, 34(6): 1741-1757.

[74]

邬斌, 王汝成, 郭国林, 等, 2020.辽宁赛马碱性岩体层硅铈钛矿化学成分变化及其对碱性岩浆演化的指示意义. 地球科学, 45(2): 467-478.

[75]

吴敏, 许成, 王林均, 等, 2011. 庙垭碳酸岩型稀土矿床成矿过程初探. 矿物学报, 31(003):478-484.

[76]

许成, 曾亮, 宋文磊,等, 2017. 造山带碳酸岩起源与深部碳循环. 矿物岩石地球化学通报, 36(2):213-221.

[77]

杨成, 刘成新, 刘万亮, 等, 2017. 南秦岭竹溪县天宝乡粗面岩地球化学特征与铌成矿. 岩石矿物学杂志, 36(5): 605-618.

[78]

杨武斌, 单强, 赵振华, 等, 2011. 巴尔哲地区碱性花岗岩的成岩和成矿作用:矿化和未矿化岩体的比较. 吉林大学学报(地球科学版), 41(6):1689-1704.

[79]

应元灿, 2018. 湖北庙垭碳酸岩杂岩体年代学和地球化学特征及成岩成矿过程(硕士学位论文). 武汉:中国地质大学.

[80]

张国伟, 张宗清, 董云鹏, 等, 1995. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义. 岩石学报, 11(2):101-114.

[81]

晁会霞, 苏生瑞, 杨兴科, 等, 2016. 湖北庙垭稀土矿床地质特征研究. 地学前缘, 23(4): 102-108.

[82]

郑硌, 顾雪祥, 章永梅, 等, 2014. 安哥拉Huila省Bonga碳酸岩型铌矿床烧绿石地球化学组成, 演化及其与岩浆热液作用过程的关系. 地学前缘, 21(5): 69-89.

基金资助

国家自然科学基金项目(42072082)

湖北省自然科学基金项目(2022CFB116)

核工业地质局地勘费项目(202107)

AI Summary AI Mindmap
PDF (9121KB)

202

访问

0

被引

详细

导航
相关文章

AI思维导图

/