湖北庙垭碳酸岩杂岩体中铌赋存状态及富集机制:矿物化学制约
王珂 , 王连训 , 朱煜翔 , 马昌前 , 黄宏业
地球科学 ›› 2024, Vol. 49 ›› Issue (02) : 594 -611.
湖北庙垭碳酸岩杂岩体中铌赋存状态及富集机制:矿物化学制约
Occurrences and Enrichment Mechanism of Niobium in Miaoya Carbonatite Complex, Hubei Province, China:Constrains from Mineral Chemistry
,
,
庙垭碳酸岩杂岩体位于南秦岭武当地块西南缘,主要由富铌、稀土的碳酸岩和正长岩组成,是我国第二大碳酸岩型铌矿床. 前人对碳酸岩中稀土元素的矿化机理进行了详细的研究,但铌元素的富集机制还尚未清楚. 因此对其开展了详细的岩石学、矿物学及矿物化学研究. 庙垭杂岩体主要由碳酸岩和正长岩组成,碳酸岩多呈岩脉或岩株状侵入正长岩中. 庙垭铌-稀土矿床含铌矿物主要有铌金红石、含Nb-Ti-Zr矿物、铌铁矿、富铀烧绿石和铌钛铀矿等. 铌金红石和Nb-Ti-Zr氧化物呈自形-半自形,Nb2O5含量较高(分别为1.10%~3.35%和8.58%~18.64%). Nb-Ti-Zr硅酸盐赋存于Nb-Ti-Zr氧化物裂隙内或沿其边缘分布,常与钠长石细脉伴生,Nb2O5含量为1.75%~6.00%. 铌铁矿呈它形细粒状结构,空间上与含Nb-Ti-Zr氧化物共生,显示较高的Nb2O5及FeO含量(72.30%~75.75%和18.52%~18.81%). 富铀烧绿石呈不规则粒状或者交生结构,具有较高含量的Nb2O5(35.42%~36.45%)和UO2(25.68%~26.76%),高的A位空缺值(0.55~0.74 apfu)和低的Na2O、F含量(低于检测线和0.32%~0.79%). 铌钛铀矿呈残骸状或椭圆状假晶,空间上依次伴生赤铁矿和黄铁矿,显著富集Nb2O5、UO2和TiO2. (结论). 综上,初步认为庙垭碳酸岩杂岩体中铌富集受控于岩浆和热液过程. 贫铌矿物和富F矿物在富Nb母岩浆中早先结晶导致残余熔体中Nb含量逐渐升高,最终结晶出铌金红石、Nb-Ti-Zr氧化物、富铀烧绿石、铌钛铀矿. 后期富Na、Si、Fe热液沿裂隙交代原生含铌矿物,经活化、迁移、沉淀形成了次生含铌矿物(Nb-Ti-Zr硅酸盐、铌铁矿等).
庙垭碳酸岩杂岩体 / 铌富集机制 / 结晶分异 / 热液交代 / 岩浆-热液过程 / 矿床学
Miaoya carbonatite complex / Nb enrichment mechanism / fractional crystallization / hydrothermal metasomatism / magmatic and hydrothermal processes / ore deposit
| [1] |
Ackerman, L., Ulrych, J., Řanda, Z., et al., 2015. Geochemical Characteristics and Petrogenesis of Phonolites and Trachytic Rocks from the České Středohoří Volcanic Complex, the Ohře Rift, Bohemian Massif. Lithos, 224: 256-271. https://doi.org/10.1016/j.lithos.2015.03.014 |
| [2] |
Atencio, D., Andrade, M. B., Christy, A. G., et al., 2010. The Pyrochlore Supergroup of Minerals: Nomenclature. The Canadian Mineralogist, 48(3): 673-698. https://doi.org/10.3749/canmin.51.5.803 |
| [3] |
Brenan, J., 1993. Kinetics of Fluorine, Chlorine and Hydroxyl Exchange in Fluorapatite. Chemical Geology, 110(1):195-210. https://doi.org/10.1016/0009-2541(93)90254-G |
| [4] |
Cerny, P., Novak, M., Chapman, R., et al., 2007. Subsolidus Behavior of Niobian Rutile from the Písek Region, Czech Republic: a Model for Exsolution in W- and Fe2+ >> Fe3+-Rich Phases. Journal of Geosciences, 52(1-2): 143-159. https://doi.org/10.3190/jgeosci.008 |
| [5] |
Chakhmouradian, A. R., Reguir, E. P., Kressall, R. D., et al., 2015. Carbonatite-Hosted Niobium Deposit at Aley, Northern British Columbia (Canada): Mineralogy, Geochemistry and Petrogenesis. Ore Geology Reviews, 64:642-666. https://doi.org/10.1016/j.oregeorev. 2014. 04.020 |
| [6] |
Chao, H., Su, S., Yang, X., et al., 2016. Research on the Geological Characteristics of the Miaoya REE Deposit, Hubei Province. Earth Science Frontiers, 23(4): 102-108 (in Chinese with English abstract). |
| [7] |
Dong, Y. P., Zhang, G. W., Neubauer, F, et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3), 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002 |
| [8] |
Dumanska-Słowik, M., Pieczka, A., Tempesta, G., et al., 2014. “Silicified” Pyrochlore from Nepheline Syenite (Mariupolite) of the Mariupol Massif, SE Ukraine: A New Insight into the Role of Silicon in the Pyrochlore Structure. American Mineralogist, 99(10): 2008-2017. https://doi.org/10.2138/am-2014-4896 |
| [9] |
Dostal, J., Kontak, D.J., Karl, S.M., 2014. The Early Jurassic Bokan Mountain Peralkaline Granitic Complex (Southeastern Alaska): Geochemistry, Petrogenesis and Rare-Metal Mineralization. Lithos, 202:395-412. https://doi.org/10.1016/j.lithos.2014.06.005 |
| [10] |
Gao, L. G., Chen, Y. W., Bi, X. W., et al., 2019. Chronology and Mineral Chemistry of the Uranium Minerals in Huayangchuan Uranium-Niobium Deposit, Shaanxi Province and Its Implications for Uranium Mineralization. Acta Geologica Sinica, 93(9), 2273-2291 (in Chinese with English abstract). |
| [11] |
Huang, H., Zhang, Z., Santosh, M., et al., 2014.Geochronology, Geochemistry and Metallogenic Implications of the Boziguo'er Rare Metal-Bearing Peralkaline Granitic Intrusion in South Tianshan, NW China. Ore Geology Reviews, 61: 157-174. https://doi.org/10.1016/j.oregeorev.2014.01.011 |
| [12] |
Li, G. G., Yang, G. M., Xiong, M., 2014. A New Mineral Classification and of Pyrochlore Super-Group Characteristics of Pyrochlore Super-Group Minerals in China. Acta Mineralogica Sinica, 34(2): 153-158 (in Chinese with English abstract). |
| [13] |
Linnen, R. L., Keppler, H., 1997. Columbite Solubility in Granitic Melts: Consequences for the Enrichment and Fractionation of Nb and Ta in the Earth’s Crust. Contributions to Mineralogy and Petrology, 128:213-227. https://doi.org/10.1007/s004100050304 |
| [14] |
Li, S., 1980. Geochemical Features and Petrogenesis of Miaoya Carbonatites, Hubei Province. Chinese Journal of Geochemistry, 1(4): 409-420 (in Chinese with English abstract). |
| [15] |
Li, S., 1990. Age and Genesis of the Alkaline Rocks in Northern Hubei Province. Acta Petrologica Sinica, 6(5): 286-292 (in Chinese with English abstract). |
| [16] |
Li, Z. D., Li, S. P., Guo, H., et al., 2022. Geochemical, U-Pb Age and Nd-Isotopic Characteristics of Titanite in Alkaline Rocks from Dazhuang Nb-REE Deposit in Southern Margin of North China Craton. Earth Science, 47(04): 1415-1434 (in Chinese with English abstract). |
| [17] |
Liu, S., Ding, L., Fan, H. R., et al., 2020. Hydrothermal Genesis of Nb Mineralization in the Giant Bayan Obo REE-Nb-Fe Deposit (China): Implicated by Petrography and Geochemistry of Nb-Bearing Minerals. Precambrian Research, 348:105864.https://doi.org/10.1016/j.precamres. 2020.105864 |
| [18] |
Lu, X. S., Zhou, B., Sun, T., et al., 2021. Research and Exploration Progress of Alkaline Carbonatite and Related Nb-Ta-REE Deposits in Northwest Hubei Province. Resources Environment & Engineering, 35(03):279-284+312 (in Chinese with English abstract). |
| [19] |
Lukyanova, E. V., Akinfiev, N. N., Zotov, A. V, et al., 2017. Niobium in Hydrothermal Systems Related to Alkali Granites: Thermodynamic Description of Hydroxo and Hydroxofluoride Complexes. Geology of Ore Deposits, 59(4): 305-314. https://doi.org/10.1134/S1075701517040031 |
| [20] |
Lumpkin, G.R., Ewing, R.C., 1995. Geochemical Alteration of Pyrochlore Group Minerals: Pyrochlore Subgroup. American. Mineralist, 80:732-743. |
| [21] |
Khromova, E. A., Doroshkevich, A. G., Sharygin, V. V., et al., 2017. Compositional Evolution of Pyrochlore-Group Minerals in Carbonatites of the Belaya Zima Pluton, Eastern Sayan. Geology of Ore Deposits, 59(8): 752-764. https://doi.org/10.1134/S1075701517080037 |
| [22] |
Mccreath, J. A., Finch, A. A., Herd, D. A., et al., 2013. Geochemistry of Pyrochlore Minerals from the Motzfeldt Center, South Greenland: The Mineralogy of a Syenite-Hosted Ta, Nb Deposit. American Mineralogist, 98(2-3): 426-438. https://doi.org/10.2138/am.2013.4068 |
| [23] |
Mitchell, R. H., Kjarsgaard, B. A., 2004. Solubility of Niobium in the System CaCO3-CaF2-NaNbO3 at 0.1 GPa Pressure: Implications for the Crystallization of Pyrochlore from Carbonatite Magma. Contributions to Mineralogy and Petrology, 148(3): 281-287. https://doi.org/10.1007/s00410-004-0603-1 |
| [24] |
Mitchell, R. H., 2015. Primary and Secondary Niobium Mineral Deposits Associated with Carbonatites. Ore Geology Reviews, 64: 626-641. https://doi.org/10.1016/j.oregeorev.2014.03.010 |
| [25] |
Migdisov, A., Williams-Jones, A. E., Brugger, J, et al., 2016. Hydrothermal Transport, Deposition, and Fractionation of the REE: Experimental Data and Thermodynamic Calculations. Chemical Geology, 439, 13-42. https://doi.org/10.1016/j.chemgeo.2016.06.005 |
| [26] |
Moghazi, A. M., Harbi, H. M., Ali, K. A., 2011. Geochemistry of the Late Neoproterozoic Hadb Adh Dayheen Ring Complex, Central Arabian Shield: Implications for the Origin of Rare-Metal-Bearing Post-Orogenic A-Type Granites. Journal of Asian Earth Sciences, 42:1324-1340. https://doi.org/10.1016/j.jseaes.2011.07.018 |
| [27] |
Nie, X., Wang, Z., Chen, L., et al., 2020. Mineralogical Constraints on Nb-REE Mineralization of the Zhujiayuan Nb (-REE) Deposit in the North Daba Mountain, South Qinling, China. Geological Journal, 55(6): 4845-4863. https://doi.org/10.1002/gj.3710 |
| [28] |
Schulz, K. J., Deyoung, J. H., Seal, R. R., et al., 2017. Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply. Geological Survey. https://doi.org/10.3133/pp1802 |
| [29] |
Sharygin, V. V., Sobolev, N. V., Channer, D. M. D. R., 2009. Oscillatory-Zoned Crystals of Pyrochlore-Group Minerals from the Guaniamo Kimberlites, Venezuela. Lithos, 112: 976-985. https://doi.org/10.1016/j.lithos.2009.03.049 |
| [30] |
Song, W. L., Xu, C., Wang, L. J., et al., 2013. Review of the Metallogenesis of the Endogenetic Rare Earth Elements Deposits Related to Carbonatite-Alkaline Complex. Acta Entiarum Naturalium Universitatis Pekinensis, 49(4): 725-740 (in Chinese with English abstract). |
| [31] |
Spandler, C., Morris, C., 2016. Geology and Genesis of the Toongi Rare Metal (Zr, Hf, Nb, Ta, Y and REE) Deposit, NSW, Australia, and Implications for Rare Metal Mineralization in Peralkaline Igneous Rocks. Contributions to Mineralogy and Petrology, 171(12): 104. https://doi.org/10.1007/s00410-016-1316-y |
| [32] |
Stepanov, A., Mavrogenes, J.A., Meffre, S., et al., 2014. The Key Role of Mica during Igneous Concentration of Tantalum. Contributions to Mineralogy and Petrology, 167:1-8. https://doi.org/10.1007/s00410-014-1009-3 |
| [33] |
Su, J. H., Zhao, X. F., Li, X. C., et al., 2019. Geological and Geochemical Characteristics of the Miaoya Syenite-Carbonatite Complex, Central China: Implications for the origin of REE-Nb-Enriched Carbonatite. Ore Geology Reviews, 113:103101. https://doi.org/10.1016/j.oregeorev.2019.103101 |
| [34] |
Tremblay, J., Bédard, L. P., Matton, G., 2017. Columbitization of Fluorcalciopyrochlore by Hydrothermalism at the Saint-Honoré Alkaline Complex, Québec (Canada): New Insights on Halite in Carbonatites. Ore Geology Reviews, 91: 695-707. https://doi.org/10.1016/j.oregeorev. 2017.08.027 |
| [35] |
Wang, F. L., Zhao, T. P., Chen, W., 2012. Advances in Study of Nb-Ta Ore Deposits in Panxi Area and Tentative Discussion on Genesis of These Ore Deposits. Mineral Deposits, 31(2): 293-308 (in Chinese with English abstract). |
| [36] |
Wang, G., 2014. Metallogeny of the Mesozoic and Paleozoic Volcanic Igneous Event in Ziyang-Langao Areas, North Dabashan(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). |
| [37] |
Wang, K., Wang, L. X., Ma, C. Q., et al., 2021. Mineralogy and Geochemistry of the Zhuxi Nb-Rich Trachytic Rocks, South Qinling (China): Insights into the Niobium Mineralization during Magmatic-Hydrothermal Processes. Ore Geology Reviews, 104346. https://doi.org/10.1016/j.oregeorev.2021.104346 |
| [38] |
Wang, L. X., Ma, C. Q., Zhang, C., et al., 2018. Halogen Geochemistry of I- and A-Type Granites from Jiuhuashan Region (South China): Insights into the Elevated Fluorine in A-Type Granite. Chemical Geology, 478:164-182. https://doi.org/10.1016/j.chemgeo.2017.09.033 |
| [39] |
Wang, Z. Q., Yan, Q. R., Yan. Z., et al., 2009. New Division of the Main Tectonic Units of the Qinling Orogenic Belt,Central China. Acta Geologica Sinica, 83(11): 5-24 (in Chinese with English abstract). |
| [40] |
Webster, J. D., Tappen, C. M., Mandeville, C. W., 2009. Partitioning Behavior of Chlorine and Fluorine in the System Apatite-Melt-Fluid. II: Felsic Silicate Systems at 200 MPa. Geochimica et Cosmochimica Acta, 73(3): 559-581. https://doi.org/10.1016/j.gca.2008.10.034 |
| [41] |
Wu, B., Wang, R. C., Liu, X. D., et al., 2018. Chemical Composition and Alteration Assemblages of Eudialyte in the Saima Alkaline Complex, Liaoning Province, and Its Implication for Alkaline Magmatic-Hydrothermal Evolution. Acta Petrologica Sinica, 34(6): 1741-1757 (in Chinese with English abstract). |
| [42] |
Wu, B., Wang, R. C., Guo, G. L., et al., 2020. Compositional Variations of Rinkite in the Saima Alkaline Complex, Liaoning Province, and Its Implications for Alkaline Magma Evolution. Earth Science, 45(2): 467-478 (in Chinese with English abstract). |
| [43] |
Wu, B., Hu, Y. Q., Bonnetti, C., et al., 2021. Hydrothermal Alteration of Pyrochlore Group Minerals from the Miaoya Carbonatite Complex, Central China and Its Implications for Nb Mineralization. Ore Geology Reviews, 132: 104059. https://doi.org/10.1016/j.oregeorev.2021.104059 |
| [44] |
Wu, M., Xu, C., Wang, L. J., et al., 2011.A Preliminary Study on Genesis of REE Deposit in Miaoya. Acta Mineralogica Sinica, 31(3): 478-484 (in Chinese with English abstract). |
| [45] |
Wu, M.Q., Samson, I.M., Zhang, D.H., 2017. Textural and Chemical Constrains on the Formation of Disseminated Granite-Hosted W-Ta-Nb Mineralization at the Dajishan Deposit, Nanling Range, Southeastern China. Economic Geology. 112:855-887. |
| [46] |
Xu, C., Chakhmouradian, A. R., Taylor, R. N., et al., 2014. Origin of Carbonatites in the South Qinling Orogen: Implications for Crustal Recycling and Timing of Collision between the South and North China Blocks. Geochimica et Cosmochimica Acta, 143:189-206. https://doi.org/10.1016/j.gca.2014.03.041 |
| [47] |
Xu, C., Kynicky, J., Chakhmouradian, A. R., et al., 2015. A Case Example of the Importance of Multi-Analytical Approach in Deciphering Carbonatite Petrogenesis in South Qinling Orogen: Miaoya Rare-Metal Deposit, Central China. Lithos, 227: 107-121. https://doi.org/10.1016/j.lithos.2015.03.024 |
| [48] |
Xu, C., Zeng, L., Song, W. L., et al., 2017. Orogenic Carbonatite Petrogenesis and Deep Carbon Recycle. Bulletin of Mineralogy Petrology and Geochemistry, 36(2): 213-221 (in Chinese with English abstract). |
| [49] |
Xue, S., Ling, M. X., Liu, Y. L., et al., 2020. The Formation of the Giant Huayangchuan U-Nb Deposit Associated with Carbonatite in the Qingling Orogenic Belt. Ore Geology Reviews, 122: 103498. https://doi.org/10.1016/j.oregeorev.2020.103498 |
| [50] |
Yang, C., Liu, C. X., Liu, W. L., et al., 2017. Geochemical Characteristics of Trachyte and Nb Mineralization Process in Tianbao Township, Zhuxi County,Southern Qinling. Acta Petrologica et Mineralogica, 36(5): 605-618 (in Chinese with English abstract). |
| [51] |
Yang, W. B., Shang, Q., Zhao, Z. H., et al., 2011. Petrogenic and Metallogenic Action of the Alkaline Granitoids in Baerzhe Area: A Comparison Between Mineralized and Barren Plutons. Journal of Jilin University (Earth Science Edition), 41(6):1689-1704 (in Chinese with English abstract). |
| [52] |
Yang, W. B., Niu, H. C., Li, N. B., et al., 2020. Enrichment of REE and HFSE during the Magmatic-Hydrothermal Evolution of the Baerzhe Alkaline Granite, NE China: Implications for Rare Metal Mineralization. Lithos, 358: 105411. https://doi.org/10.1016/j.lithos.2020.105411 |
| [53] |
Ying, Y. C., Chen, W., Lu, J., et al., 2017. In Situ U-Th-Pb Ages of the Miaoya Carbonatite Complex in the South Qinling Orogenic Belt, Central China. Lithos, 290: 159-171. https://doi.org/0.1016/j.lithos.2017.08.003 |
| [54] |
Ying, Y. C., 2018. Geochronology and Geochemistry of the Miaoya Carbonatite Complex (Hubei Province): Implications for Petrogenesis and Metallogenesis(Dissertation). China University of Geoscienc, Wuhan (in Chinese with English abstract). |
| [55] |
Ying, Y. C., Chen, W., Simonetti, A., et al., 2020. Significance of Hydrothermal Reworking for REE Mineralization Associated with Carbonatite: Constraints from in situ Trace Element and C-Sr Isotope Study of Calcite and Apatite from the Miaoya Carbonatite Complex (China). Geochimica et Cosmochimica Acta, 280: 340-359. https://doi.org/10.1016/j.gca.2020.04.028 |
| [56] |
Zaitsev, A. N., Williams, C. T., Wall, F., et al., 2012. Evolution of Chemical Composition of Pyrochlore Group Minerals from Phoscorites and Carbonatites of the Khibina Alkaline Massif. Geology of Ore Deposits, 54(7): 503-515. |
| [57] |
Zhang, D., Liu, Y., Pan, J., et al., 2019a. Mineralogical and Geochemical Characteristics of the Miaoya REE Prospect, Qinling Orogenic Belt, China: Insights from Sr-Nd-C-O Isotopes and LA-ICP-MS Mineral Chemistry. Ore Geology Reviews, 110: 102932. https://doi.org/10.1016/j.oregeorev.2019.05.018 |
| [58] |
Zhang, G.W., 1995. Orogenic Process and Dynamic Characteristics of Qinling Orogenic Belt. Sci. China (Ser. D), 26:193-200 (in Chinese with English abstract). |
| [59] |
Zhang, W., Chen, W. T., Gao, J. F., et al., 2019b. Two Episodes of REE Mineralization in the Qinling Orogenic Belt, Central China: In-Situ U-Th-Pb Dating of Bastnäsite and Monazite. Mineralium Deposita, 54(8): 1265-1280. https://doi.org/10.1007/s00126-019-00875-7 |
| [60] |
Zheng, L., Gu, X. X., Zhang, Y. M., et al., 2014. Geochemical Compositions and Evolution of Pyrochlore and Their Relationships with Magmatic-Hydrothermal Processes in the Bonga Carbonatite-Type Nb Deposit, Huila Province, Angola. Earth Science Frontiers, 21(5): 69-89 (in Chinese with English abstract). |
| [61] |
Zhu, J., Wang, L., Peng, S., et al., 2017. U-Pb Zircon Age, Geochemical and Isotopic Characteristics of the Miaoya Syenite and Carbonatite Complex, Central China. Geological Journal, 52(6):938-954. https://doi.org/10.1002/gj.2859 |
| [62] |
Zhu, Y. X., Wang, L. X., Ma, C. Q., et al., 2020. The Neoproterozoic Alkaline Rocks from Fangcheng Area, East Qinling (China) and Their Implications for Regional Nb Mineralization and Tectonic Evolution. Precambrian Research, 350: 105852. https://doi.org/10.1016/j.precamres.2020.105852 |
| [63] |
高龙刚, 陈佑纬, 毕献武, 等, 2019. 陕西华阳川铀铌矿床中铀矿物的年代学与矿物化学研究及其对铀成矿的启示. 地质学报, 93(9): 2273-2291. |
| [64] |
李国武, 杨光明, 熊明, 等, 2014. 烧绿石超族矿物分类新方案及烧绿石超族矿物. 矿物学报, 34(2): 153-158. |
| [65] |
李石, 1980. 湖北庙垭碳酸岩地球化学特征及岩石成因探讨. 地球化学, (4): 345-355. |
| [66] |
李石, 1990.湖北庙垭正长岩—碳酸岩杂岩体铌和稀土元素赋存状态研究. 地质实验室, 6(5):286-292. |
| [67] |
李志丹,李山坡,郭虎,等,2022. 华北克拉通南缘大庄铌-稀土矿床碱性岩中榍石的地球化学、U-Pb年龄和 Nd 同位素特征.地球科学, 47(4): 1415-1434. |
| [68] |
鲁显松, 周豹, 孙腾, 等, 2021. 鄂西北地区碱性岩-碳酸岩及相关铌钽-稀土矿研究与勘查进展.资源环境与工程,35(3):279-284+312. |
| [69] |
宋文磊, 许成, 王林均, 等, 2013.与碳酸岩碱性杂岩体相关的内生稀土矿床成矿作用研究进展. 北京大学学报:自然科学版, 4(4):725-725. |
| [70] |
王汾连, 赵太平, 陈伟, 2012. 铌钽矿研究进展和攀西地区铌钽矿成因初探. 矿床地质, 31(2): 293-308. |
| [71] |
王刚, 2014.北大巴山紫阳-岚皋地区古生代火山岩浆事件与中生代成矿作用(博士学位论文). 北京:中国地质大学. |
| [72] |
王宗起, 闫全人, 闫臻, 等, 2009. 秦岭造山带主要大地构造单元的新划分. 地质学报, (11):5-24. |
| [73] |
邬斌, 王汝成, 刘晓东, 等, 2018. 辽宁赛马碱性岩体异性石化学成分特征及其蚀变组合对碱性岩浆-热液演化的指示意义. 岩石学报, 34(6): 1741-1757. |
| [74] |
邬斌, 王汝成, 郭国林, 等, 2020.辽宁赛马碱性岩体层硅铈钛矿化学成分变化及其对碱性岩浆演化的指示意义. 地球科学, 45(2): 467-478. |
| [75] |
吴敏, 许成, 王林均, 等, 2011. 庙垭碳酸岩型稀土矿床成矿过程初探. 矿物学报, 31(003):478-484. |
| [76] |
许成, 曾亮, 宋文磊,等, 2017. 造山带碳酸岩起源与深部碳循环. 矿物岩石地球化学通报, 36(2):213-221. |
| [77] |
杨成, 刘成新, 刘万亮, 等, 2017. 南秦岭竹溪县天宝乡粗面岩地球化学特征与铌成矿. 岩石矿物学杂志, 36(5): 605-618. |
| [78] |
杨武斌, 单强, 赵振华, 等, 2011. 巴尔哲地区碱性花岗岩的成岩和成矿作用:矿化和未矿化岩体的比较. 吉林大学学报(地球科学版), 41(6):1689-1704. |
| [79] |
应元灿, 2018. 湖北庙垭碳酸岩杂岩体年代学和地球化学特征及成岩成矿过程(硕士学位论文). 武汉:中国地质大学. |
| [80] |
张国伟, 张宗清, 董云鹏, 等, 1995. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义. 岩石学报, 11(2):101-114. |
| [81] |
晁会霞, 苏生瑞, 杨兴科, 等, 2016. 湖北庙垭稀土矿床地质特征研究. 地学前缘, 23(4): 102-108. |
| [82] |
郑硌, 顾雪祥, 章永梅, 等, 2014. 安哥拉Huila省Bonga碳酸岩型铌矿床烧绿石地球化学组成, 演化及其与岩浆热液作用过程的关系. 地学前缘, 21(5): 69-89. |
国家自然科学基金项目(42072082)
湖北省自然科学基金项目(2022CFB116)
核工业地质局地勘费项目(202107)
/
| 〈 |
|
〉 |