中国陆区干热岩勘探靶区优选:来自国内外干热岩系统成因机制的启示
Exploration Target Selection of Hot Dry Rock in Chinese Continent: Enlightenment from Genesis Mechanism of Global Hot Dry Rock System
,
干热岩是指地下高温但由于低孔隙度和渗透率而缺少流体的岩石(体),储存于干热岩中的热量需要通过人工压裂形成增强地热系统(EGS)才能得以开采,赋存于干热岩中在当前技术经济条件下可以开采的地热能被称为干热岩型地热资源,它是人类未来的重要替代新能源之一.干热岩的研究始于20世纪70年代,经过近50年的不断发展,干热岩在理论和实践两方面都有了长足发展,美国、日本、法国、德国、澳大利亚等发达国家相继投入巨资进行干热岩勘查、评价和开发实验,并且初步形成了商业开发的成功范例.实践表明,干热岩地热资源是深层地热能的一部分,往往与高温水热系统共热源且存在共生关系,但其地质条件复杂,开采难度较大,应倡导“深层地热能”和“广义EGS”概念,即按照EGS技术着眼深层水热型和干热岩型地热能整体开发.为了克服诱发地震等环境安全问题,干热岩压裂造储技术研发方向正在从“刚性造储”向“柔性造储”发展.近几年来,我国分别在青海、西藏、四川、福建、广东、湖南、黑龙江、海南等高热流区域进行了干热岩地质勘查,并在青海共和、山东利津、广东惠州、四川康定、冀东马头营和琼北等地相继开展了干热岩初步钻探,但仅在青海共和的干热岩勘探与开发实验中取得突破.综合考虑全球高温地热带分布和中国陆区板块构造背景、现今大地热流分布格局、岩石圈热结构、Moho面深度及壳内热源、新生代火山活动、温泉分布、深大断裂分布与活动性,以及现有干热岩勘查结果,认为当前中国陆区最具前景的干热岩勘探靶区为东北新生代火山活动区、海南岛及雷州半岛和滇藏川地区——青藏高原东构造结.此外,高热背景条件下的中厚层碳酸盐岩应作为深层地热能开采的重点目标储层.
干热岩 / 增强地热系统 / 成因机制 / 地热能 / 中国陆区
hot dry rock / enhanced geothermal system / genesis mechanism / geothermal energy / Chinese continent
| [1] |
Aichholzer, C., Duringer, P., Orciani, S., et al., 2016. New Stratigraphic Interpretation of the Soultz-Sous-Forêts 30-Year-Old Geothermal Wells Calibrated on the Recent one from Rittershoffen (Upper Rhine Graben, France). Geothermal Energy, 4( 1): 1- 26. https://doi.org/10.1186/s40517-016-0055-7 |
| [2] |
Aprea, C. M., Hildebrand, S., Fehler, M., et al., 2002. Three-Dimensional Kirchhoff Migration: Imaging of the Jemez Volcanic Field Using Teleseismic Data. Journal of Geophysical Research: Solid Earth, 107(B10): 2247-2258. https://doi.org/10.1029/2000jb000097 |
| [3] |
Ayling, B. F., Hogarth, R. A., Rose, P. E., 2016. Tracer Testing at the Habanero EGS Site, Central Australia. Geothermics, 63: 15- 26. https://doi.org/10.1016/j.geothermics.2015.03.008 |
| [4] |
Beardsmore, G., 2004. The influence of basement on surface heat flow in the Cooper Basin. Exploration Geophysics, 35( 4): 223- 235. https://doi.org/10.1071/EG04223 |
| [5] |
Breede, K., Dzebisashvili, K., Liu, X. L., et al., 2013. A Systematic Review of Enhanced (or Engineered) Geothermal Systems: Past, Present and Future. Geothermal Energy, 1( 1): 1- 27. https://doi.org/10.1186/2195-9706-1-4 |
| [6] |
Brown, D. W., Duchane, D. V., Heiken, G., et al., 2012. The Future of Hot Dry Rock Geothermal Energy. Mining the Earth's Heat: Hot Dry Rock Geothermal Energy. Springer, Berlin Heidelberg, 561-569. https://doi.org/10.1007/978-3-540-68910-2_10 |
| [7] |
Buchmann, T. J., Connolly, P. T., 2007. Contemporary Kinematics of the Upper Rhine Graben: A 3D Finite Element Approach. Global and Planetary Change, 58(1-4): 287-309. https://doi.org/10.1016/j.gloplacha.2007.02.012 |
| [8] |
Bai, D., Unsworth, M. J., Meju, M. A., et al., 2010. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 3( 5): 358- 362. https://doi.org/10.1038/ngeo830 |
| [9] |
Chen, Q. F., Ai, Y., Chen, Y.S., 2019. Overview of Deep Structures under the Changbaishan Volcanic Area in Northeast China. Science in China ( Series D), 49( 5): 778- 795 (in Chinese with English abstract). |
| [10] |
Duan, H. X., Liu, Y. G., Wang, G. L., et al., 2023. Characteristics of the Terrestrial Heat Flow and Lithospheric Thermal Structure in Central Cangxian Uplift:A Case Study of Xianxian Geothermal Field. Earth Science, 48( 3): 988- 1001 (in Chinese with English abstract). |
| [11] |
Gan, H. N., Wang, G. L., Lin, W. J., et al., 2015. Research on the Occurrence Types and Genetic Models of Hot Dry Rock Resources in China. Science & Technology Review, 33( 19): 22- 27 (in Chinese with English abstract). |
| [12] |
Gan, Q., Feng, Z., Zhou, L., et al., 2021. Down-Dip Circulation at the United Downs Deep Geothermal Power Project Maximizes Heat Recovery and Minimizes Seismicity. Geothermics, 96: 102204. https://doi.org/10.1016/j.geothermics.2021.102204 |
| [13] |
Gao, J., Zhang, H. J., Zhang, S. Q., et al., 2018. Three-Dimensional Magnetotelluric Imaging of the Geothermal System beneath the Gonghe Basin, Northeast Tibetan Plateau. Geothermics, 76: 15- 25. https://doi.org/10.1016/j.geothermics.2018.06.009 |
| [14] |
Gao, W., Guo, Z. H., Zhou, J. X., et al., 2020. High Precision Aeromagnetic Characteristics and Curie Depth Analysis of the Hainan Island. Acta Geologica Sinica, 94( 11): 3249- 3262 (in Chinese with English abstract). |
| [15] |
Garcia, J., Hartline, C., Walters, M., et al., 2016. The Northwest Geysers EGS Demonstration Project, California. Geothermics, 63: 97- 119. https://doi.org/10.1016/j.geothermics.2015.08.003 |
| [16] |
Genter, A., Evans, K., Cuenot, N., et al., 2010. Contribution of the Exploration of Deep Crystalline Fractured Reservoir of Soultz to the Knowledge of Enhanced Geothermal Systems (EGS). Comptes Rendus Geoscience, 342(7-8): 502-516. https://doi.org/10.1016/j.crte.2010.01.006 |
| [17] |
Harlé, P., Kushnir, A. R. L., Aichholzer, C., et al., 2019. Heat Flow Density Estimates in the Upper Rhine Graben Using Laboratory Measurements of Thermal Conductivity on Sedimentary Rocks. Geothermal Energy, 7( 1): 1- 36. https://doi.org/10.1186/s40517-019-0154-3 |
| [18] |
He, Z. L., Feng, J. Y., Zhang, Y., et al., 2017. A Tentative Discussion on an Evaluation System of Geothermal Unit Ranking and Classification in China. Earth Science Frontiers, 24( 3): 168- 179 (in Chinese with English abstract). |
| [19] |
Hou, Z. Q., Zheng, Y. C., Lu, Z. W., et al., 2020. Growth, Thickening and Evolution of the Thickened Crust of the Tibet Plateau. Acta Geologica Sinica, 94( 10): 2797- 2815 (in Chinese with English abstract). |
| [20] |
Huang, H. B., Qiu, X. L., Xia, S. H., 2012. Crustal Structure and Poisson’s Ratio Beneath Hainan Island. Journal of Tropical Oceanography, 31( 3): 65- 70 (in Chinese with English abstract). |
| [21] |
Jiang, G., Hu, S., Shi, Y., et al., 2019. Terrestrial Heat Flow of Continental China: Updated Dataset and Tectonic Implications. Tectonophysics, 753: 36- 48. https://doi.org/10.1016/j.tecto.2019.01.006 |
| [22] |
Kelkar, S., WoldeGabriel, G., Rehfeldt, K., 2016. Lessons Learned from the Pioneering Hot Dry Rock Project at Fenton Hill, USA. Geothermics, 63: 5- 14. https://doi.org/10.1016/j.geothermics.2015.08.008 |
| [23] |
Kennedy, B. M., Truesdell, A. H., 1996. The Northwest Geysers High-Temperature Reservoir: Evidence for Active Magmatic Degassing and Implications for the Origin of the Geysers Geothermal Field. Geothermics, 25( 3): 365- 387. https://doi.org/10.1016/0375-6505(96)00005-3 |
| [24] |
Kuang, J., Qi, S. H., Wang, S., et al., 2020. Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications. Earth Science, 45( 4): 1466- 1480 (in Chinese with English abstract). |
| [25] |
Li, D. W., Wang, Y. X., 2015. Major Issues of Research and Development of Hot Dry Rock Geothermal Energy. Earth Science, 40( 11): 1858- 1869 (in Chinese with English abstract). |
| [26] |
Lin, W. J., Wang, G. L., Shao, J. L., et al., 2021. Distribution and Exploration of Hot Dry Rock Resources in China: Progress and Inspiration. Acta Geologica Sinica, 95( 5): 1366- 1381 (in Chinese with English abstract). |
| [27] |
Liu, D. M., Wei, M. H., Sun, M. H., et al., 2022. Classification and Determination of Thermal Control Structural System of Hot Dry Rock. Earth Science, 47( 10): 3723- 3735 (in Chinese with English abstract). |
| [28] |
Llanos, E. M., Zarrouk, S. J., Hogarth, R. A., 2015. Numerical Model of the Habanero Geothermal Reservoir, Australia. Geothermics, 53: 308- 319. https://doi.org/10.1016/j.geothermics.2014.07.008 |
| [29] |
Lu, C., Wang, G. L., 2015. Current Status and Prospect of Hot Dry Rock Research. Science & Technology Review, 33( 19): 13- 21 (in Chinese with English abstract). |
| [30] |
Lu, S. M., 2018. A Global Review of Enhanced Geothermal System (EGS). Renewable and Sustainable Energy Reviews, 81: 2902- 2921. https://doi.org/10.1016/j.rser.2017.06.097 |
| [31] |
Lucazeau, F., 2019. Analysis and Mapping of an Updated Terrestrial Heat Flow Data Set. Geochemistry, Geophysics, Geosystems, 20( 8): 4001- 4024. https://doi.org/10.1029/2019gc008389 |
| [32] |
Mao, X., Guo, D. B., Luo, L., et al., 2019. The Global Development Process of Hot Dry Rock (Enhanced Geothermal System) and Its Geological Background. Geological Review, 65( 6): 1462- 1472 (in Chinese with English abstract). |
| [33] |
Meixner, A. J., Kirkby, A. L., Horspool, N., 2014. Using Constrained Gravity Inversions to Identify High-Heat-Producing Granites Beneath Thick Sedimentary Cover in the Cooper Basin Region of Central Australia. Geothermics, 51: 483- 495. https://doi.org/10.1016/j.geothermics.2013.10.010 |
| [34] |
Mo, X. X., 2011. Magmatism and Evolution of the Tibetan Plateau. Geological Journal of China Universities, 17( 3): 351- 367 (in Chinese with English abstract). |
| [35] |
Moore, J., McLennan, J., Allis, R., et al., 2019. The Utah Frontier Observatory for Research in Geothermal Energy (Forge): An International Laboratory for Enhanced Geothermal System Technology Development. 44th Workshop on Geothermal Reservoir Engineering 2019, Stanford. |
| [36] |
National Energy Administration, 2018. Terminology for Geothermal Energy. China Petrochemical Press, Beijing (in Chinese with English abstract). |
| [37] |
Olasolo, P., Juárez, M. C., Morales, M. P., et al., 2016. Enhanced Geothermal Systems (EGS): A Review. Renewable and Sustainable Energy Reviews, 56: 133- 144. https://doi.org/10.1016/j.rser.2015.11.031 |
| [38] |
Oppenheimer, D. H., Herkenhoff, K. E., 1981. Velocity-Density Properties of the Lithosphere from Three-Dimensional Modeling at the Geysers-Clear Lake Region, California. Journal of Geophysical Research: Solid Earth, 86(B7): 6057-6065. https://doi.org/10.1029/jb086ib07p06057 |
| [39] |
Pang, Z. H., Kong, Y. L., Pang, J. M., et al., 2017. Geothermal Resources and Development in Xiongan New Area. Bulletin of Chinese Academy of Sciences, 32( 11): 1224- 1230 (in Chinese with English abstract). |
| [40] |
Pang, Z. H., Luo, J., Cheng, Y. Z., et al., 2020. Evaluation of Geological Conditions for the Development of Deep Geothermal Energy in China. Earth Science Frontiers, 27( 1): 134- 151 (in Chinese with English abstract). |
| [41] |
Parisio, F., Yoshioka, K., 2020. Modeling Fluid Reinjection into an Enhanced Geothermal System. Geophysical Research Letters, 47(19): e2020GL089886. https://doi.org/10.1029/2020gl089886 |
| [42] |
Park, S., Kim, K. I., Xie, L., et al., 2020. Observations and Analyses of the First Two Hydraulic Stimulations in the Pohang Geothermal Development Site, South Korea. Geothermics, 88: 101905. https://doi.org/10.1016/j.geothermics.2020.101905 |
| [43] |
Peacock, J. R., Earney, T. E., Mangan, M. T., et al., 2020. Geophysical Characterization of the Northwest Geysers Geothermal Field, California. Journal of Volcanology and Geothermal Research, 399: 106882. https://doi.org/10.1016/j.jvolgeores.2020.106882 |
| [44] |
Pollett, A., Hasterok, D., Raimondo, T., et al., 2019. Heat Flow in Southern Australia and Connections with East Antarctica. Geochemistry, Geophysics, Geosystems, 20( 11): 5352- 5370. https://doi.org/10.1029/2019gc008418 |
| [45] |
Rutqvist, J., Dobson, P. F., Garcia, J., et al., 2015. The Northwest Geysers EGS Demonstration Project, California: Pre-Stimulation Modeling and Interpretation of the Stimulation. Mathematical Geosciences, 47( 1): 3- 29. https://doi.org/10.1007/s11004-013-9493-y |
| [46] |
Sass, J. H., Morgan, P., 1988. Conductive Heat Flux in VC-1 and the Thermal Regime of Valles Caldera, Jemez Mountains, New Mexico. Journal of Geophysical Research, 93(B6): 6027. https://doi.org/10.1029/jb093ib06p06027 |
| [47] |
Spell, T. L., Kyle, P. R., 1989. Petrogenesis of Valle Grande Member Rhyolites, Valles Caldera, New Mexico: Implications for Evolution of the Jemez Mountains Mgmatic System. Journal of Geophysical Research: Solid Earth, 94(B8): 10379-10396. https://doi.org/10.1029/jb094ib08p10379 |
| [48] |
Steck, L. K., Thurber, C. H., Fehler, M. C., et al., 1998. Crust and Upper Mantle P Wave Velocity Structure Beneath Valles Caldera, New Mexico: Results from the Jemez Teleseismic Tomography Experiment. Journal of Geophysical Research: Solid Earth, 103(B10): 24301-24320. https://doi.org/10.1029/98jb00750 |
| [49] |
Tang, X. C., Liu, S. S., Zhang, D. L., et al., 2022. Geothermal Accumulation Constrained by the Tectonic Transformation in the Gonghe Basin, Northeastern Tibetan Plateau. Lithosphere, 2021(Special 5): 3936881. https://doi.org/10.2113/2022/3936881 |
| [50] |
Tang, X. C., Wang, G. L., Ma, Y., et al., 2020. Geological Model of Heat Source and Accumulation for Geothermal Anomalies in the Gonghe Basin, Northeastern Tibetan Plateau. Acta Geologica Sinica, 94( 7): 2052- 2065 (in Chinese with English abstract). |
| [51] |
Tang, X. C., Zhang, J., Pang Z. H., et al., 2017. The Eastern Tibetan Plateau Geothermal Belt, Western China: Geology, Geophysics, Genesis, and Hydrothermal System. Tectonophysics, 717: 433- 448. https://doi.org/10.1016/j.tecto.2017.08.035 |
| [52] |
Tian, J., Pang, Z., Liao, D., et al., 2021. Fluid Geochemistry and Its Implications on the Role of Deep Faults in the Genesis of High Temperature Systems in the Eastern Edge of the Qinghai Tibet Plateau. Applied Geochemistry, 131: 105036. https://doi.org/10.1016/j.apgeochem.2021.105036 |
| [53] |
Vidal, J., Patrier, P., Genter, A., et al., 2018. Clay Minerals Related to the Circulation of Geothermal Fluids in Boreholes at Rittershoffen (Alsace, France). Journal of Volcanology and Geothermal Research, 349: 192- 204. https://doi.org/10.1016/j.jvolgeores.2017.10.019 |
| [54] |
Walters, M. A., Combs, J., 1989. Heat-Flow Regime in the Geysers-Clear Lake Area of Northern California, USA. 1989 Annual Meeting of the Geothermal Resources Council, Santa Rosa. |
| [55] |
Wang, J. Y., 2016. The Belt and Road Initiative, Geothermal First. Science & Technology Review, 34(21): 1 (in Chinese with English abstract). |
| [56] |
Wang, J. Y., Hu, S. B., Pang, Z. H., et al., 2012. Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China. Science & Technology Review, 30( 32): 25- 31 (in Chinese with English abstract). |
| [57] |
Wang, L. D., Wang, H., Zhang, M. D., et al., 2016. Possibility Analysis on the Occurrence of Geothermal Resources in Hot Dry Rock in Chenzhuang Area of Lijin County. Shandong Land and Resources, 32( 1): 33- 36 (in Chinese with English abstract). |
| [58] |
Wang, X. W., Wang, T. H., Gao, N. A., et al., 2022. Formation Mechanism and Development Potential of Geothermal Resources along the Sichuan-Tibet Railway. Earth Science, 47( 3): 995- 1011 (in Chinese with English abstract). |
| [59] |
Weinert, S., Bär, K., Scheuvens, D., et al., 2021. Radiogenic Heat Production of Crystalline Rocks in the Gonghe Basin Complex (Northeastern Qinghai-Tibet Plateau, China). Environmental Earth Sciences, 80(7): 270. https://doi.org/10.1007/s12665-021-09558-x |
| [60] |
Xu, T. F., Hu, Z. X., Li, S. T., et al., 2018. Enhanced Geothermal System: International Progresses and Research Status of China. Acta Geologica Sinica, 92( 9): 1936- 1947 (in Chinese with English abstract). |
| [61] |
Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2011. On the Tectonics of the India-Asia Collision. Acta Geologica Sinica, 85( 1): 1- 33 (in Chinese with English abstract). |
| [62] |
Yan, Q., Shi, X., Metcalfe, I., et al., 2018. Hainan Mantle Plume Produced Late Cenozoic Basaltic Rocks in Thailand, Southeast Asia. Scientific Reports, 8( 1): 2640- 2454. https://doi.org/10.1038/s41598-018-20712-7 |
| [63] |
Zhang, C., Hu, S. B., Song, R. C., et al., 2020. Genesis of the Hot Dry Rock Geothermal Resources in the Gonghe Basin: Constraints from the Radiogenic Heat Production Rate of Rocks. Chinese Journal of Geophysics, 63( 7): 2697- 2709 (in Chinese with English abstract). |
| [64] |
Zhang, C., Zhang, S. S., Li, S. T., et al., 2018. Geothermal Characteristics of the Qiabuqia Geothermal Area in the Gonghe Basin, Northeastern Tibetan Plateau. Chinese Journal of Geophysics, 61( 11): 4545- 4557 (in Chinese with English abstract). |
| [65] |
Zhang, J., Li, W. Y., Tang, X. C., et al., 2017. Geothermal Data Analysis at the High-Temperature Hydrothermal Area in Western Sichuan. Science in China ( Series D), 47( 8): 899- 915 (in Chinese with English abstract). |
| [66] |
Zhang, S. Q., Wen, D. G., Xu, T. F., et al., 2019. The U.S. Frontier Observatory for Research in Geothermal Energy Project and Comparison of Typical EGS Site Exploration Status in China and U.S. Earth Science Frontiers, 26( 2): 321- 334 (in Chinese with English abstract). |
| [67] |
Zhang, S. Q., Yan, W. D., Li, D. P., et al., 2018. Characteristics of Geothermal Geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province. Geology in China, 45( 6): 1087- 1102 (in Chinese with English abstract). |
| [68] |
Zhang, S. S., Zhang, L., Tian, C. C., et al., 2019. Occurrence Geological Characteristics and Development Potential of Hot Dry Rocks in Qinghai Gonghe Basin. Journal of Geomechanics, 25( 4): 501- 508 (in Chinese with English abstract). |
| [69] |
Zheng, K. Y., Chen, Z. H., 2017. Hot Dry Rock Development in China: A Long Way to Go. Sino-Global Energy, 22( 2): 21- 25 (in Chinese with English abstract). |
| [70] |
Zhu, R. X., Xu, Y. G., Zhu, G., et al., 2012. Destruction of the North China Craton. Science in China ( Series D), 42( 8): 1135- 1159 (in Chinese with English abstract). |
| [71] |
陈棋福, 艾印双, 陈赟, 2019. 长白山火山区深部结构探测的研究进展与展望. 中国科学(D辑), 49( 5): 778- 795. |
| [72] |
段和肖, 刘彦广, 王贵玲, 等, 2023. 沧县隆起中部大地热流及岩石圈热结构特征——以献县地热田为例. 地球科学, 48( 3): 988- 1001. |
| [73] |
甘浩男, 王贵玲, 蔺文静, 等, 2015. 中国干热岩资源主要赋存类型与成因模式. 科技导报, 33( 19): 22- 27. |
| [74] |
高维, 郭志宏, 周坚鑫, 等, 2020. 海南岛高精度航磁特征与居里等温面深度分析. 地质学报, 94( 11): 3249- 3262. |
| [75] |
何治亮, 冯建赟, 张英, 等, 2017. 试论中国地热单元分级分类评价体系. 地学前缘, 24( 3): 168- 179. |
| [76] |
侯增谦, 郑远川, 卢占武, 等, 2020. 青藏高原巨厚地壳: 生长、加厚与演化. 地质学报, 94( 10): 2797- 2815. |
| [77] |
黄海波, 丘学林, 夏少红, 2012. 海南岛地壳厚度与泊松比结构. 热带海洋学报, 31( 3): 65- 70. |
| [78] |
旷健, 祁士华, 王帅, 等, 2020. 广东惠州花岗岩体及其地热意义. 地球科学, 45( 4): 1466- 1480. |
| [79] |
李德威, 王焰新, 2015. 干热岩地热能研究与开发的若干重大问题. 地球科学, 40( 11): 1858- 1869. |
| [80] |
蔺文静, 王贵玲, 邵景力, 等, 2021. 我国干热岩资源分布及勘探: 进展与启示. 地质学报, 95( 5): 1366- 1381. |
| [81] |
刘德民, 韦梅华, 孙明行, 等, 2022. 干热岩控热构造系统厘定与类型划分. 地球科学, 47( 10): 3723- 3735. |
| [82] |
陆川, 王贵玲, 2015. 干热岩研究现状与展望. 科技导报, 33( 19): 13- 21. |
| [83] |
毛翔, 国殿斌, 罗璐, 等, 2019. 世界干热岩地热资源开发进展与地质背景分析. 地质论评, 65( 6): 1462- 1472. |
| [84] |
莫宣学, 2011. 岩浆作用与青藏高原演化. 高校地质学报, 17( 3): 351- 367. |
| [85] |
国家能源局, 2018. 地热能术语. 北京: 中国石化出版社. |
| [86] |
庞忠和, 孔彦龙, 庞菊梅, 等, 2017. 雄安新区地热资源与开发利用研究. 中国科学院院刊, 32( 11): 1224- 1230. |
| [87] |
庞忠和, 罗霁, 程远志, 等, 2020. 中国深层地热能开采的地质条件评价. 地学前缘, 27( 1): 134- 151. |
| [88] |
唐显春, 王贵玲, 马岩, 等, 2020. 青海共和盆地地热资源热源机制与聚热模式. 地质学报, 94( 7): 2052- 2065. |
| [89] |
汪集旸, 2016. 一带一路, 地热先行. 科技导报, 34(21): 1. |
| [90] |
汪集旸, 胡圣标, 庞忠和, 等, 2012. 中国大陆干热岩地热资源潜力评估. 科技导报, 30( 32): 25- 31. |
| [91] |
王立东, 王浩, 张明德, 等, 2016. 利津县陈庄地区干热岩地热资源存在可能性分析. 山东国土资源, 32( 1): 33- 36. |
| [92] |
汪新伟, 王婷灏, 高楠安, 等, 2022. 川藏铁路沿线地热资源形成机理与开发潜力. 地球科学, 47( 3): 995- 1011. |
| [93] |
许天福, 胡子旭, 李胜涛, 等, 2018. 增强型地热系统: 国际研究进展与我国研究现状. 地质学报, 92( 9): 1936- 1947. |
| [94] |
许志琴, 杨经绥, 李海兵, 等, 2011. 印度‒亚洲碰撞大地构造. 地质学报, 85( 1): 1- 33. |
| [95] |
张超, 胡圣标, 宋荣彩, 等, 2020. 共和盆地干热岩地热资源的成因机制: 来自岩石放射性生热率的约束. 地球物理学报, 63( 7): 2697- 2709. |
| [96] |
张超, 张盛生, 李胜涛, 等, 2018. 共和盆地恰卜恰地热区现今地热特征. 地球物理学报, 61( 11): 4545- 4557. |
| [97] |
张健, 李午阳, 唐显春, 等, 2017. 川西高温水热活动区的地热学分析. 中国科学(D辑), 47( 8): 899- 915. |
| [98] |
张森琦, 文冬光, 许天福, 等, 2019. 美国干热岩“地热能前沿瞭望台研究计划”与中美典型EGS场地勘查现状对比. 地学前缘, 26( 2): 321- 334. |
| [99] |
张森琦, 严维德, 黎敦朋, 等, 2018. 青海省共和县恰卜恰干热岩体地热地质特征. 中国地质, 45( 6): 1087- 1102. |
| [100] |
张盛生, 张磊, 田成成, 等, 2019. 青海共和盆地干热岩赋存地质特征及开发潜力. 地质力学学报, 25( 4): 501- 508. |
| [101] |
郑克棪, 陈梓慧, 2017. 中国干热岩开发: 任重而道远. 中外能源, 22( 2): 21- 25. |
| [102] |
朱日祥, 徐义刚, 朱光, 等, 2012. 华北克拉通破坏. 中国科学(D辑), 42( 8): 1135- 1159. |
国家自然科学基金项目(41877210;42074096)
油气资源与勘探技术教育部重点实验室青年创新团队项目(PI2018-04)
中国石化深部地质与资源重点实验室开放基金课题
/
| 〈 |
|
〉 |