穆斯堡尔光谱仪在揭示地幔氧逸度研究中的应用

王秋霞 ,  平先权 ,  郑建平 ,  戴宏坤

地球科学 ›› 2023, Vol. 48 ›› Issue (03) : 1217 -1231.

PDF (2743KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (03) : 1217 -1231. DOI: 10.3799/dqkx.2022.354

穆斯堡尔光谱仪在揭示地幔氧逸度研究中的应用

作者信息 +

Mineral Ferric Iron Contents of Peridotite Xenoliths by Mössbauer Spectroscopy: Oxygen Fugacity Applications

Author information +
文章历史 +
PDF (2808K)

摘要

利用地幔橄榄岩包体中平衡矿物对的氧逸度计可以有效限定岩石圈地幔的氧化-还原状态.本文使用中国地质大学(武汉)新购置的WSS-10型常温穆斯堡尔光谱仪对华北地块西北部狼山地区橄榄岩包体的四相矿物开展了铁价态的直接测定.结果显示,斜方辉石Fe3+/∑Fe为0.05~0.11,单斜辉石的为0.16~0.25,尖晶石的为0.16~0.22,橄榄石为0.利用橄榄石-斜方辉石-尖晶石氧逸度计,获得狼山地区岩石圈地幔氧逸度为FMQ-0.82至FMQ-0.39(均值为FMQ-0.65).该值略高于依据电子探针测试数据计算获得的氧逸度值(FMQ-1.49至FMQ-0.8,均值为FMQ-1.25),造成这一差异的原因可能是后者忽略了尖晶石晶格中Fe3+过剩和阳离子空位导致的非化学计量比.与全球克拉通岩石圈地幔氧逸度值(均值为FMQ-0.35)相比,华北地块西北缘狼山地区岩石圈地幔整体表现为较还原状态,推测与深部地幔低ƒO2熔体上升交代有关.

Abstract

The redox state of the lithospheric mantle can be estimated by well equilibrated mineral pairs of mantle peridotite xenoliths. Here we explore the mantle redox state of the northwest North China Craton by measuring the mineral Fe3+/∑Fe of the Langshan spinel lherzolite xenoliths using the newly established lab of WSS-10 Mössbauer spectroscopy at China University of Geosciences (Wuhan). The results show that the Fe3+/∑Fe ratios are 0.05-0.11 for orthopyroxene, 0.16-0.25 for clinopyroxene, 0.16-0.22 for spinel, and no Fe3+ was confirmed in olivine. The corresponding mantle oxygen fugacity using the olivine-orthopyroxene-spinel oxy-barometry is FMQ-0.82 to FMQ-0.39 (averaged at FMQ-0.65), slightly higher than the estimates using electron microprobe data (FMQ-1.49 to FMQ-0.8, averaged at FMQ-1.25). This discrepancy may be explained by the non-stoichiometry Fe3+ excess and cation vacancies in the spinel lattice, which is generally ignored in the stoichinometric calculation using electron microprobe data. Compared with global cratonic mantle (averaged at FMQ-0.35), the lithospheric mantle underneath the northwest North China Craton, represent by Langshan mantle xenoliths, is relatively reduced, and likely results from metasomatism by low-ƒO2 melts from deeper mantle domains.

关键词

岩石圈地幔 / 氧逸度 / 橄榄岩包体 / 穆斯堡尔光谱仪 / Fe3+/∑Fe / 岩石学

Key words

lithospheric mantle / oxygen fugacity / peridotite xenoliths / Mössbauer spectrometer / Fe3+/∑Fe / petrology

引用本文

引用格式 ▾
王秋霞,平先权,郑建平,戴宏坤. 穆斯堡尔光谱仪在揭示地幔氧逸度研究中的应用[J]. 地球科学, 2023, 48(03): 1217-1231 DOI:10.3799/dqkx.2022.354

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

氧逸度(ƒO2)是控制地幔内部、地幔与地壳之间相互作用的关键热力学参数之一,特别是对变价元素的赋存状态和分配行为有较大影响(Frost and McCammon, 2008).以地幔中的碳为例,还原态的碳通常以单质(金刚石、石墨)或碳化物(如SiC)的形式存在,对地幔橄榄岩的固相线影响较小;氧化态碳则主要赋存于碳酸盐矿物中,可以显著降低地幔岩石的固相线,并改变其他元素在地幔熔融过程中的分配行为(Dasgupta et al., 2013Stagno et al., 2013).此外,通过控制矿物Fe3+和OH-的含量,它将对地幔岩石的电导率(Dai and Karato, 2014)、介电常数及热电系数(Wanamaker and Duba, 1992)等产生影响.地幔楔氧逸度对某些矿床的成矿过程也具有明显的控制作用,例如斑岩铜金矿床通常产在高氧逸度的俯冲带环境,这是由于铜、金的亲硫特性,而硫的存在形式与价态强烈受氧逸度控制,从而影响铜、金的富集(Sun et al., 2017);而锡矿床则往往与还原性岩浆有关,可能是Sn的溶解度受氧逸度影响导致(Linnen et al., 1995).不难看出,对地幔氧逸度的研究,无论是在探讨地球内部组成、物理化学性质,还是在探索成矿过程中都能起到重要的作用.

深源天然样品(如地幔捕虏体、玄武岩)的氧逸度研究是揭示地幔氧化还原状态的重要途径(Wood and Virgo, 1989Bryndzia and Wood, 1990Canil et al., 1990Davis et al., 2017李守奎等, 2022).对于玄武岩样品(如MORB、IAB、OIB),Kress and Carmichael(1991)对前人数据(Sack et al., 1981)进行重新拟合,获得了可以应用在高压条件下计算氧逸度值的公式.针对地幔捕虏体常使用的氧逸度计有:(1) 橄榄石‒斜方辉石‒尖晶石组合(Wood and Virgo, 1989Ballhaus et al., 1991);(2) 斜方辉石‒单斜辉石组合(Luth and Canil, 1993);(3) 橄榄石‒斜方辉石‒石榴子石组合(Stagno et al., 2013);(4) 钛铁矿‒钛铁尖晶石组合(Ghiorso and Evans, 2008).氧逸度计算是根据矿物间的化学平衡反应和反应物或生成物中的变价元素铁与氧逸度的依存关系进行的(刘丛强等, 2001陶仁彪等, 2015),在计算时不可避免需用到含铁矿物中的Fe3+/∑Fe比值,因而厘定准确的Fe2+/Fe3+是获取可靠氧逸度的关键(Wood and Virgo, 1989Sobolev et al., 1999Quintiliani, 2006).

对于样品中Fe3+/∑Fe比值的测定,目前有几种测定方式,(1)穆斯堡尔谱法(Hao and Li, 2013);(2)湿化学分析法(Christie et al., 1986);(3)同步辐射法(Cottrell et al., 2018);(4)电子探针法(Zhang et al., 2018李小犁等, 2019).穆斯堡尔谱法依据铁原子的穆斯堡尔效应可获取较准确的Fe3+/∑Fe比值.但该法需将样品研磨成粉末,要求样品量不能太少且对样品有一定破坏性.此外,对单矿物样品还要求其元素组成无明显变化.湿化学法主要通过比色法确定样品中FeO的含量,再用总铁含量减去Fe2+即可得Fe3+含量.但若样品中含有其他变价元素,会影响所测得FeO含量.近年来基于μ-XANES分析技术,同步辐射法逐渐发展成熟并被大量使用,该方法能够对复杂样品在传统薄片上直接开展微区、无损分析并获取高精度元素价态信息,但目前仅对玄武岩玻璃有标样,且实验成本较高,对含水样品测试还不被认可(Cottrell et al., 2018).电子探针法测试方式简单,对样品要求不高,但电子探针法利用电价差值法或化学计量法间接计算的Fe3+含量强烈依赖其他配位阳离子值,使得结果有较大的不确定性,因而产生较大的误差(Wood and Virgo, 1989Davis et al., 2017).此外,近年来,通过优化电子探针Flank Method实验方法,可以直接获取玻璃、石榴子石、黑云母和角闪石中Fe3+含量(Zhang et al., 2018; 李小犁等, 2019; Li et al., 2020),但对于其他矿物的应用亟待开发(陈意等, 2021).综合来看要获取准确Fe3+/∑Fe比值,穆斯堡尔谱测试仍是一种相对可靠的方式,尤其是对低Fe3+含量的样品.

在岩石圈演化研究中,目前国内学者通常利用电子探针法间接获取含铁矿物的Fe3+/∑Fe进而估算地幔氧逸度(Chen et al., 1991Li and Zhang, 2002杨清福等, 2011Wang et al., 2013Ye et al., 2021).考虑到地幔矿物Fe3+的准确度会明显影响其氧逸度结果(Wood and Virgo, 1989; Ballhaus et al., 1991),中国地质大学(武汉)地球科学学院最近新购置了穆斯堡尔光谱仪(WSS-10 Mössbauer Spectrometer),并以华北克拉通西北缘狼山地区的橄榄岩捕虏体为对象,开展了橄榄石‒斜方辉石‒单斜辉石‒尖晶石4个平衡矿物相的Fe3+/∑Fe比值测定,并与电子探针法计算的结果进行系统对比,目标是:(1) 对比不同方法所得到氧逸度值的偏差;(2) 揭示华北克拉通西北缘岩石圈地幔氧化‒还原状态及其地质意义.

1 地质背景和样品

狼山地区位于华北克拉通西部北缘,其北侧为索伦缝合带,与中亚造山带相隔(Xiao et al., 2015冯帆等, 2021).区内基底岩石主要包括由长英质片麻岩和斜长角闪岩组成的太古界乌拉山群和由变质沉积岩组成的中元古界渣尔泰山群(Darby and Ritts, 2007Dai et al., 2019).显生宙盖层为中生代陆相地层和第四纪松散堆积物(Darby and Ritts, 2007).研究区内岩浆岩分布广泛,以古生代和早中生代酸性侵入岩为主(Feng et al., 2013),并发育少量中生代镁铁质岩(Dai et al., 2019).本文研究的狼山橄榄岩捕掳体就采于产自晚中生代(~89 Ma)的碱性玄武岩中(Dai and Zheng, 2019).这些捕掳体呈浑圆状,直径3~4 cm到30~40 cm不等,与寄主岩的接触边界截然(图1a).它们的岩性均为尖晶石二辉橄榄岩,呈原生粒状到镶嵌粒状结构(图1b),主要组成矿物为橄榄石(1~2 mm;53.6%~79.1%,体积比)、斜方辉石(2~3 mm;13.2%~39.1%,体积比)、单斜辉石(1~2 mm;6.0%~11.3%,体积比)和尖晶石(0.5 mm;0.6%~1.8%,体积比).其中18LS-02样品显微镜下可观察到交代矿物角闪石(1 mm;小于0.1%,体积比),通常与尖晶石伴生.大部分样品橄榄石、斜方辉石、尖晶石和单斜辉石单矿物颗粒新鲜,前3种氧逸度计算矿物组合颗粒均无明显环带结构,未观察到其同种矿物不同期次的生长或再造现象,偶见单斜辉石海绵边结构.

2 研究方法

2.1 矿物成分测定

狼山橄榄岩四相矿物(橄榄石‒斜方辉石‒单斜辉石‒尖晶石)主量元素成分测定在自然资源部海底科学重点实验室的Jeol JXA-8100型电子探针上完成,分析条件为:15 kV加速电压、探针电流20 nA,电子束直径5 μm,计数时间均为20 s.探针原始数据用ZAF法校正.

2.2 穆斯堡尔谱测定

2.2.1 穆斯堡尔光谱及相关参数

1957年,德国学者穆斯堡尔在研究191Ir的γ射线共振吸收时发现了无反冲核的γ射线的共振吸收现象,也称γ射线的共振荧光现象,即穆斯堡尔效应(张宝峰,1991).

通过穆斯堡尔效应,人们可以观察到原子核和核外电子及配体间的相互作用,这种相互作用会改变核的能量,对能级产生轻微扰动,称为超精细相互作用(张宝峰,1991).在实际应用中,主要考虑3种超精细相互作用(图2):

(1)同质异能位移(IS),由原子核的核电荷和核所在处由其他电荷引起的电场之间的库仑相互作用产生.由于放射源和吸收体的穆斯堡尔核处于不同的环境,吸收体相对放射源会出现一个能量差值.该能量差值主要由于s电子的贡献,所以通过实验测得的同质异能位移值可以反映吸收体中铁的化学键以及价态等信息.

(2)四极分裂(QS),核电荷通常不是球型对称分布,导致原子核处形成电场梯度,使得核能态在电场作用下发生能极的进一步分裂;其可以反映吸收体中电子的结构对称性等信息.

(3)磁超精细分裂(Hhf),原子核和周围电子产生的磁场发生相互作用,也叫核塞曼效应;可以此区分吸收体中铁的不同化合物.

2.2.2 穆斯堡尔光谱仪

穆斯堡尔谱的测量在中国地质大学(武汉)地球科学学院WSS-10 Mössbauer光谱仪上进行.该穆斯堡尔光谱仪主要由6部分组成:

(1)放射源,处于激发态的放射性穆斯堡尔核素25 mCi 57Co,衰变成处于激发态的57Fe,以Rh作为载体,发射无反冲γ射线,半衰期为

270 d,自然线宽ΓH=4.9×10-9 eV,γ射线的平均能量Eγ=14.4 keV.

(2)驱动装置,利用多普勒效应使γ射线的能量发生微小变化,实现能量扫描,使得吸收体吸收到相应能量后发生原子核的跃迁从而实现共振吸收,通过三角波驱动的等加速度驱动方式,多普勒速度可在±5 mm/s到±10 mm/s范围内变化.本研究多普勒速度在±10 mm/s内变化.

(3)吸收体,测试样品为小于200目的粉末样,因测量结果和样品厚度有很大的相关性.当样品质量<100 mg,笔者使用直径为10 mm的小样品池进行测试,根据样品中的含铁量以及保证天然铁在5~10 mg/cm2的条件下换算出所需质量.当样品质量>100 mg,使用直径为20 mm的大样品池测试,样品最佳厚度通过信噪比Q的极大值估算(Kumar et al., 1989张富良等, 1997).

(4)γ射线探测装置,γ射线穿过吸收体后,未发生共振吸收的γ射线到达探测器(正比计数器),转为电讯号后经前置放大器处理后进入记录装置.

(5)数据采集装置,通过计算机化的多道扫描系统(1 024道)使用Wisssoft软件记录穆斯堡尔谱.

(6)数据分析系统,用来自于捷克Zoltan公司的MossWinn 4.0软件对测得的穆斯堡尔谱进行解析,以最小二乘法按洛伦兹线型分布拟合穆斯堡尔谱.

以上由(2)、(4)和(6)组成的WSS-10 Mössbauer光谱仪主机系统来自美国SIDOLIM公司,放射源57Co/25 mCi来自于俄罗斯RITVERC公司.采用室温下25 μm厚的α-Fe进行穆斯堡尔光谱仪速度标定.

2.2.3 样品制备及实验方法

狼山橄榄岩样品先粗碎到1 cm左右大小再细碎到60目后进行磁选分选,随后在双目镜下进行提纯,提纯过程中选择新鲜无蚀变的单矿物颗粒.将分离出的橄榄石、单斜辉石、斜方辉石和尖晶石颗粒样品在玛瑙研钵中研磨至200目以下,研磨时加入无水乙醇防止氧化和迸溅.为保证最佳测试效果,使用信噪比极大值估算出各样品测试最佳质量,对应直径20 mm样品池,橄榄石、单斜辉石和斜方辉石使用质量分别为320±5 mg、251±2 mg和314±3 mg,尖晶石换用直径10 mm样品池,使用质量39~46±5 mg.所有样品均在室温下进行测试,测试时长≥24 h.拟合获得的χ 2较低,介于0.71~1.68,表明穆斯堡尔谱拟合的结果可靠.

3 测试结果

电子探针分析结果显示同一样品同种矿物不同颗粒间化学组成变化不明显,说明其元素组成均一.各矿物主量元素成分见附表1;在室温下对单矿物及全岩粉末进行穆斯堡尔谱测试,其谱图拟合结果见附表2.

3.1 穆斯堡尔谱与化学组成

3.1.1 橄榄石

狼山橄榄石的穆斯堡尔光谱由两个四极分裂双峰组成(图3a),由橄榄石结构中M2和M1八面体位置上的Fe2+形成,Fe2+(M1)的同质异能位移和四极分裂距范围分别是IS=1.12~ 1.13 mm/s和QS=2.85~2.90 mm/s,另一组Fe2+(M2)超精细参数为IS=1.13~1.14 mm/s和QS=3.04~3.10 mm/s.没有发现Fe3+四极分裂双峰(Dyar et al., 1989),因此狼山橄榄石全铁(FeOT=9.46%~10.53%),可全部算作二价铁离子.

3.1.2 单斜辉石

狼山地幔橄榄岩捕掳体中的单斜辉石使用Woodland and Peltonen(1998)提出的穆斯堡尔谱模型,拟合结果与前人研究结果一致(Luth and Canil, 1993; Canil and O'Neill, 1996; Sobolev et al., 1999).单斜辉石的光谱由两个Fe2+(M2)和Fe2+(M1)的四极分裂双峰和一个Fe3+(M1)上的双峰拟合而成(附表2和图3b):Fe2+(M1)的IS从1.11到1.24 mm/s变化,QS从2.24到2.59 mm/s变化,而IS=1.03~ 1.16 mm/s和QS=1.84~2.03 mm/s双峰分配给Fe2+(M2);在Fe3+(M1)中,IS为0.16~0.36 mm/s, QS为0.53~1.03 mm/s时,拟合得到单斜辉石Fe3+/∑Fe比值约为15.72%~25.05%.电子探针测定的狼山单斜辉石Mg#为0.89~0.91,FeOT的含量为2.71%~3.08%,通过化学计量法计算得到Fe3+/∑Fe比值约为16.0%~42.4%,均值为30.9%,变化范围为比穆谱测定值大.

3.1.3 斜方辉石

地幔岩石中的单斜辉石与斜方辉石穆斯堡尔光谱特征相似,表明它们具有本质上相同的结构(Dyar et al., 1989).在最常见的情况下,铁原子可以在两个八面体位置(M1和M2)或与缺少硅组分的四面体配位(Dyar et al., 1989Woodland et al., 2006).在所有狼山斜方辉石样品中,笔者拟合得到了一个Fe3+双峰和两个Fe2+双峰(表2和图3c).Fe3+双峰超精细参数:IS=0.31~0.50 mm/s,QS=0.51~1.27 mm/s,表明Fe3+主要分布在八面体M1位上.拟合得到斜方辉石中Fe3+/∑Fe比值为4.51%~10.6%.与Woodland et al.(2006)Nikitina et al.(2010)一样,将IS=1.15~1.21 mm/s和QS=2.21~2.55 mm/s的一对四极分裂峰分配给Fe2+(M1);另一组IS=1.10~1.14 mm/s和QS=2.00~2.17 mm/s双峰分配给Fe2+(M2),依据是M2位置的畸变要比M1的大,Fe2+的四极分裂随畸变程度的增大而减小(李哲和应育浦,1996).狼山斜方辉石电子探针测定的全铁含量(FeOT)为6.09%~6.58%,通过化学计量法计算得到Fe3+/∑Fe比值变化于0~3.3%,均值为1.67%,略低于穆谱测定的平均Fe3+/∑Fe值(7.11%).

3.1.4 尖晶石

狼山橄榄岩尖晶石相的穆斯堡尔光谱显示了4个四极分裂双峰(图3d),分别代表了八面体和四面体位的铁原子位置(表2和图3d).基于前人的研究(Dyar et al., 1989Hao and Li, 2013),同分异能位移值为0.25~0.32 mm/s,四极分裂值为0.75~0.84 mm/s,符合位于八面体(B)位Fe3+的光谱数据,拟合得到尖晶石中Fe3+/∑Fe比值为16.29%~22.38%.当IS为0.74~1.08 mm/s, QS为0.92~1.77 mm/s时,指配为四面体位置上的Fe2+.虽然尖晶石中只有一个四面体位置(A),但在四面体配位中存在3个明显的双峰.对这一现象最有可能的解释是由次近邻相互作用导致.基于部分四极分裂理论,Dyar et al.(1989)的研究表明,通过用Al3+取代Cr3+,四面体中的每个氧原子都可以与Cr3+和Al3+离子的不同组合结合,从而导致略有不同的晶体结构,比如氧电荷、键长和O‒Fe2+‒O角度,QS值取决于哪个阳离子或不同的阳离子组合与四面体配位氧原子成键.电子探针测定的狼山尖晶石颗粒化学成分无明显变化,尖晶石的Cr#变化为0.089~0.128,说明橄榄岩部分熔融程度较低,FeOT的含量为10.31%~11.17%,采用化学计量法计算得到Fe3+/∑Fe比值为9.9%~15.9%,均值为11.9%,低于穆谱测定的尖晶石平均Fe3+/∑Fe比值19.2%.

3.1.5 全岩

对狼山所有尖晶石二辉橄榄岩全岩样品的穆斯堡尔光谱拟合得到了两个Fe2+四极分裂双峰和一个Fe3+的双峰(附表2):Fe2+的IS变化范围为1.14~1.18 mm/s,QS变化范围为2.14~2.98 mm/s;Fe3+的IS变化范围为0.3~0.41 mm/s,QS变化范围为0.58~0.69 mm/s.拟合得到它的Fe3+/∑Fe比值在4.13%~19.3%之间,结合XRF测定的橄榄岩8.35%~9.51%全铁含量(Fe2O3T),可计算得到橄榄岩全岩FeO和Fe2O3含量分别在6.51%~7.75%和0.36%~1.73%范围.

3.2 温度和氧逸度计算

假设狼山橄榄岩捕掳体样品所处地幔压力为1.5 GPa,分别根据化学计量法计算的矿物Fe3+值(用EMPA表示)以及穆斯堡尔谱仪测定的矿物Fe3+含量(用Möss表示)计算的温度和氧逸度结果见附表3.温度计使用Brey and Köhler(1990)Wells(1977)提出的二辉石温度计以及Ballhaus et al.(1991)提出的尖晶石‒橄榄石Fe-Mg交换温度计,依据两种方式获取的矿物Fe3+含量计算的狼山橄榄岩包体平均平衡温度分别为:TBKN90Möss(℃)=1 038 ℃、 TBKN90EMPA(℃)=1 033 ℃;TWells77Möss(℃)=983 ℃、TWells77EMPA(℃)=984 ℃;TBall91Möss(℃)=1 014 ℃、TBall91EMPA(℃)=919 ℃.可以看出不同温度计受到矿物的三价铁含量变化的影响明显不同,其中TBall91受影响最大,TBKN90和TWells77受影响不明显,但是TWells77相较于其他两种温度计值明显较低,这可能是因为TWells77二辉石温度计适用温度在1 000 ℃以下(Brey and Köhler, 1990),所以笔者讨论氧逸度时使用更可靠的TBKN90值.

针对橄榄石‒斜方辉石‒尖晶石组合,它们平衡共存时存在以下反应:6Fe2SiO4(橄榄石)+O2=3Fe2Si2O6(斜方辉石)+2Fe3O4(尖晶石).前人提出了两种精度最高、使用最广泛的上地幔氧逸度计,一种是Mattioli and Wood(1988)Wood et al.(1990)通过热力学推导并结合活度模型提出热力学公式:

Δ l g ( f O 2 ) F M Q = 220 / T + 0.35 - 0.036   9 P / T - 12 l g   X F e o l - 2   620 ( X M g o l ) 2 / T + 3 l g (   X F e M 1 · X F e M 2 ) O P X + 2 l g   a F e 3 O 4 s p i n e l

式中的P为压力(bar),T为温度(K),   X F e o l X M g o l分别代表橄榄石中的Fe2+/(Fe2++Mg)和Mg/(Fe2++Mg)值;而   X F e M 1 · X F e M 2 O P X代表斜方辉石M1和M2位置上Fe的原子分数; l g   a F e 3 O 4 s p i n e l指尖晶石中Fe3O4的活度,使用Nell and Wood(1991)提出的活度计算公式:

l g   a F e 3 O 4 s p i n e l = l g   ( ( F e 2 + ) F e 3 + 2 / 4 ) + 1 / T [ 406 A l 2 + 653 M g A l + 299 C r 2 + 199 A l C r + 346 M g C r ].

另一种是Ballhaus et al.(1991)通过实验结果得出的经验拟合公式:

Δ l g ( f O 2 ) F M Q = 0.27 + 2   505 T - 400 P T - 6 l g X F e o l - 3   200 ( 1 -   X F e o l ) 2 / T + 2 l g   X F e 2 + s p + 4 l g   X F e 3 + s p + 2   630 ( X A l s p ) 2 / T

其中P为压力,单位是GPa;T为温度,单位是K; X F e o l是橄榄石中Fe2+/(Fe2++Mg)比值; X F e 2 + s p X F e 3 + s p X A l s p分别为尖晶石中Fe2+/(Fe2++Mg)、Fe3+/∑R3+和Al/∑R3+比值.

狼山尖晶石二辉橄榄岩样品根据Wood et al.(1990)结合Nell and Wood(1991)Mattioli and Wood(1988)Wood and Virgo(1989)以及Ballhaus et al.(1991)的氧逸度计采用穆谱测定Fe3+/∑Fe值得到平均氧逸度相对于FMQ(fayalite-magnetite-quartz氧逸度缓冲对)分别为:FMQ-0.65(n=6, T=TBKN90);FMQ+0.43(n=6,FMQ值来自Frost(1991)T=TBKN90)或FMQ-0.44(FMQ值来自O’Neill (1987)T=TBKN90);FMQ-0.84 (n=6,T=TBall91).采用电子探针分析数据计算出的氧逸度值均值分别为FMQ-1.25(n=6);FMQ-0.17 (n=6, FMQ值来自(Frost, 1991))或FMQ-1.05(FMQ值来自O’Neill (1987));FMQ-1.49(n=6).可以看出不同氧逸度计的计算结果差异较大,特别是使用Mattioli and Wood(1988)公式计算出FFM(Fayalite-Ferrosilite-Magnetite氧逸度缓冲对)后,需谨慎选择FMQ值,否则会造成ΔFMQ氧逸度值误差大于1个对数单位.另外与Wood et al.(1990)的方法相比,Ballhaus et al.(1991)氧逸度计算系统给出了更低的ƒO2值(表3),这与之前的研究结果(如Davis et al.(2017))一致.

4 讨论

4.1 矿物Fe3+对平衡温度和氧逸度计算的影响

根据穆斯堡尔谱拟合结果,橄榄岩中斜方辉石Fe3+/∑Fe比值最低,为4.51%~10.6%,单斜辉石中Fe3+/∑Fe比值较高,为15.72%~25.05%,尖晶石比值介于两者之间,为16.29%~22.38%,与前人研究结果(Dyar et al., 1989Luth and Canil, 1993; Canil and O'Neill, 1996; Woodland et al., 2006)有较好的一致性.同时通过电子探针对矿物成分的测试结果结合化学计量法,计算了各种矿物的Fe3+/ ∑Fe比值,斜方辉石、单斜辉石和尖晶石中Fe3+/∑Fe比值分别为0~3.3%、16.0%~42.4%和9.9%~15.9%.结果表明对于尖晶石类矿物,探针计算值(平均Fe3+/∑Fe=11.9%,n=6)普遍比Mössbauer测试值(平均Fe3+/∑Fe=19.31%, n=6)低,对于辉石类矿物尤其是单斜辉石,Fe3+/∑Fe测定值与计算值有较大的差别,且无明显相关性(图4a).Dyar et al.(1989)方同辉和马鸿文(1998)认为这种差别可能受SiO2的分析精度的影响.在通过化学计量法计算辉石Fe3+时,使四面体+3价阳离子与+1、+2和+3价八面体阳离子保持电荷平衡,这对四面体和八面体Al和Si的赋值非常敏感.因此,Si含量的误差会传播到Fe3+的计算中,造成较大的误差.例如,辉石的SiO2含量降低1%,相当于每六个氧减少约0.01个Si公式单位,可导致计算出的Fe3+增加10倍(McGuire et al., 1989),所以基于矿物(如辉石)中Fe3+含量计算的模型和温度计需要更多的验证(Dyar et al., 1989).尖晶石的电子探针计算值与穆斯堡尔谱测定值较接近,主要是因为尖晶石中几乎不含SiO2,但使用化学计量法时假设有3个阳离子和4个阴离子的比例,这种方法会忽略晶格中Fe3+过剩和阳离子空位导致非化学计量学的可能性(Quintiliani, 2006),从而计算的Fe3+值通常低于测量的Fe3+.

不同温度计与氧逸度计受到矿物中Fe3+的影响也明显不同.三种温度计中Brey and Köhler(1990)Wells(1977)的二辉石温度计计算的温度值误差较小,通常不超过10 ℃;而使用Ballhaus et al.(1991)的尖晶石‒橄榄石Fe-Mg交换温度计依据电子探针数据获取的温度值与采用Mössbauer测定数据计算值相差78~124 ℃,后者比前两者受到矿物中Fe3+的影响更大,同时也说明使用电子探针数据计算平衡温度时,采用Brey and Köhler(1990)、Wells(1977)二辉石温度计相对更可靠.使用不同氧逸度计的计算结果显示利用电子探针分析的Fe3+/∑Fe计算的氧逸度值通常比穆斯堡尔谱测定值计算结果低(图4b).使用Wood et al. (1990)氧逸度计计算的平均ΔFMQMöss-EMPA=0.6,Ballhaus et al.(1991)的氧逸度计给出的平均ΔFMQMöss-EMPA=0.66,误差均大于0.5个对数单位,超出探针计算氧逸度的误差范围(0.3个对数单位),表明矿物中Fe3+的准确测定是很有必要的,尤其是尖晶石类矿物.

研究中不管是使用热力学推导公式(ΔFMQ(Wood91/Wood89))还是实验经验拟合公式(ΔFMQ(Ball91)),ΔFMQMöss-EMPA变化都与狼山橄榄岩尖晶石Fe3+/∑Fe Möss-EMPA有很好的正相关性(图5a),而与辉石无明显关系(图5b),说明不管是使用哪种氧逸度计,尖晶石Fe3+/∑Fe比值变化对氧逸度值都具有不同程度的影响.例如尖晶石Fe3+/∑FeMöss-EMPA变化0.1,使用热力学公式计算的氧逸度值ΔFMQMöss-EMPA变化(0.74个对数单位)比实验经验拟合公式计算的氧逸度差值(0.84个对数单位)稍小.Wood and Virgo(1989)指出尖晶石中Fe3O4含量的测定会明显影响氧逸度值.例如,Fe3O4从0.02到0.03的变化,造成1个对数单位的氧逸度变化,他们提出应对尖晶石中Fe3+/∑Fe探针测定值进行二次校准后使用,Ballhaus et al.(1991)则认为二次校准会造成更大的误差.Wang et al.(2007, 2008)报道了4个尖晶石标样(KLB8304、KLB8311、MBR8305、KLB8316)测定结果Fe3+/ ∑FeMöss-EMPA变化在0.025以内,而本研究中狼山尖晶石Fe3+/∑FeMöss-EMPA变化范围为0.06~0.1,对比两组样品发现,前者使用探针数据计算尖晶石Fe3+/∑Fe比值均大于0.15(均值为0.22),后者则普遍小于0.15(均值为0.11),可见探针计算尖晶石三价铁含量的准确性与尖晶石Fe3+/∑FeEMPA含量有很大关系,进一步说明使用Ol-Opx-Spl氧逸度计时,若探针分析数据计算的尖晶石Fe3+/∑Fe比值<0.15时,计算的氧逸度值可靠性降低,需谨慎对待.

4.2 华北克拉通岩石圈地幔氧化还原状态

对于华北克拉通岩石圈地幔氧逸度研究的报道较少而且集中在东部地区(Li and Wang, 2002Hao and Li, 2013Wang et al., 2013).Li and Wang(2002)使用橄榄石‒斜方辉石‒尖晶石氧压计,根据矿物电子探针分析数据估算了63个中国东部新生代玄武岩的地幔捕虏体记录的氧逸度,结果表明中国东部岩石圈地幔氧逸度南高北低,其中华北克拉通(汉诺坝、宽甸和女山)岩石圈地幔氧逸度最低(均值为FMQ-0.37),与大洋地幔氧逸度相似.他们认为其氧化还原状态的变化主要受来自软流圈地幔的C-O-H流体控制.Wang et al.(2013)估算了华北克拉通东北缘(龙岗、汪清和吉林等)产出的地幔橄榄岩氧逸度在FMQ-2.64到FMQ+0.39之间,他们比较了二辉橄榄岩和方辉橄榄岩氧逸度值与非交代样品和交代样品的ƒO2均没有发现明显的差异,认为该区域的ƒO2不受部分熔融和交代作用控制,而是构造环境和地球动力学过程控制了地幔氧逸度变化.Ye et al.(2021)通过收集前人报道的关于华北克拉通橄榄岩包体(鹤壁、集宁、山旺等605个样品)的电子探针数据计算了华北克拉通地区的氧逸度值,以此说明华北克拉通被破坏过程中氧逸度的变化情况.该克拉通破坏是从难熔到饱满,随着橄榄石镁值从高到低,氧逸度表现为降低的趋势,所以随着破坏,华北克拉通岩石圈地幔呈现更还原特征(Ye et al., 2021).

综合前人报道的电子探针分析数据所计算的华北克拉通氧逸度值在FMQ-2至FMQ+1.5范围内(Zheng et al., 1998Zheng et al., 2001Zheng et al., 2005Zheng et al., 2007陈曦和郑建平, 2009余淳梅,2009周媛婷等, 2010),主要集中在相对FMQ值-0.5到0范围,均值为FMQ-0.31(图6b).但从矿物Fe3+对平衡温度和氧逸度计算的影响来看,根据电子探针分析数据计算的氧逸度值误差较大.目前,利用穆斯堡尔谱法直接测定华北克拉通橄榄岩矿物Fe3+/∑Fe比值来确定其氧逸度值的文献报道较少(方同辉和马鸿文, 1998Hao and Li, 2013).方同辉和马鸿文(1998)Hao and Li(2013)分别对宽甸和女山的橄榄岩包体中的矿物进行了穆斯堡尔光谱测定,根据穆谱结果计算得到宽甸橄榄岩氧逸度值为FMQ+0.35,女山橄榄岩氧逸度值为FMQ-0.1.

本研究对华北克拉通西北缘狼山地区产出的6个橄榄岩包体使用穆谱测定Fe3+/∑Fe值计算的氧逸度值为FMQ-0.82至FMQ-0.39.从根据穆谱测定的Fe3+/∑Fe值计算的氧逸度值来看,华北克拉通西北缘岩石圈地幔比东部呈更还原状态,但是由于华北克拉通东部穆谱数据量少,可能代表性不够,尚待获取更多的矿物Fe3+/∑Fe准确值后展开对华北克拉通岩石圈地幔氧化还原状态的综合对比研究.

4.3 华北克拉通西北缘岩石圈地幔氧逸度研究意义

华北克拉通西北部岩石圈地幔氧逸度值整体在全球大陆岩石圈地幔的ƒO2值范围内(图6a),略高于深海橄榄岩的平均ƒO2值(FMQ-1),但比与俯冲带相关的地幔橄榄岩氧逸度值低.相比于西伯利亚克拉通和Salve克拉通内部产出尖晶石橄榄岩平均氧逸度值FMQ-0.35(McCammon and Kopylova, 2004; Goncharov et al., 2012),狼山地区岩石圈地幔氧化还原状态整体表现较还原(均值为FMQ-0.51).一般认为,地幔岩石的氧逸度可能受到部分熔融作用、交代作用及构造环境的制约(McGuire et al., 1991杨清福等, 2011Wang et al., 2012刘金霖等, 2021).Canil et al.(1994)认为由于Fe3+中度不相容特性,部分熔融作用可降低残留地幔氧逸度值,但矿物的晶体化学效应会抑制部分熔融过程中氧逸度的降低(Woodland et al., 1992; Canil and O’Neill, 1996).狼山橄榄岩捕掳体样品中,尖晶石的Cr#与尖晶石Fe3+/∑Fe值及ƒO2之间均无明显相关性(图6c),说明部分熔融可能不是该地区岩石圈地幔氧逸度变化的主控因素.

研究区位于华北克拉通西北缘,古生代时期,古亚洲洋南向俯冲于华北之下,势必会对华北北缘岩石圈产生显著影响.由于俯冲碰撞后的伸展作用和软流圈上涌,华北北缘巨厚难熔的岩石圈被侵蚀和减薄、最终被饱满地幔置换(Wu et al., 2017Dai et al., 2019).此外,俯冲板片脱水受热后部分熔融可产生具亏损放射性同位素特点的富硅熔体,这种熔体上升后会与地幔楔橄榄岩反应(Liu et al., 2010Dai et al., 2019Dai and Zheng, 2019Dai et al., 2020).Dai et al.(2019)对狼山地区多个橄榄岩包体进行单矿物主、微量分析后,证实狼山地区的岩石圈经历了低熔岩比条件下的隐性交代作用并且单斜辉石微量元素特征表明交代介质主要为硅酸盐熔体.笔者样品中矿物的化学组成与岩石类型与Dai et al.(2019)研究的样品无明显差别,除18LS-02外,其余样品均未观察到交代矿物,推测它们同样主要经历了硅酸盐熔体的隐性交代作用.仅在18LS-02中出现少量角闪石,暗示局部地区存在显性交代作用,然而它的氧逸度值(FMQ-0.8)比其他狼山橄榄岩平均氧逸度值(FMQ-0.65)低.Li and Zhang(2002)报道了女山含角闪石橄榄岩比未含角闪石橄榄岩更为还原,他们认为可能是由于更深的软流圈中富含CH4的C-H-O流体交代导致.杨清福等(2011)认为交代的样品与其他样品的ƒO2并无明显差别是由于交代介质来源于软流圈,所以不对其同源的橄榄岩的ƒO2产生明显改变.综上,笔者认为研究区地幔橄榄岩氧逸度变化可能与华北克拉通西北缘岩石圈地幔受到了后期低氧逸度熔体的交代改造有关,而交代熔体可能起源于氧逸度值相对较低的更深部地幔,局部地区可能存在低氧逸度的C-H-O流体的交代.

5 结论

(1)根据电子探针分析获取矿物的Fe3+/∑Fe比值与穆斯堡尔谱仪测定值有一定偏差.不同温度计与氧逸度计受到矿物中Fe3+的影响不同.电子探针数据可获取可靠的TBKN90(℃)温度值,但当尖晶石Fe3+/∑Fe<0.15时会降低氧逸度值估计的可靠性.

(2)使用中国地质大学(武汉)WSS-10 Mössbauer光谱仪可准确获取样品中的Fe3+/∑Fe比值.通过穆谱测定矿物Fe3+/∑Fe值计算的华北克拉通西北缘氧逸度值为FMQ-0.82至FMQ-0.39,相比于其东部岩石圈地幔氧逸度值(FMQ-0.1至FMQ+0.35),华北克拉通西北缘岩石圈地幔稍显还原.

(3)华北西北部岩石圈地幔与全球克拉通地幔相比,仍表现出较还原状态,而且橄榄岩ƒO2和部分熔融没有明显相关性,而与交代作用有关,推测交代熔体可能起源于氧逸度值相对较低的更深部地幔.

参考文献

[1]

Ballhaus, C., Berry, R. F., Green, D. H., 1991. High Pressure Experimental Calibration of the Olivine-Orthopyroxene-Spinel Oxygen Geobarometer: Implications for the Oxidation State of the Upper Mantle. Contributions to Mineralogy and Petrology, 107(1): 27-40. https://doi.org/10.1007/BF00311183

[2]

Bénard, A., Woodland, A. B., Arculus, R. J., et al., 2018. Variation in Sub-Arc Mantle Oxygen Fugacity during Partial Melting Recorded in Refractory Peridotite Xenoliths from the West Bismarck Arc. Chemical Geology, 486: 16-30. https://doi.org/10.1016/j.chemgeo.2018.03.004

[3]

Brandon, A. D., Draper, D. S., 1996. Constraints on the Origin of the Oxidation State of Mantle Overlying Subduction Zones: An Example from Simcoe, Washington, USA. Geochimica et Cosmochimica Acta, 60(10): 1739-1749. https://doi.org/10.1016/0016-7037(96)00056-7

[4]

Brey, G. P., Köhler, T., 1990. Geothermobarometry in Four-Phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. Journal of Petrology, 31(6): 1353-1378. https://doi.org/10.1093/petrology/31.6.1353

[5]

Bryndzia, L. T., Wood, B. J., 1990. Oxygen Thermobarometry of Abyssal Spinel Peridotites: The Redox State and C-O-H Volatile Composition of the Earth’s Sub-Oceanic Upper Mantle. American Journal of Science, 290(10): 1093-1116. https://doi.org/10.2475/ajs.290.10.1093

[6]

Canil, D., O’neill, H. S. C., 1996. Distribution of Ferric Iron in Some Upper-Mantle Assemblages. Journal of Petrology, 37(3): 609-635. https://doi.org/10.1093/petrology/37.3.609

[7]

Canil, D., O’Neill, H. S. C., Pearson, D. G., et al., 1994. Ferric Iron in Peridotites and Mantle Oxidation States. Earth and Planetary Science Letters, 123(1-3): 205-220. https://doi.org/10.1016/0012-821X(94)90268-2

[8]

Canil, D., Virgo, D., Scarfe, C. M., 1990. Oxidation State of Mantle Xenoliths from British Columbia, Canada. Contributions to Mineralogy and Petrology, 104(4): 453-462. https://doi.org/10.1007/BF01575622

[9]

Chen, X., Zheng, J. P., 2009. Mineral Chemistry of Peridotite Xenoliths in Yangyuan Cenozoic Basalts: Significance for Lithospheric Mantle Evolution Beneath the North China Craton. Earth Science, 34(1): 203-219 (in Chinese with English abstract).

[10]

Chen, Y. D., Pearson, N. J., O’Reilly, S. Y., et al., 1991. Applications of Olivine-Orthopyroxene-Spinel Oxygen Geobarometers to the Redox State of the Upper Mantle. Journal of Petrology, Special_Volume(2): 291-306. https://doi.org/10.1093/petrology/Special_Volume.2.291

[11]

Chen, Y., Hu, Z. C., Jia, L. H., et al., 2021. Progress of Microbeam Analytical Technologies in the Past Decade(2011-2020)and Prospect. Bulletin of Mineralogy, Petrology and Geochemistry, 40(1):1-35 (in Chinese with English abstract).

[12]

Christie, D. M., Carmichael, I. S. E., Langmuir, C. H., 1986. Oxidation States of Mid-Ocean Ridge Basalt Glasses. Earth and Planetary Science Letters, 79(3-4): 397-411. https://doi.org/10.1016/0012-821X(86)90195-0

[13]

Cottrell, E., Lanzirotti, A., Mysen, B., et al., 2018. A Mössbauer-Based XANES Calibration for Hydrous Basalt Glasses Reveals Radiation-Induced Oxidation of Fe. American Mineralogist, 103(4): 489-501. https://doi.org/10.2138/am-2018-6268

[14]

Dai, H. K., Zheng, J. P., 2019. Mantle Xenoliths and Host Basalts Record the Paleo-Asian Oceanic Materials in the Mantle Wedge Beneath Northwest North China Craton. Solid Earth Sciences, 4(4): 150-158. https://doi.org/10.1016/j.sesci.2019.09.001

[15]

Dai, H. K., Zheng, J. P., Griffin, W. L., et al., 2020. Pyroxenite Xenoliths Record Complex Melt Impregnation in the Deep Lithosphere of the Northwestern North China Craton. Journal of Petrology, 62(2): egaa079. https://doi.org/10.1093/petrology/egaa079

[16]

Dai, H. K., Zheng, J. P., Xiong, Q., et al., 2019. Fertile Lithospheric Mantle Underlying Ancient Continental Crust Beneath the Northwestern North China Craton: Significant Effect from the Southward Subduction of the Paleo–Asian Ocean. GSA Bulletin, 131(1-2): 3-20. https://doi.org/10.1130/b31871.1

[17]

Dai, L. D., Karato, S. I., 2014. Influence of Oxygen Fugacity on the Electrical Conductivity of Hydrous Olivine: Implications for the Mechanism of Conduction. Physics of the Earth and Planetary Interiors, 232: 57-60. https://doi.org/10.1016/j.pepi.2014.04.003

[18]

Darby, B. J., Ritts, B. D., 2007. Mesozoic Structural Architecture of the Langshan, North-Central China: Intraplate Contraction, Extension, and Synorogenic Sedimentation. Journal of Structural Geology, 29:2006-2016. https://doi.org/10.1016/j.jsg.2007.06.011

[19]

Dasgupta, R., Mallik, A., Tsuno, K., et al., 2013. Carbon-Dioxide-Rich Silicate Melt in the Earth’s Upper Mantle. Nature, 493(7431): 211-215. https://doi.org/10.1038/nature11731

[20]

Davis, F. A., Cottrell, E., Birner, S. K., et al., 2017. Revisiting the Electron Microprobe Method of Spinel-Olivine-Orthopyroxene Oxybarometry Applied to Spinel Peridotitesk. American Mineralogist, 102(2): 421-435. https://doi.org/10.2138/am-2017-5823

[21]

Dyar, M. D., Agresti, D. G., Schaefer, M. W., et al., 2006. Mössbauer Spectroscopy of Earth and Planetary Materials. Annual Review of Earth and Planetary Sciences, 34: 83-125. https://doi.org/10.1146/annurev.earth.34.031405.125049

[22]

Dyar, M. D., McGuire, A. V., Ziegler, R. D.,1989.Redox Equilibria and Crystal Chemistry of Coexisting Minerals from Spinel Lherzolite Mantle Xenoliths. American Mineralogist, 74(9-10): 969-980.

[23]

Fang, T. H., Ma, H. W., 1998. Ferric Iron Contents of Mantle Xenolith Minerals by Mössbauer Spectroscopy and Its Implications to Calculated Temperature Pressure and Oxygen Fugacity. Geoscience, 12(2): 197-203 (in Chinese with English abstract).

[24]

Feng, F., Xu, Z. Y., Dong, X. J., et al., 2021. Chronology, Geochemistry and Hf Isotope of Granite Porphyry in Wenduermiao-Jining Area, Inner Mongolia and Its Geological Significance. Earth Science, 46(6): 1973-1992 (in Chinese with English abstract).

[25]

Feng, J. Y., Xiao, W. J., Windley, B., et al., 2013. Field Geology, Geochronology and Geochemistry of Mafic-Ultramafic Rocks from Alxa, China: Implications for Late Permian Accretionary Tectonics in the Southern Altaids. Journal of Asian Earth Sciences, 78:114-142. https://doi.org/10.1016/j.jseaes.2013.01.020

[26]

Frost, B. R., 1991. Introduction to Oxygen Fugacity and Its Petrologic Importance. In: Lindsley, D. H., ed., Volume 25: Oxide Minerals: Petrologic and Magnetic Significance. Stony Brook, New York.

[27]

Frost, D. J., McCammon, C. A., 2008. The Redox State of Earth’s Mantle. Annual Review of Earth and Planetary Sciences, 36: 389-420. https://doi.org/10.1146/annurev.earth.36.031207.124322

[28]

Ghiorso, M. S., Evans, B. W., 2008. Thermodynamics of Rhombohedral Oxide Solid Solutions and a Revision of the Fe-Ti Two-Oxide Geothermometer and Oxygen-Barometer. American Journal of Science, 308(9): 957-1039. https://doi.org/10.2475/09.2008.01

[29]

Goncharov, A. G., Ionov, D. A., Doucet, L. S., et al., 2012. Thermal State, Oxygen Fugacity and C-O-H Fluid Speciation in Cratonic Lithospheric Mantle: New Data on Peridotite Xenoliths from the Udachnaya Kimberlite, Siberia. Earth and Planetary Science Letters, 357-358: 99-110. https://doi.org/10.1016/j.epsl.2012.09.016

[30]

Hao, X. L., Li, Y. L., 2013. 57Fe Mössbauer Spectroscopy of Mineral Assemblages in Mantle Spinel Lherzolites from Cenozoic Alkali Basalt, Eastern China: Petrological Applications. Lithos, 156-159: 112-119. https://doi.org/10.1016/j.lithos.2012.10.016

[31]

Ionov, D. A., Wood, B. J., 1992. The Oxidation State of Subcontinental Mantle: Oxygen Thermobarometry of Mantle Xenoliths from Central Asia. Contributions to Mineralogy and Petrology, 111(2): 179-193. https://doi.org/10.1007/BF00348950

[32]

Kress, V. C., Carmichael, I. S. E., 1991. The Compressibility of Silicate Liquids Containing Fe2O3 and the Effect of Composition, Temperature, Oxygen Fugacity and Pressure on Their Redox States. Contributions to Mineralogy and Petrology, 108(1-2): 82-92. https://doi.org/10.1007/BF00307328

[33]

Kumar, A., Singh, M. R., Sarma, P. R., et al., 1989. Optimised Thickness of Diffusive Mössbauer Absorbers. Journal of Physics D: Applied Physics, 22(3): 465–466. https://doi.org/10.1088/0022-3727/22/3/015

[34]

Li, J. P., Wang, J., 2002. Mantle Redox State Evolution in Eastern China and Its Implications. Acta Geologica Sinica - English Edition, 76(2): 238-248. https://doi.org/10.1111/j.1755-6724.2002.tb00089.x

[35]

Li, J. P., Zhang, S., 2002. Redox State of Amphibole-Bearing Mantle Peridotite from Nüshan, Anhui Province in Eastern China and Its Implications. Science in China (Series D), 45(4): 348-357. https://doi.org/10.1360/02yd9036

[36]

Li, S. K., Liu, X. L., Lu, Y. X., et al., 2022. Indication of Zircon Oxygen Fugacity to Different Mineralization Control Factors of Porphyry Deposits in Zhongdian Ore-Concentrated Area, Southern Yidun Arc. Earth Science, 47(4):1435-1458 (in Chinese with English abstract).

[37]

Li, X. L., Tao, R. B., Li, Q. Y., et al., 2019. Microprobe Analysis of Ferric Iron in Garnet: The Flank Method and Case Application. Acta Petrologica Sinica, 35(4): 1058-1070 (in Chinese with English abstract).

[38]

Li, X. Y., Zhang, C., Behrens, H., et al., 2020. Calculating Biotite Formula from Electron Microprobe Analysis Data Using a Machine Learning Method Based on Principal Components Regression. Lithos, 356-357: 105371. https://doi.org/10.1016/j.lithos.2020.105371

[39]

Li, Z., Ying, Y. P., 1996. Mössbauer Spectroscopy of Minerals. Science Press, Beijing (in Chinese).

[40]

Linnen, R. L., Pichavant, M., Holtz, F., et al., 1995. The Effect of fO2 on the Solubility, Diffusion, and Speciation of Tin in Haplogranitic Melt at 850 ℃ and 2 kbar. Geochimica et Cosmochimica Acta, 59(8): 1579-1588. https://doi.org/10.1016/0016-7037(95)00064-7

[41]

Liu, C. Q., Li, H. P., Huang, Z. L., et al., 2001. A Review of Studies on Oxygen Fugacity of the Earth Mantle. Earth Science Frontiers, 8(3): 73-82 (in Chinese with English abstract).

[42]

Liu, J. L., Li, H. B., Wang, J., et al., 2021. Characteristics of Oxygen Fugacity of Mantle Peridotites in the Northern Xing’an-Mongolia Orogenic Belt. Acta Petrologica Sinica, 37(7): 2073-2085 (in Chinese with English abstract).

[43]

Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082

[44]

Luth, R. W., Canil, D., 1993. Ferric Iron in Mantle-Derived Pyroxenes and a New Oxybarometer for the Mantle. Contributions to Mineralogy and Petrology, 113(2): 236-248. https://doi.org/10.1007/BF00283231

[45]

Mattioli, G. S., Wood, B. J., 1988. Magnetite Activities across the MgAl2O4-Fe3O4 Spinel Join, with Application to Thermobarometric Estimates of Upper Mantle Oxygen Fugacity. Contributions to Mineralogy and Petrology, 98(2): 148-162. https://doi.org/10.1007/BF00402108

[46]

McCammon, C., Kopylova, M. G., 2004. A Redox Profile of the Slave Mantle and Oxygen Fugacity Control in the Cratonic Mantle. Contributions to Mineralogy and Petrology, 148(1): 55-68. https://doi.org/10.1007/s00410-004-0583-1

[47]

McGuire, A. V., Dyar, M. D., Nielson, J. E., 1991. Metasomatic Oxidation of Upper Mantle Periodotite. Contributions to Mineralogy and Petrology, 109(2): 252-264. https://doi.org/10.1007/BF00306483

[48]

McGuire, A. V., Dyar, M. D., Ward, K. A., 1989. Neglected Fe3+/Fe2+ Ratios: A Study of Fe3+ Content of Megacrysts from Alkali Basalts. Geology, 17(8): 687. https://doi.org/10.1130/0091-7613(1989)0170687: nffras>2.3.co;2

[49]

Nell, J., Wood, B. J., 1991. High-Temperature Electrical Measurements and Thermodynamic Properties of Fe3O4-FeCr2O4-MgCr2O4-FeAl2O4 Spinels. American Mineralogist, 76(3-4): 405-426.

[50]

Nikitina, L. P., Goncharov, A. G., Saltykova, A. K., et al., 2010. The Redox State of the Continental Lithospheric Mantle of the Baikal-Mongolia Region. Geochemistry International, 48(1): 15-40. https://doi.org/10.1134/s0016702910010027

[51]

O’Neill, H. S. C., 1987. The Quartz-Fayalite-Iron and Quartz-Fayalite- Magnetite Equilibria and the Free Energies of Formation of Fayalite (Fe2SiO4) and Magnetite (Fe3O4). American Mineralogist, 72: 67-75.

[52]

Quintiliani, M., 2006. Fe2+ and Fe3+ Quantification by Different Approaches and fO2 Estimation for Albanian Cr-Spinels. American Mineralogist, 91(5-6): 907-916. https://doi.org/10.2138/am.2006.2000

[53]

Sack, R. O., Carmichael, I. S. E., Rivers, M., et al., 1981. Ferric-Ferrous Equilibria in Natural Silicate Liquids at 1 Bar. Contributions to Mineralogy and Petrology, 75(4): 369-376. https://doi.org/10.1007/BF00374720

[54]

Sobolev, V. N., McCammon, C. A., Taylor, L. A., et al., 1999. Precise Mössbauer Milliprobe Determination of Ferric Iron in Rock-Forming Minerals and Limitations of Electron Microprobe Analysis. American Mineralogist, 84(1-2): 78-85. https://doi.org/10.2138/am-1999-1-208

[55]

Stagno, V., Ojwang, D. O., McCammon, C. A., et al., 2013. The Oxidation State of the Mantle and the Extraction of Carbon from Earth’s Interior. Nature, 493(7430): 84-88. https://doi.org/10.1038/nature11679

[56]

Sun, W. D., Wang, J. T., Zhang, L. P., et al., 2017. The Formation of Porphyry Copper Deposits. Acta Geochimica, 36(1): 9-15. https://doi.org/10.1007/s11631-016-0132-4

[57]

Tao, R. B., Zhang, L. F., Liu, X., 2015. Oxygen Fugacity of Earth’s Mantle and Deep Carbon Cycle in the Subduction Zone. Acta Petrologica Sinica, 31(7): 1879-1890 (in Chinese with English abstract).

[58]

Wanamaker, B. J., Duba, A. G., 1992. The Thermoelectric Power (Seebeck Coefficient) of San Carlos Olivine as a Function of Oxygen Fugacity and Silica Activity. Transactions-American Geophysical Union, 73:66.

[59]

Wang, J., Hattori, K. H., Kilian, R., et al., 2007. Metasomatism of Sub-Arc Mantle Peridotites below Southernmost South America: Reduction of fO2 by Slab-Melt. Contributions to Mineralogy and Petrology, 153(5): 607-624. https://doi.org/10.1007/s00410-006-0166-4

[60]

Wang, J., Hattori, K. H., Li, J. P., et al., 2008. Oxidation State of Paleozoic Subcontinental Lithospheric Mantle below the Pali Aike Volcanic Field in Southernmost Patagonia. Lithos, 105(1-2): 98-110. https://doi.org/10.1016/j.lithos.2008.02.009

[61]

Wang, J., Hattori, K., Xie, Z. P., 2013. Oxidation State of Lithospheric Mantle along the Northeastern Margin of the North China Craton: Implications for Geodynamic Processes. International Geology Review, 55(11): 1418-1444. https://doi.org/10.1080/00206814.2013.780722

[62]

Wang, J., Hattori, K., Xu, W. L., et al., 2012. Origin of Ultramafic Xenoliths in High-Mg Diorites from East-Central China Based on Their Oxidation State and Abundance of Platinum Group Elements. International Geology Review, 54(10): 1203-1218. https://doi.org/10.1080/00206814.2011.628206

[63]

Wells, P. R. A., 1977. Pyroxene Thermometry in Simple and Complex Systems. Contributions to Mineralogy and Petrology, 62(2): 129-139. https://doi.org/10.1007/BF00372872

[64]

Wood, B. J., Bryndzia, L. T., Johnson, K. E., 1990. Mantle Oxidation State and Its Relationship to Tectonic Environment and Fluid Speciation. Science, 248(4953): 337-345. https://doi.org/10.1126/science.248.4953.337

[65]

Wood, B. J., Virgo, D., 1989. Upper Mantle Oxidation State: Ferric Iron Contents of Iherzolite Spinels by 57Fe Mössbauer Spectroscopy and Resultant Oxygen Fugacities. Geochimica et Cosmochimica Acta, 53(6): 1277-1291. https://doi.org/10.1016/0016-7037(89)90062-8

[66]

Woodland, A. B., Kornprobst, J., Tabit, A., 2006. Ferric Iron in Orogenic Lherzolite Massifs and Controls of Oxygen Fugacity in the Upper Mantle. Lithos, 89(1-2): 222-241. https://doi.org/10.1016/j.lithos.2005.12.014

[67]

Woodland, A. B., Kornprobst, J., Wood, B. J., 1992. Oxygen Thermobarometry of Orogenic Lherzolite Massifs. Journal of Petrology, 33(1): 203-230. https://doi.org/10.1093/petrology/33.1.203

[68]

Woodland, A. B., Peltonen, P., 1998. Ferric/Ferrous Iron Contents of Garnet and Clinopyroxene and Calculated Oxygen Fugacities of Peridotite Xenoliths from the Eastern Finland Kimberlite Province. International Kimberlite Conference, Cape Town.

[69]

Wu, D., Liu, Y. S., Chen, C. F., et al., 2017. In-Situ Trace Element and Sr Isotopic Compositions of Mantle Xenoliths Constrain Two-Stage Metasomatism Beneath the Northern North China Craton. Lithos, 288-289: 338-351. https://doi.org/10.1016/j.lithos.2017.07.018

[70]

Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254

[71]

Yang, Q. F., Wang, J., Hattori, K. H., et al., 2011. Redox State of the Lithospheric Mantle Beneath Huinan-Jingyu Area, Southern Jilin Province, China. Acta Petrologica Sinica, 27(6):1797-1809 (in Chinese with English abstract).

[72]

Ye, C. Y., Ying, J. F., Tang, Y. J., et al., 2021. Oxygen Fugacity Evolution of the Mantle Lithosphere Beneath the North China Craton. International Geology Review, 1-16. https://doi.org/10.1080/00206814.2021.2015630

[73]

Yu, C. M., 2009. Ages of Peridotitic Xenoliths from the Central and Eastern Areas of North China Craton and Mantle Heterogeneity (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).

[74]

Zhang, B. F., 1991. Mössbauer Spectroscopy. Tianjin University Publishing House, Tianjin (in Chinese).

[75]

Zhang, C., Almeev, R. R., Hughes, E. C., et al., 2018. Electron Microprobe Technique for the Determination of Iron Oxidation State in Silicate Glasses. American Mineralogist, 103(9): 1445-1454. https://doi.org/10.2138/am-2018-6437

[76]

Zhang, F. L., Yi, F., Chen, Y. L., et al., 1997. Determination of the Optimum Thickness of an Absorber in Mossbauer Spectroscopy. Journal of Wuhan University (Natural Science Edition), 43(3): 348-352 (in Chinese with English abstract).

[77]

Zheng, J. P., Griffin, W. L., O’Reilly, S. Y., et al., 2007. Mechanism and Timing of Lithospheric Modification and Replacement Beneath the Eastern North China Craton: Peridotitic Xenoliths from the 100 Ma Fuxin Basalts and a Regional Synthesis. Geochimica et Cosmochimica Acta, 71(21): 5203-5225. https://doi.org/10.1016/j.gca.2007.07.028

[78]

Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2005. Late Mesozoic-Eocene Mantle Replacement Beneath the Eastern North China Craton: Evidence from the Paleozoic and Cenozoic Peridotite Xenoliths. International Geology Review, 47(5): 457-472. https://doi.org/10.2747/0020-6814.47.5.457

[79]

Zheng, J. P., O’reilly, S. Y., Griffin, W. L., et al., 1998. Nature and Evolution of Cenozoic Lithospheric Mantle Beneath Shandong Peninsula, Sino-Korean Craton, Eastern China. International Geology Review, 40(6): 471-499. https://doi.org/10.1080/00206819809465220

[80]

Zheng, J. P., O’Reilly, S. Y., Griffin, W. L., et al., 2001. Relict Refractory Mantle Beneath the Eastern North China Block: Significance for Lithosphere Evolution. Lithos, 57(1): 43-66. https://doi.org/10.1016/S0024-4937(00)00073-6

[81]

Zhou, Y. T., Zheng, J. P., Yu, C. M., et al., 2010. Peridotite Xenoliths in Jining Cenozoic Basalts: Mineral-Chemistry and Significance for Lithospheric Mantle Evolution Beneath the North China Craton. Acta Perologica et Mineralogica, 29(3): 243-257 (in Chinese with English abstract).

[82]

陈曦, 郑建平, 2009. 河北阳原新生代玄武岩中橄榄岩捕虏体矿物化学: 华北岩石圈地幔演化. 地球科学, 34(1): 203-219.

[83]

陈意, 胡兆初, 贾丽辉, 等, 2021. 微束分析测试技术十年(2011—2020)进展与展望. 矿物岩石地球化学通报, 40(1): 1-35.

[84]

方同辉, 马鸿文, 1998.辽宁宽甸地幔矿物三价铁的穆斯堡尔谱测定及意义.现代地质, 12(2): 197-203.

[85]

冯帆, 徐仲元, 董晓杰, 等, 2021. 内蒙古温都尔庙‒集宁地区花岗斑岩年代学、地球化学、Hf同位素特征及其地质意义. 地球科学, 46(6): 1973-1992.

[86]

李守奎, 刘学龙, 卢映祥, 等, 2022.锆石氧逸度对义敦岛弧南段中甸矿集区斑岩型矿床差异性成矿控制因素的指示.地球科学, 47(4): 1435-1458.

[87]

李小犁, 陶仁彪, 李清云, 等, 2019. 石榴子石Fe3+含量电子探针原位分析: Flank Method方法的实例应用. 岩石学报, 35(4): 1058-1070.

[88]

李哲, 应育浦, 1996.矿物穆斯堡尔谱学. 北京: 科学出版社.

[89]

刘丛强, 李和平, 黄智龙, 等, 2001.地幔氧逸度的研究进展.地学前缘, 8(3):73-82.

[90]

刘金霖, 李怀滨, 王建, 等, 2021. 兴蒙造山带北部岩石圈地幔橄榄岩氧逸度特征研究. 岩石学报, 37(7): 2073-2085.

[91]

陶仁彪, 张立飞, 刘曦, 2015. 地幔氧逸度与俯冲带深部碳循环. 岩石学报, 31(7): 1879-1890.

[92]

杨清福, 王建, Hattori, K. H., 等, 2011. 吉林南部辉南‒靖宇地区岩石圈地幔氧化‒还原状态及研究意义. 岩石学报, 27(6): 1797-1809.

[93]

余淳梅, 2009. 华北克拉通中东部典型地区橄榄岩捕虏体年龄及地幔不均一性(博士学位论文). 武汉: 中国地质大学.

[94]

张宝峰, 1991. 穆斯堡尔谱学. 天津: 天津大学出版社,

[95]

张富良, 易凡, 陈义龙, 等, 1997. 穆斯堡尔谱学中样品最佳厚度的确定. 武汉大学学报(自然科学版), 43(3): 348-352.

[96]

周媛婷, 郑建平, 余淳梅, 等, 2010. 内蒙古集宁新生代玄武岩中橄榄岩包体矿物化学特征及其地幔演化意义. 岩石矿物学杂志, 29(3): 243-257.

基金资助

国家自然科学基金项目(41930215;41873038)

AI Summary AI Mindmap
PDF (2743KB)

214

访问

0

被引

详细

导航
相关文章

AI思维导图

/