堰塞体溃决流量与溃口形态演化数值模拟
Numerical Simulation of Breach Hydrograph and Morphology Evolution during Landslide Dam Breaching
,
堰塞体是山区常见的地质灾害,一旦发生溃决,将对下游人民的生命财产安全构成严重威胁.在应急响应时需要对堰塞体溃口流量过程和溃口形态演化进行快速准确的预测,但目前的溃坝数学模型大多未充分考虑堰塞体的地貌学特征,无法合理反映复杂地形下堰塞体的溃决过程.采用雷诺平均Navier-Stokes方程和湍流重正化群k-ε模型相结合的数值方法,对复杂地形下的溃决水流进行模拟,并利用可考虑推移质和悬移质输移的冲蚀公式模拟溃口冲蚀过程,选择拥有详细勘测资料和水文数据的“11•03”白格堰塞体溃决案例进行反演分析.对比计算和实测的溃口流量过程线、溃决过程水动力学特征及最终溃口断面形态发现,模拟结果可较好地反映堰塞体的实际溃决过程,验证了模型的合理性.
堰塞体 / 溃决过程 / 数值模拟 / 溃口流量 / 溃口形态
landslide dam / breach process / numerical simulation / breach hydrograph / breach morphology
| [1] |
ASCE/EWRI Task Committee on Dam/Levee Breaching, 2011. Earthen Embankment Breaching. Journal of Hydraulic Engineering, 137(12): 1549-1564. https://doi.org/10.1061/(asce)hy.1943-7900.0000498 |
| [2] |
Bagnold, R.A., 1966. An Approach to the Sediment Transport Problem from General Physics. U.S. Geological Survey Professional Paper, 422(1): 231-291. |
| [3] |
Cai, Y. J., Cheng, H. Y., Wu, S. F., et al., 2020. Breaches of the Baige Barrier Lake: Emergency Response and Dam Breach Flood.Science China Technological Sciences, 63(7): 1164-1176. https://doi.org/10.1007/s11431-019-1475-y |
| [4] |
Cai, Y.J., Luan, Y.S., Yang, Q.G., et al., 2019. Study on Structural Morphology and Dam-Break Characteristics of Baige Barrier Dam on Jinsha River. Yangtze River, 50(3): 15-22 (in Chinese with English abstract). |
| [5] |
Cao, P., Li, Y.S., Li, Z.L., et al., 2021. Geological Structure Characteristics and Genetic Mechanism of Baige Landslide Slope in Changdu, Tibet. Earth Science, 46(9): 3397-3409 (in Chinese with English abstract). |
| [6] |
Chang, D. S., Zhang, L. M., 2010. Simulation of the Erosion Process of Landslide Dams Due to Overtopping Considering Variations in Soil Erodibility along Depth. Natural Hazards and Earth System Sciences, 10(4): 933-946. https://doi.org/10.5194/nhess-10-933-2010 |
| [7] |
Chen, C., Zhang, L. M., Xiao, T., et al., 2020. Barrier Lake Bursting and Flood Routing in the Yarlung Tsangpo Grand Canyon in October 2018. Journal of Hydrology, 583: 124603. https://doi.org/10.1016/j.jhydrol.2020.124603 |
| [8] |
Chen, S.S., Chen, Z.Y., Zhong, Q.M., 2019. Progresses of Studies on Failure Mechanism and Numerical Dam Failure Model of Earth-Rockfill Dam and Landslide Dam. Water Resources and Hydropower Engineering, 50(8): 27-36 (in Chinese with English abstract). |
| [9] |
Chen, Z. Y., Ma, L. Q., Yu, S., et al., 2015. Back Analysis of the Draining Process of the Tangjiashan Barrier Lake. Journal of Hydraulic Engineering, 141(4): 05014011. https://doi.org/10.1061/(asce)hy.1943-7900.0000965 |
| [10] |
Costa, J. E., Schuster, R. L., 1988. The Formation and Failure of Natural Dams. Geological Society of America Bulletin, 100(7): 1054-1068. https://doi.org/10.1130/0016-7606(1988)1001054: tfafon>2.3.co;2 |
| [11] |
Fan, X. M., Scaringi, G., Korup, O., et al., 2019. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Reviews of Geophysics, 57(2): 421-503. https://doi.org/10.1029/2018rg000626 |
| [12] |
Fan, X. M., Zhan, W. W., Dong, X. J., et al., 2018. Analyzing Successive Landslide Dam Formation by Different Triggering Mechanisms: The Case of the Tangjiawan Landslide, Sichuan, China. Engineering Geology, 243: 128-144. https://doi.org/10.1016/j.enggeo.2018.06.016 |
| [13] |
Guan, M. F., Wright, N. G., Andrew Sleigh, P., 2014. Multimode Morphodynamic Model for Sediment-Laden Flows and Geomorphic Impacts. Journal of Hydraulic Engineering, 141(6): 04015006. https://doi.org/10.1061/(asce)hy.1943-7900.0000997 |
| [14] |
Jiang, X. G., Wei, Y. W., 2020. Erosion Characteristics of Outburst Floods on Channel Beds under the Conditions of Different Natural Dam Downstream Slope Angles. Landslides, 17(8): 1823-1834. https://doi.org/10.1007/s10346-020-01381-y |
| [15] |
Kaurav, R., Mohapatra, P. K., 2019. Studying the Peak Discharge through a Planar Dam Breach. Journal of Hydraulic Engineering, 145(6): 06019010. https://doi.org/10.1061/(asce)hy.1943-7900.0001613 |
| [16] |
Li, K., Cheng, Q.G., Lin, Q.W., et al., 2022. State of the Art on Rock Avalanche Dynamics from Granular Flow Mechanics. Earth Science, 47(3): 893-912 (in Chinese with English abstract). |
| [17] |
Liang, C. F., Abbasi, S., Pourshahbaz, H., et al., 2019. Investigation of Flow, Erosion, and Sedimentation Pattern around Varied Groynes under Different Hydraulic and Geometric Conditions: A Numerical Study. Water, 11(2): 235. https://doi.org/10.3390/w11020235 |
| [18] |
Luo, J., Pei, X. J., Evans, S. G., et al., 2019. Mechanics of the Earthquake-Induced Hongshiyan Landslide in the 2014 Mw 6.2 Ludian Earthquake, Yunnan, China. Engineering Geology, 251: 197-213. https://doi.org/10.1016/j.enggeo.2018.11.011 |
| [19] |
Marsooli, R., Wu, W. M., 2015. Three-Dimensional Numerical Modeling of Dam-Break Flows with Sediment Transport over Movable Beds. Journal of Hydraulic Engineering, 141(1): 04014066. https://doi.org/10.1061/(asce)hy.1943-7900.0000947 |
| [20] |
Mastbergen, D. R., van den Berg, J. H., 2003. Breaching in Fine Sands and the Generation of Sustained Turbidity Currents in Submarine Canyons. Sedimentology, 50(4): 625-637. https://doi.org/10.1046/j.1365-3091.2003.00554.x |
| [21] |
Mei, S. Y., Chen, S. S., Zhong, Q. M., et al., 2021. Effects of Grain Size Distribution on Landslide Dam Breaching—Insights from Recent Cases in China. Frontiers in Earth Science, 9: 658578. https://doi.org/10.3389/feart.2021.658578 |
| [22] |
Meyer-Peter, E., Muller, R., 1948. Formulas for Bed-Load Transport. Process of Congress IAHR, 6(2): 39-64. |
| [23] |
Movahedi, A., Kavianpour, M. R., Yamini, O. A., 2018. Evaluation and Modeling Scouring and Sedimentation around Downstream of Large Dams. Environmental Earth Sciences, 77(8): 320. https://doi.org/10.1007/s12665-018-7487-2 |
| [24] |
Peng, M., Zhang, L. M., 2012. Breaching Parameters of Landslide Dams. Landslides, 9(1): 13-31. https://doi.org/10.1007/s10346-011-0271-y |
| [25] |
Qian, N., 1980. A Comparison of the Bed Load Formulas. Journal of Hydraulic Engineering, 11(4): 1-11 (in Chinese with English abstract). |
| [26] |
Roseberry, J. C., Schmeeckle, M. W., Furbish, D. J., 2012. A Probabilistic Description of the Bed Load Sediment Flux: 2. Particle Activity and Motions. Journal of Geophysical Research: Earth Surface, 117(F3): F03032. https://doi.org/10.1029/2012jf002353 |
| [27] |
Samma, H., Khosrojerdi, A., Rostam-Abadi, M., et al., 2020. Numerical Simulation of Scour and Flow Field over Movable Bed Induced by a Submerged Wall Jet. Journal of Hydroinformatics, 22(2): 385-401. https://doi.org/10.2166/hydro.2020.091 |
| [28] |
Shi, Z.M., Ma, X.L., Peng, M., et al., 2014. Statistical Analysis and Efficient Dam Burst Modelling of Landslide Dams Based on a Large-Scale Database. Chinese Journal of Rock Mechanics and Engineering, 33(9): 1780-1790 (in Chinese with English abstract). |
| [29] |
van Rijn, L. C., 1984. Sediment Transport, Part I: Bed Load Transport. Journal of Hydraulic Engineering, 110(10): 1431-1456. https://doi.org/10.1061/(asce)0733-9429(1984)110: 10(1431) |
| [30] |
van Rijn, L. C., 2020. Erodibility of Mud-Sand Bed Mixtures. Journal of Hydraulic Engineering, 146(1): 04019050. https://doi.org/10.1061/(asce)hy.1943-7900.0001677 |
| [31] |
Walder, J. S., Iverson, R. M., Godt, J. W., et al., 2015. Controls on the Breach Geometry and Flood Hydrograph during Overtopping of Noncohesive Earthen Dams. Water Resources Research, 51(8): 6701-6724. https://doi.org/10.1002/2014wr016620 |
| [32] |
Yakhot, V., Orszag, S. A., Thangam, S., et al., 1992. Development of Turbulence Models for Shear Flows by a Double Expansion Technique. Physics of Fluids A: Fluid Dynamics, 4(7): 1510-1520. https://doi.org/10.1063/1.858424 |
| [33] |
Zhang, J. Y., Fan, G., Li, H. B., et al., 2021. Large-Scale Field Model Tests of Landslide Dam Breaching. Engineering Geology, 293: 106322. https://doi.org/10.1016/j.enggeo.2021.106322 |
| [34] |
Zhang, L. M., Xiao, T., He, J., et al., 2019. Erosion-Based Analysis of Breaching of Baige Landslide Dams on the Jinsha River, China, in 2018. Landslides, 16(10): 1965-1979. https://doi.org/10.1007/s10346-019-01247-y |
| [35] |
Zhao, T.L., Chen, S.S., Wang, J.J., et al., 2016. Centrifugal Model Tests Overtopping Failure of Barrier Dams. Chinese Journal of Geotechnical Engineering, 38(11): 1965-1972 (in Chinese with English abstract). |
| [36] |
Zhong, Q. M., Chen, S. S., Wang, L., et al., 2020. Back Analysis of Breaching Process of Baige Landslide Dam. Landslides, 17(7): 1681-1692. https://doi.org/10.1007/s10346-020-01398-3 |
| [37] |
Zhong, Q. M., Wang, L., Chen, S. S., et al., 2021. Breaches of Embankment and Landslide Dams-State of the Art Review. Earth-Science Reviews, 216: 103597. https://doi.org/10.1016/j.earscirev.2021.103597 |
| [38] |
Zhu, X. H., Liu, B. X., Peng, J. B., et al., 2021. Experimental Study on the Longitudinal Evolution of the Overtopping Breaching of Noncohesive Landslide Dams. Engineering Geology, 288: 106137. https://doi.org/10.1016/j.enggeo.2021.106137 |
| [39] |
蔡耀军, 栾约生, 杨启贵, 等, 2019. 金沙江白格堰塞体结构形态与溃决特征研究. 人民长江, 50(3): 15-22. |
| [40] |
曹鹏, 黎应书, 李宗亮, 等, 2021. 西藏昌都白格滑坡斜坡地质结构特征及成因机制. 地球科学, 46(9): 3397-3409. |
| [41] |
陈生水, 陈祖煜, 钟启明, 2019. 土石坝和堰塞坝溃决机理与溃坝数学模型研究进展. 水利水电技术, 50(8): 27-36. |
| [42] |
李坤, 程谦恭, 林棋文, 等, 2022. 高速远程滑坡颗粒流研究进展. 地球科学, 47(3): 893-912. |
| [43] |
钱宁, 1980. 推移质公式的比较. 水利学报, 11(4): 1-11. |
| [44] |
石振明, 马小龙, 彭铭, 等, 2014. 基于大型数据库的堰塞坝特征统计分析与溃决参数快速评估模型. 岩石力学与工程学报, 33(9): 1780-1790. |
| [45] |
赵天龙, 陈生水, 王俊杰, 等, 2016. 堰塞坝漫顶溃坝离心模型试验研究. 岩土工程学报, 38(11): 1965-1972. |
国家自然科学基金联合基金重点项目(U2040221)
国家重点研发计划课题(2018YFC1508604)
中央级公益性科研院所基本科研业务费专项资金(Y721006)
/
| 〈 |
|
〉 |