川西南乌斯河古油藏Re-Os年龄及其对峨眉山大火成岩省火山活动的响应

佟傲 ,  高亚仙

地球科学 ›› 2023, Vol. 48 ›› Issue (02) : 568 -581.

PDF (4888KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (02) : 568 -581. DOI: 10.3799/dqkx.2022.370

川西南乌斯河古油藏Re-Os年龄及其对峨眉山大火成岩省火山活动的响应

作者信息 +

Re-Os Dating of the Wusihe Paleo-Reservoir and Its Response to Emeishan Large Igneous Province Actvities in the Southwest Sichuan Basin

Author information +
文章历史 +
PDF (5004K)

摘要

在盆地形成演化的漫长过程中,岩浆的侵入、深部高温流体上涌等热事件会导致盆地存在热异常,从而对油气的生成演化起重要的控制作用.位于四川盆地西南部峨眉山大火成岩省中带的乌斯河上震旦统至下寒武统古油藏是开展火山作用与油气成藏演化关系研究的理想对象.针对该古油藏,论文开展了沥青镜质体反射率和有机元素含量分析以及Re-Os同位素测年工作,并结合前人相关钻井埋藏史、热历史以及峨眉山大火成岩省的研究成果,揭示了沥青的成因和演化,探讨了乌斯河油气成藏作用与火山活动的联系.研究结果表明:乌斯河古油藏沥青具有较高的沥青反射率(~2.27~2.77)及较低的H/C原子比(0.21~0.22),成因为经历了热裂解作用形成的焦沥青;沥青Re-Os同位素等时线年龄为~262 Ma,记录了原油热裂解、天然气生成的时间.对比四川盆地内部及川东北地区上震旦统至下寒武统油气成藏的关键时刻,乌斯河地区~262 Ma较早的原油裂解时间与邻区H1井异常的热事件时间(~260 Ma)、峨眉山大火成岩省的形成时代(257~263 Ma)近于一致. 这表明乌斯河地区油气成藏作用受同期大火成岩省火山活动的控制,焦沥青的形成及其Re-Os同位素年龄是对峨眉山超级地幔柱活动的响应. 研究从年代学的角度建立了四川盆地火山活动、异常热事件、烃源岩异常热演化与原油裂解天然气生成之间的联系,为峨眉山大火成岩省的油气成藏效应研究提供了一个典型实例.

关键词

古油藏 / 沥青 / Re-Os同位素定年 / 火山作用 / 峨眉山大火成岩省 / 石油地质

Key words

paleo-reservoir / Bitumen / Re-Os isotope / Volcanism / Emeishan large igneous province / petroleum geology

引用本文

引用格式 ▾
佟傲,高亚仙. 川西南乌斯河古油藏Re-Os年龄及其对峨眉山大火成岩省火山活动的响应[J]. 地球科学, 2023, 48(02): 568-581 DOI:10.3799/dqkx.2022.370

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

大火成岩省(large igneous province,简称LIP)是指规模巨大、岩性主要为镁铁质的喷出岩和侵入岩(徐义刚等,2013),在全球广泛分布,其带来的巨量的热和物质不仅可导致地质历史上全球性的环境变化并引起生物的大规模绝灭(Wignall, 2005Sobolev et al., 2011王瑞华等, 2011张招崇等,2022),也可为油气能源和金属矿床的形成创造有利条件(Pirajno, 2000Hu et al., 2020Feng et al.,2022). 因此,大火成岩省的研究一直是地质学家们关注的热点之一.

分布于西南三省(云南、四川和贵州)扬子克拉通西缘的晚二叠世峨眉山玄武岩是我国最早被国际学术界认可的大火成岩省(徐义刚,2002Huang et al., 2022),其深刻影响着扬子板块西南缘的海陆变迁、二叠纪全球气候变化以及成藏-成矿作用 (王瑞华等, 2011张招崇等,2022). 火山活动产生的异常的持续高温会加速有机质的成熟甚至导致原油热裂解、影响油气成藏时序及过程. 因此,开展火山活动区油气成藏作用的分析对理解周缘岩浆活动、分析火山作用与油气成藏的关系等方面具有重要意义. 乌斯河古油藏位于四川省雅安市汉源县境内,处于峨眉山大火成岩省的中带(熊索菲等,2016),是开展峨眉山大火成岩省火山作用与油气成藏演化关系研究的理想地区. 本研究选择乌斯河古油藏中储层沥青为研究对象,通过沥青成熟度、元素含量以及Re-Os同位素定年,尝试基于年代学的角度重建乌斯河地区古油藏演化过程并探讨其与峨眉山大火成岩省的内在联系,为大火成岩省与油气成藏关系的研究提供进一步的案例.

1. 区域地质背景

研究区为北起四川荥经,南抵云南建水,东至贵州安顺,大地构造位置上位于扬子板块西南缘,为冈瓦纳古陆与劳亚古陆的过渡地带(图1),其北侧与松潘甘孜褶皱带以及四川盆地相接,西南临近三江造山带,东南部紧靠华南褶皱系和右江盆地 (郑绪忠,2012吴越, 2013). 峨眉山玄武岩在研究区广泛分布,主要沿长轴近南北向的菱形分布, 西部以哀牢山-红河断裂为界,西北以龙门山断裂为界,出露面积为2.5×105 km2, 体积为0.3×106~0.6×106 km3何斌等, 2003). 基于茅口组灰岩生物地层对比以及茅口组地层顶部界面特征,峨眉山大火成岩省自西向东大致可分为:地层大量缺失,剥蚀面起伏规模较大的内带(深部剥蚀带); 地层部分缺失,剥蚀面起伏不平的中带(部分剥蚀带);以及地层很少缺失,普遍发育一层古风化壳的外带(古风化壳或短暂沉积间断带)(He et al., 2003) (图1).

前震旦纪基底形成以后,扬子地台西南缘大致经历了震旦纪-早、中二叠世被动大陆边缘沉积阶段,晚二叠世到三叠世陆内裂谷演化阶段,中-晚三叠世印支期古特提斯洋闭合作用控制下的碰撞造山和前陆盆地演化阶段,侏罗纪-白垩纪燕山构造期古太平洋板块控制下陆内发展演化阶段以及古近纪以来,印度板块与欧亚板块碰撞体制下的现今地形、地貌和地质构造定型阶段(吴越, 2013). 沉积地层由前寒武系基底和晚震旦世以来的沉积盖层组成,两者之间呈角度不整合接触. 沉积盖层包括中生代之前的台地边缘海相盖层和中生代以来的陆相盖层(图2). 震旦纪陡山沱期沉积了巨厚的白云岩、藻白云岩,形成稳定的碳酸盐岩台地;寒武系为碎屑岩与碳酸盐岩互层,中下部以黑色页岩为主,上部以碳酸盐岩沉积为主,层序较完整. 奥陶纪-石炭纪由于康滇地区隆升剥蚀,缺失相应的沉积地层. 晚二叠世受峨眉山玄武岩喷发的影响,区域范围内覆盖了大面积的玄武岩. 晚三叠世,随着印支板块和华南板块碰撞,研究区转入前陆盆地发展阶段,并持续发展至早白垩世. 始新世时,印度板块向欧亚大陆的碰撞,导致龙门山造山带进一步隆升(张长青,2008). 中生代以来,研究区以陆相沉积为主,形成了以砂岩、砾岩为主的陆相沉积盖层(图2).

与四川盆地内部油气成藏体系类似,扬子地块西南缘震旦-寒武系碳酸盐储层发育,乌斯河地区、赤普地区固体沥青主要富集于震旦系灯影组碳酸盐岩中(吴越等, 2013熊索菲等, 2016). 烃源岩包括震旦系陡山沱组泥岩、灯影组三段泥岩、灯影组泥质白云岩以及寒武系筇竹寺组(川西南为麦地坪组-筇竹寺组)页岩,其中平面分布广、有机质丰度高、生烃能力强的下寒武统筇竹寺组泥页岩扮演关键作用(郑平等, 2014). 相比于四川盆地内部发育于震旦-寒武系的资阳-威远气田、安岳气田(邹才能等, 2014),扬子地块西南缘由于多期复杂构造作用的影响,盖层遭受不同剥蚀改造作用,油气目前以古油藏沥青形式呈现. 乌斯河古油藏位于四川省雅安市汉源县,空间上与大渡河谷北万里村向斜附近的乌斯河铅锌矿相互重叠,储层沥青主要发育于下寒武统麦地坪组至震旦系灯影组中厚层状白云岩中(图3).

2 样品及实验方法

沥青样品采集于汉源县境内的乌斯河地区(图3),呈黑色,表面光滑,手标本可见沥青与石英、方解石共生,局部可见黑色沥青与闪锌矿共生(图4a4b). 显微镜下可见微米尺度黄绿色固体沥青呈带状、团块状、浸染状充填于方解石脉的孔隙及裂缝中,同样可见闪锌矿、方铅矿等金属矿物伴生(图4c4d).

沥青的Re-Os同位素分析在英国杜伦大学(Durham University)烃源岩及硫化物地球化学及地质年代学实验室(Laboratory for Source Rock and Sulfide Geochronology and Geochemistry)完成. 实验过程如下:将大约100~200 mg的沥青与185Re及190Os 含量已知的稀释剂一齐溶解于逆王水中,并将其放在卡洛斯管中,在220 ˚C条件下加热24 h. 随后,将卡洛斯管冷却至室温条件,用氯仿将锇元素从逆王水中分离出来,进而通过微蒸馏技术纯化锇元素. 分离铼元素使用的是基于HCl-HNO3的阴离子色谱法. 最后,将纯化后的Re和Os 分别加载至镍丝和铂丝上,用负离子热电离质谱测量其丰度(Selby et al., 2005, 2007沈传波等, 20112020). 实验过程中,Re、Os的全流程空白值分别为1.6±0.025 pg和0.05±0.004 pg, 187Os/188Os的平均值为~0.22±0.06(n=4). Re-Os同位素数据使用Isoplot V. 4.15软件处理(Ludwig, 2003),其中187Re衰变常数为1.666×10-11 a-1Smoliar et al., 1996),输入的数据包括187Re/188Os和187Os/188Os 比值,相应的2σ误差以及误差相关系数(Rho).

沥青样品的有机元素分析在中石油勘探开发研究院完成,测试仪器为Elementar Vario EL III元素测试仪. 称取2 mg 粉末状沥青样品,放入锡箔或银箔中包裹完全后装入仪器进样盘中准备测试. 以氦气为载气,通过更换仪器的燃烧管、还原管和裂解管中的试剂,分别测得样品中碳、氢、氮和氧元素的含量,测试方法依据国家标准GB/T 19143-2003 和GB/T 30733-2014. 沥青反射率在中科院广州地球化学研究所完成,应用MPV-SP 显微光度计,在反射白光下,通过双标样的标定,对样品中的沥青体进行反射率检测(张子枢, 1988). 对有条件的样品,至少统计20个测点以保证结果的准确性,分别记录反射率的最小、最大和平均值及标准离差,测试方法依据行业标准SY/T 5124-2012.

3  实验结果及讨论

3.1 沥青特征及成因

固体沥青存在于油气演化的整个过程当中,记录了包括烃类的来源、热成熟以及运移、聚集整个油气成藏过程(Wu et al., 2000). 研究发现,生物降解、氧化、水洗淋滤、相迁移以及热裂解等作用可以形成沥青质、天然沥青、脆沥青、焦沥青等不同类型的沥青(Rogers et al., 1974Jacob, 1989Meyer and De Witt Jr., 1990Wu et al., 2000). 其中,氧化、生物降解、聚合和脱挥发分等作用可以导致烃类物质中较轻的组分发生脱离,从而形成沥青质或者天然沥青(Meyer and De Witt Jr., 1990). 在油气运移过程中,相迁移作用可以通过沉淀和脱沥青作用引起流体分化(Meyer and De Witt Jr., 1990),从而形成主要赋存于脉体中的脆沥青(Stevenson et al., 1990张学玉和李建国, 1999). 受温度和时间控制的热裂解作用(Dahl et al., 1999Vandenbroucke et al., 1999),可以将原油、沥青质、天然沥青、脆沥青等油气演化过程中的早期产物变为高成熟的焦沥青和以甲烷为主的干气(Rogers et al., 1974Meyer and De Witt Jr., 1990). 相比于普通的沥青质沥青,焦沥青具有独特的物理、化学特征(Rogers et al., 1974;Jacob, 1989;Mancuso et al., 1989张学玉和李建国, 1999Wu et al., 2000),沥青质沥青一般溶解与氯仿、二硫化碳等有机溶剂,具有较低的沥青反射率(BR o<1.0 %),较高的H/C原子比(>0.8),较低的T max值(~450 ºC),以及黄绿色荧光(沈传波等,2020). 相反,热裂解沥青通常不溶于氯仿等大多数有机溶剂,表现为高沥青反射率(BR o>2.0%),低的H/C原子比(<0.6),高T max值(~500 ºC),深色或者无色荧光特征以及高的金刚烷浓度(Jacob, 1989Hwang et al., 1998Wang et al., 2013Fang et al., 2014杨平等, 2014Shi et al., 2015沈传波等,2020). 乌斯河地区沥青样品整体不溶于氯仿、具有较高沥青反射率(2.27%~2.77%)(表1图5),低H/C原子比0.21~0.22的特征(表2). 根据丰国秀和陈盛吉(1988)提出的沥青反射率与镜质体反射率的等效公式(VR o=0.656 9Rb+0.336 4),换算有效镜质体反射率为1.82%~2.16%,已近进入原油热裂解产气阶段. 此外,激光拉曼光谱分析指示乌斯河古油藏储层中流体包裹体成分中甲烷(CH4)富集程度高(熊索菲等, 2016),上述结果均指示乌斯河古油藏沥青为原油热裂解过程中形成的高成熟度的焦沥青.

原生有机质的类型决定了原油或是沥青的碳同位素值,因而烃源岩干酪根以及原油/沥青的碳同位素误差范围在~3‰就认为具有较好的亲耦合关系(梁霄等, 2021). 乌斯河古油藏中沥青的碳同位素结果(约-36.0‰) (表2)与已报道的四川盆地及周缘下寒武统筇竹寺组烃源岩的碳同位素(-36.8‰~-29.9‰)基本一致的特征(董才源等, 2020),指示下寒武统筇竹寺组黑色页岩是乌斯河古油藏的主要烃源.

3.2 沥青Re-Os同位素年龄

研究过程中用于Re-Os同位素分析的沥青样品的Re、Os丰度分别在50.5×10-9~201.5×10-9和1 921.5×10-12~5 449.3×10-12范围变化(表3). 丰度结果与前人测试的沥青等有机中Re、Os 含量具有可比性(Selby et al., 2005Ge et al., 2016),且均远高于地壳中Re、Os的相对丰度(Re=0.2×10-9~1.0×10-9, Os=31×10-12(Peucker‐Ehrenbrink and Jahn, 2001)). 沥青的187Re/188Os与187Os/188Os 的变化范围分别为171.3~249.0 和2.88~3.17 (表3),所有样品回归后得到一组262±19 Ma的等时线年龄 (图6).

成藏年代学是当代石油地质学的一个前沿领域,同时也是研究油气藏形成与分布规律首先需要解决的难点,其中有机质直接定年是油气成藏年龄获取较直接有效的方法(赵靖舟,2002王华健等, 2013薛楠等,2020). Re和Os具有亲铜、亲铁以及有亲有机质的特性,在还原环境下,Re和Os易于被有机物捕获而富集(李超等, 2022). 这一特性使得Re-Os 地质计时器可为油气成藏关键事件提供时间约束(Selby and Creaser, 2005Lillis and Selby, 2013Ge et al., 2016). 2005年以来,作为一项前沿研究领域,Re-Os同位素应用于油气成藏年代学研究在国内外上已取得了重要成果,加拿大阿尔伯塔盆地的油砂(Selby and Creaser, 2005)、英国东北部大西洋边缘含油气系统的原油(Finlay et al., 2011)、加拿大Nunavut Polaris 密西西比河谷型(MVT)铅锌矿伴生的沥青(Selby et al., 2005)以及我国南方海相地层中的沥青(Ge et al., 2016Ge et al., 2018)的系列研究表明,Re-Os同位素分析在定量约束油气藏演化方面具有重要作用. 美国大角盆地(Bighorn Basin)含油气系统Re-Os同位素分析显示,具有较高成熟度的烃类Re-Os同位素体系经常受到扰动(Lillis and Selby, 2013). 基于雪峰隆起西缘麻江-万山古油藏中高成熟度焦沥青Re-Os同位素定年(~80 Ma)与磷灰石裂变径迹(~70 Ma)、盆地埋藏历史结果的一致性,Ge et al.(2016)提出高温条件下原油热裂解作用可能导致了烃类Re-Os同位素计时器的重置,焦沥青Re-Os等时线年龄记录原油热裂解形成天然气的时间. 近年来,四川盆地及周缘古油藏沥青Re-Os同位素分析结果也支持焦沥青Re-Os同位素等时线年龄记录了原油裂解形成天然气的时间(Shi et al., 2020Su et al., 2020Zhao et al., 2021). 乌斯河古油藏中焦沥青~260 Ma的Re-Os等时线年龄与四川盆地西南部寒武系烃源岩成熟度热演化史指示的中二叠世末受异常热效应影响,地层温度超过270 ℃ (饶松等, 2013),烃源岩迅速进入成熟演化阶段,开始形成以甲烷为主的天然气藏的时间相互吻合. 因此,本次获得的焦沥青Re-Os等时线年龄指示了~260 Ma是四川盆地西南部乌斯河地区天然气藏的主要形成时期.

3.3 对峨眉山火山活动的指示

峨眉山大火成岩省火山喷发时间和持续时间,一直是国内外学者关注的重点问题(何冰辉, 2016). 前人对峨眉山玄武岩及相关岩石开展了大量的锆石U-Pb等年代学研究,取得了大量同位素年龄数据(图7). 近年来,根据峨眉山大火成岩省宾川剖面底部火山成因红层中锆石U-Pb年龄(260.55±0.07 Ma)和顶部流纹岩中锆石U-Pb年龄(257.22±0.37 Ma),峨眉山大火成岩省被认为从260.55±0.07 Ma开始喷发,并至少持续到257.22±0.37 Ma(Huang et al., 2022). 桂西那坡县百都一带与峨眉山玄武岩同质异相岩浆活动产物辉绿岩的锆石U-Pb年龄分别为260.5±0.9 Ma、262.5±4.9 Ma、257.4±2.6 Ma (李锦诚等,2019);上扬子西缘永善地区晚二叠世宣威组其底部(258.9±0.7 Ma)和顶部凝灰岩(254.9±0.6 Ma) LA-MC-ICP-MS锆石U-Pb测年指示峨眉山火山活动至少持续到了258.9±0.7 Ma(潘江涛等,2022). 综合前人测试数据结果,发现绝大部分测年结果集中在257~263 Ma(图1c图7),约260 Ma的峨眉山玄武岩的主喷发时间目前被国内外广泛接受(宋谢炎等, 2002Zhou et al., 2002He et al., 2007Xu et al., 2008徐义刚等, 2013Huang et al., 2016).

伴随着峨眉山大火成岩省的火山喷发,大量的热量从深部地幔传入地表,对四川盆地及周缘的的热演化历史产生了重要影响. 乌斯河古油藏沥青Re-Os定年结果(~262 Ma)与峨眉山大火成岩省的活动时间(257~263 Ma)高度的一致性指示原油的裂解作用可能受峨眉山大火成岩省火山作用热效应的控制(Zi et al., 2010). 镜质体反射率(R o)作为一种有机质成熟度的重要指标可以用来重建岩石经历的最大古地温. 四川盆地西南缘近峨眉山大火成岩省中带的H1井及LS1井二叠至三叠系地层R o分析结果显示中-晚二叠世不整合面上下R o结果出现突变偏移,深部R o值明显大于顶部的特征,支持峨眉山大火成岩省火山活动对二叠纪以前地层具有重要的加热作用(Zhu et al., 2018). 前人研究显示大火成岩省引起的快速升温产生的古温度梯度(可达43 ℃/km)远高于克拉通内部(~22 ℃/km)(Campbell, 2007). 对比显示靠近乌斯河古油藏,位于峨眉山地幔柱“中带”的H1井中晚二叠世期间极高的古地温梯度,远高于四川盆地内部其他钻井(如CF82井等)(图1b)(朱传庆等,2010饶松等,2013曹环宇,2016),指示峨眉山大火成岩省火山活动对四川盆地西南缘具有较强的热扰动. 位于峨眉山大火成岩省外带及边缘带的四川盆地中部(资阳威远气田、安岳气田)及北部(米仓山古油藏)震旦-寒武系天然气藏的形成时代,无论是钻井的埋藏热演化史结果(Yuan et al., 2012)还是残余焦沥青的Re-Os年代学数据(~186~154 Ma)(Ge et al., 2018Su et al., 2020) 均指示导致天然气成藏的热裂解作用发生于晚三叠世至早侏罗世(沈传波等, 2019),相比与四川盆地西南部推迟了近80 Ma. 综合上述年代学、古温度梯度和热史演化等相关证据,晚二叠世的峨眉山大火成岩省火山作用对四川盆地西南缘油气成藏具有重要控制作用,较高的温度直接导致包括乌斯河在内的川西南地区烃源岩及原油在峨眉山大火成岩作用期间快速进入生气窗,形成天然气藏和焦沥青(图8).

4 主要结论

综合四川盆地西南部乌斯河古油藏沥青镜质体反射率分析、有机元素含量分析以及沥青Re-Os同位素定年结果及单井埋藏历史和烃源岩热演化史、峨眉山大火成岩省火山喷发和持续时间及影响范围等研究成果,本文约束了乌斯河古油藏油气成藏过程,探讨了成藏作用与峨眉山大火成岩省的联系. 获得如下结论:(1)高沥青反射率(~2.27~2.77)及较低H/C原子比(0.21~0.22)指示乌斯河古油藏残存沥青为经历热裂解作用形成的焦沥青,沥青碳同位素结果指示下寒武统牛蹄塘组黑色页岩是乌斯河古油藏的主要烃源; (2)焦沥青Re-Os同位素等时线年龄结果(~260 Ma)指示乌斯河地区在中二叠世末经历了原油裂解、天然气生成作用; (3)相比四川盆地其他地区,乌斯河地区相对较早的原油裂解作用与时空上相互重叠的峨眉山大火成岩省岩浆活动具有密切关系,受峨眉山大火成岩省火山活动控制,是对峨眉山大火成岩省火山活动的良好响应.

参考文献

[1]

Campbell, I. H., 2007. Testing the Plume Theory. Chemical Geology, 241(3/4): 153-176. https://doi.org/10.1016/j.chemgeo.2007.01.024

[2]

Cao,H.Y.,Zhu,C.Q.,Qiu,N.S.,2016.Maximum Paleotemperature of Main Paleozoic Argillutite in the Eastern Sichuan Basin.Chinese Journal of Geophysics, 59(3):1017-1029 (in Chinese with English abstract).

[3]

Dahl, J. E., Moldowan, J. M., Peters, K. E., et al., 1999. Diamondoid Hydrocarbons as Indicators of Natural Oil Cracking. Nature, 399(6731): 54 - 57. https://doi.org/10.1038/19953

[4]

Dong,C.Y.,Liu,M.C.,Li,D.J., et al.,2020.Gas Source Tracing of Lower Permian in Gaoshiti-Moxi Area, Sichuan Basin. Fault-Block Oil & Gas Field, 27(3):273-277 (in Chinese with English abstract).

[5]

Fang, Y. X., Liao, Y. H., Wu, L. L., et al., 2014. The Origin of Solid Bitumen in the Honghuayuan Formation (O1 h) of the Majiang Paleo-Reservoir-Evidence from Catalytic Hydropyrolysates. Organic Geochemistry, 68: 107 - 117. https://doi.org/10.1016/j.orggeochem.2014.01.008

[6]

Feng, Q.Q., Qiu, N.S., Fu, X.D.,et al., 2022. Maturity Evolution of Permian Source Rocks in the Sichuan Basin, Southwestern China: The Role of the Emeishan Mantle Plume. Journal of Asian Earth Sciences, 229:1367-9120. https://doi.org/10.1016/j.jseaes.2022.105180

[7]

Feng,G.X.,Chen,S.J.,1988. Relationship between Asphalt Reflectance and Vitrinite Recks. Natural Gas Industry, 8(1): 20-25 (in Chinese).

[8]

Finlay, A.J., Selby, D.,Osborne, M.J., 2011. Re-Os Geochronology and Fingerprinting of United Kingdom Atlantic Margin Oil:Temporal Implications for Regional Petroleum Systems. Geology, 39(5): 475-478. https://doi.org/10.1130/G31781.1

[9]

Ge, X., Shen, C.B., Selby, D., et al., 2018. Neoproterozoic-Cambrian Petroleum System Evolution of the Micang Shan Uplift, Northern Sichuan Basin, China: Insights from Pyrobitumen Re-Os Geochronology and Apatite Fission Track Analysis. AAPG Bulletin, 102(8):1429-1453.https://doi.org/10.1306/1107171616617170

[10]

Ge, X., Shen, C.B., Selby, D.,et al.,2016. Apatite Fission-track and Re-Os Geochronology of the Xuefeng Uplift, China: Temporal Implications for Dry Gas Associated Hydrocarbon Systems. Geology, 44(6): 491-494. https://doi.org/10.1130/G37666.1

[11]

He, B., Xu, Y. G., Chung, S. L., et al., 2003. Sedimentary Evidence for a Rapid, Kilometer-Scale Crustal Doming Prior to the Eruption of the Emeishan Flood Basalts. Earth and Planetary Science Letters, 213(3/4): 391-405. https://doi.org/10.1016/S0012-821X(3)00323-6

[12]

He, B., Xu, Y. G., Huang, X. L., et al., 2007. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U-Pb Dating of Silicic Ignimbrites, Post-Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3/4): 306-323. https://doi.org/10.1016/j.epsl.2006.12.021

[13]

He,B.,Xu,Y.G.,Xiao,L., et al.,2003. Generation and Spatial Distribution of the Emeishan Large lgneous Province: New Evidence from Stratigraphic Records. Acta Geologica Sinica,77(2):194-202 (in Chinese with English abstract).

[14]

He,B.H.,2016. Research Progress on Some Issues on the Emeishan Large Igneous Province. Advances in Earth Science, 31(1): 23-42 (in Chinese with English abstract).

[15]

Hu, X. M., Li, J., Han, Z., et al., 2020. Two Types of Hyperthermal Events in the Mesozoic-Cenozoic: Environmental Impacts, Biotic Effects, and Driving Mechanisms. Science China Earth Sciences, 63(8): 1041 - 1058. https://doi.org/10.1007/s11430-019-9604-4

[16]

Huang,H., Huyskens,M.H.,Yin,Q.Z.,et al.,2022. Eruptive Tempo of Emeishan Large Igneous Province, Southwestern China and Northern Vietnam: Relations to Biotic Crises and Paleoclimate Changes Around the Guadalupian-Lopingian Boundary. Geology. https://doi.org/10.1130/G50183.1

[17]

Huang,H.,Cawood,P.A.,Hou,M.C.,et al.,2016.Silicic Ash Beds Bracket Emeishan Large Igneous Province to <1 Ma at Similar to 260 Ma. Lithos, 264:17-27. https://doi.org/10.1016/j.lithos.2016.08.013

[18]

Hwang, R. J., Teerman, S. C., Carlson, R. M., 1998. Geochemical Comparison of Reservoir Solid Bitumens with Diverse Origins. Organic Geochemistry, 29(1/2/3): 505-517. https://doi.org/10.1016/S0146-6380(98)00078-3

[19]

Jacob, H., 1989. Classification, Structure, Genesis and Practical Importance of Natural Solid Oil Bitumen (“Migrabitumen”). International Journal of Coal Geology, 11(1): 65 - 79. https://doi.org/10.1016/0166-5162(89)90113-4

[20]

Li,C.,Sun,P.C.,Meng,H.M, et al.,2022. Interpretation of Geological Significance of Re-Os Isotopic Age of Bitumen. Acta Petrologica Sinica, 38: 1595-1604 (in Chinese with English abstract).

[21]

Li,J.C.,Zhou,X.X.,Wei,Y.X., et al.,2019. Geochemical and Chronological Characteristics of Diabase in Baidu of Napo, Western Guangxi: the Magmatic Activity at the Outer Zone of Emeishan Large Igneous Province. Journal of Guilin University of Technology, 39(2):282-290 (in Chinese with English abstract).

[22]

Liang,X.,Wu,L.L.,Li,Y.D., et al.,2021. Oil Source Correlation and Its Relationship with Deeply Buried Hydrocarbon Accumulations in Tianjingshan Paleo-Uplift Area, Northern Segment of Western Sichuan Depression. Petroleum Geology & Experiment, 43: 96-111 (in Chinese with English abstract).

[23]

Lillis, P. G., Selby, D., 2013. Evaluation of the Rhenium-Osmium Geochronometer in the Phosphoria Petroleum System, Bighorn Basin of Wyoming and Montana, USA. Geochimica et Cosmochimica Acta, 118: 312 - 330. https://doi.org/10.1016/j.gca.2013.04.021

[24]

Ludwig,K.,2003.A Plotting and Regression Program for Radiogenic-Isotope Data, Version 3.00.United State Geol Survey, Open File Report, 1-70.

[25]

Mancuso, J. J., Kneller, W. A., Quick, J. C., 1989. Precambrian Vein Pyrobitumen: Evidence for Petroleum Generation and Migration 2 Ga ago. Precambrian Research, 44(2): 137 - 146. https://doi.org/10.1016/0301-9268(89)90079-X

[26]

Meyer,R.F.,De Witt Jr.,W.,1990.Definition and World Resources of Natural Bitumens. United States Department of the Interior, United States Geological Survey.14 Gol'dberg, I.,1981. Prirodnye Bitumy SSSR. Leningrad,"Nedra'',195: 223

[27]

Pan,H.T.,Liu,H.H.,Yuan,Y.S., et al.,2022. Late Permian Xuanwei Formation Tuff from the Western Margin of the Upper Yangtze: Constraints on Volcanic Activity and Paleotethyanarc Volcanism in the Emeishan Large Lgneous Province, Acta Geologica Sinica, 96(6):1985-2000 (in Chinese with English abstract).

[28]

Peucker‐Ehrenbrink,B.,Jahn,B.M.,2001.Rhenium‐osmium Isotope Systematics and Platinum Group Element Concentrations:Loess and the Upper Continental Crust. Geochemistry,Geophysics,Geosystems,2(10): 2001GC000172.https://doi.org/10.1029/2001GC000172

[29]

Pirajno, F., Occhipinti, S. A., 2000. Three Palaeoproterozoic Basins-Yerrida, Bryah and Padbury-Capricorn Orogen, Western Australia. Australian Journal of Earth Sciences, 47(4): 675 - 688. https://doi.org/10.1046/j.1440-0952. 2000.00800.x

[30]

Rao,S.,Zhu,C.Q.,Wang,Q., et al.,2013. Thermal Evolution Patterns of the Sinian-Lower Paleozoic Source Rocks in the Sichuan Basin,Southwest China. Chinese Journal of Geophysics, 56(5): 1549-1559 (in Chinese with English abstract).

[31]

Rogers, M. A., McAlary, J. D., Bailey, N. L., 1974. Significance of Reservoir Bitumens to Thermal-Maturation Studies, Western Canada Basin. 58(9): 1806-1824.

[32]

Selby, D., Creaser, R. A., 2005. Direct Radiometric Dating of Hydrocarbon Deposits Using Rhenium-Osmium Isotopes. Science, 308(5726): 1293 - 1295. https://doi.org/10.1126/science.1111081

[33]

Selby, D., Creaser, R. A., Dewing, K., et al., 2005. Evaluation of Bitumen as a 187Re-187Os Geochronometer for Hydrocarbon Maturation and Migration: a Test Case from the Polaris MVT Deposit, Canada. Earth and Planetary Science Letters, 235(1/2): 1-15. https://doi.org/10.1016/j.epsl.2005.02.018

[34]

Selby, D., Creaser, R. A., Fowler, M. G., 2007. Re-Os Elemental and Isotopic Systematics in Crude Oils. Geochimica et Cosmochimica Acta, 71(2): 378 - 386. https://doi.org/10.1016/j.gca.2006.09.005

[35]

Shen,C.B.,Ge,X.,Bai.X.J.,et al.,2019.Re-Os Geochronology Constraints on the Neoproterozoic-Cambrian Hydrocarbon Accumulation in the Sichuan Basin. Earth Science,44(3):713-726 ((in Chinese with English abstract).

[36]

Shen,C.B.,Ge,X.,Mei,L.F.,et al.,2020.Re-Os Isotopic Geochronology of Petroleum Systems. Science Press, Beijing(in Chinese).

[37]

Shen,C.B.,Ge,X.,Ruan,X.Y., et al.,2011. Advances in the Study of Re-Os Geochronology and Tracing of Hydrocarbon Generation and Accumulation Generation and Accumulation. Mineralogy and Petrology, 31(4): 87-93 (in Chinese with English abstract).

[38]

Shi, C. H., Cao, J., Bao, J. P., et al., 2015. Source Characterization of Highly Mature Pyrobitumens Using Trace and Rare Earth Element Geochemistry: Sinian-Paleozoic Paleo-Oil Reservoirs in South China. Organic Geochemistry, 83/84: 77-93. https://doi.org/10.1016/j.orggeochem. 2015.03.008

[39]

Shi, C. H., Cao, J., Selby, D., et al., 2020. Hydrocarbon Evolution of the Over-Mature Sinian Dengying Reservoir of the Neoproterozoic Sichuan Basin, China: Insights from Re-Os Geochronology. Marine and Petroleum Geology, 122: 104726. https://doi.org/10.1016/j.marpetgeo.2020.104726

[40]

Smoliar, M. I., Walker, R. J., Morgan, J. W., 1996. Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites. Science, 271(5252): 1099 - 1102

[41]

Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., et al., 2011. Linking Mantle Plumes, Large Igneous Provinces and Environmental Catastrophes. Nature, 477(7364): 312 - 316. https://doi.org/10.1038/nature10385

[42]

Song,X.Y.,Hou,Z.Q.,Wang,Y.L., et al.,2002. The Mantle Plume Features of Emeishan Basalts. Mineralogy and Petrology,, 27(4): 27-32 (in Chinese with English abstract).

[43]

Stevenson,J.,Mancuso,J.,Frizado,J.,et al.,1990.Solid Pyrobitumen in Veins, Panel Mine, Elliot Lake District, Ontario. Canadian Mineralogist, 28:161-169.

[44]

Su, A., Chen, H. H., Feng, Y. X., et al., 2020. Dating and Characterizing Primary Gas Accumulation in Precambrian Dolomite Reservoirs, Central Sichuan Basin, China: Insights from Pyrobitumen Re-Os and Dolomite U-Pb Geochronology. Precambrian Research, 350: 105897. https://doi.org/10.1016/j.precamres.2020.105897

[45]

Vandenbroucke, M., Behar, F., Rudkiewicz, J. L., 1999. Kinetic Modelling of Petroleum Formation and Cracking: Implications from the High Pressure/High Temperature Elgin Field (UK, North Sea). Organic Geochemistry, 30(9): 1105 - 1125. https://doi.org/10.1016/S0146-6380(99)00089-3

[46]

Wang, G. L., Li, N. X., Gao, B., et al., 2013. Thermochemical Sulfate Reduction in Fossil Ordovician Deposits of the Majiang Area: Evidence from a Molecular-Marker Investigation. Chinese Science Bulletin, 58(28): 3588 - 3594. https://doi.org/10.1007/s11434-013-5843-x

[47]

Wang,H.J.,Zhang,S.C.,Wang,X.M.,2013. How to Achieve the Precise Dating of Hydrocarbon Accumulation. Natural Gas Geoscience,24: 210-217 (in Chinese with English abstract).

[48]

Wang,R.H.,Tan,Q.Y.,Fu,J.Y.,et al.,2011. The Sedimentary-Tectonic Evolution and Sedimentary Response of Mantle Plume in Emeisha. Earth Science Frontiers, 18(3): 201-210 (in Chinese with English abstract).

[49]

Wignall,P., 2005. The Link between Large Igneous Province Eruptions and Mass Extinctions. Elements,1(5): 293-297. https://doi.org/10.2113/gselements.1.5.293.

[50]

Wu, Y., Zhang, C.Q., Mao, J.W., et al., 2013. The Relationship between Oil-Gas Organic Matter and MVT Mineralization: A Case Study of the Chipu Lead-Zinc Deposit, Sichuan. Acta Geoscientica Sinica34(4):425-436 (in Chinese with English abstract).

[51]

Wu, Z. J., Peng, P. N., Fu, J. M., et al., 2000. Chapter 15 Bitumen Associated with Petroleum Formation, Evolution and Alteration: Review and Case Studies in China. Developments in Petroleum Science, 40: 401 - 443. https://doi.org/10.1016/S0376-7361(9)70286-9

[52]

Wu,Y.,2013.The Age and Ore-Forming Process of MVT Deposit in the Boundary Area of Sichuan-Yunnan-Guizhou Provinces,Southwest China(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).

[53]

Xiong.S.F.,Yao.S.Z.,Gong.Y.J.,et al.,.2016. Ore-Forming Fluid and Thermochemical Sulfate Reduction in the Wusihe Lead-Zinc Deposit, Sichuan Province, China. Earth Science,41(1):105-120 (in Chinese with English abstract).

[54]

Xu, Y. G., Luo, Z. Y., Huang, X. L., et al., 2008. Zircon U-Pb and Hf Isotope Constraints on Crustal Melting Associated with the Emeishan Mantle Plume. Geochimica et Cosmochimica Acta, 72(13): 3084 - 3104. https://doi.org/10.1016/j.gca.2008.04.019

[55]

Xu,Y.G.,2002. Mantle Plume Structure, Large Igneous Provinces and Their Geological Effects. Earth Science Frontiers,(4):341-353(in Chinese).

[56]

Xu,Y.G.,He,B.,Luo,Z.Y., et al., 2022.Study on Mantle Plume and Large Igneous Provinces in China:An Overview and Perspective.Bulletin of Mineralogy, Petrology and Geochemistry,32(1): 25-39 (in Chinese with English abstract).

[57]

Xue,N.,Zhu,Y.G.,Lv,X.X.,et al.,2020.Advances in geochronology of hydrocarbon accumulation.Natural Gas Geoscience,31(12):1733-1748 (in Chinese with English abstract).

[58]

Yang,P.,Wang,Z.J.,Yin,F.,et al.,2014.Identification of Oil Resource and Analysis of Hydrocarbon Migration and Accumulation of Majiang Paleo-Reservoir: Evidence from Oil-Gas Geochemistry. Geology in China, 41(3): 982-994 (in Chinese with English abstract).

[59]

Yuan, H. F., Liang, J. J., Gong, D. Y., et al., 2012. Formation and Evolution of Sinian Oil and Gas Pools in Typical Structures, Sichuan Basin, China. Petroleum Science, 9(2): 129 - 140. https://doi.org/10.1007/s12182-012-0193-x

[60]

Zhang,C.Q.,2008. The Genetic Model of Mississippi Valley-Type Deposits(MVT) in the Boundary Area of Sichuan,Yunnan and Guizhou Provinces,China. Chinese Academy of Geological Sciences (in Chinese with English abstract).

[61]

Zhang,X.Y.,Li,J.G.,1999. Distribution of Natural Bitumen, Oil and Gas Seedlings and the Relationship Between oil and Gas Exploration in Southern China. Journal of Southwest Petroleum Institute,21(2): 36-40 (in Chinese).

[62]

Zhang,Z.C.,Hou,T.,Cheng,Z.G.,2022. Mineralization related to Large Igneous Provinces. Acta Geoscientica Sinica,96(1):131-154 (in Chinese with English abstract).

[63]

Zhang,Z.S.,1988. Determination of Pyropitch and Its Reflectivity. Xinjiang Petroleum Geology, 2(1): 1-4 (in Chinese).

[64]

Zhao, B. S., Li, R. X., Qin, X. L., et al., 2021. Biomarkers and Re-Os Geochronology of Solid Bitumen in the Beiba Dome, Northern Sichuan Basin, China: Implications for Solid Bitumen Origin and Petroleum System Evolution. Marine and Petroleum Geology, 126: 104916. https://doi.org/10.1016/j.marpetgeo.2021.104916

[65]

Zhao,J.Z.,2002.Geochronology of Petroleum Accumulation:New Advances and the Future Trend. Advances in Earth Science, 2002(3):378-383 (in Chinese with English abstract).

[66]

Zheng,P.,Shi,Y.H.,Zhou,C.Y.,et al.,2014.Natural Gas Sources in the Dengyingang Longwangmiao Fms in the Gaoshiti-Maoxi Area,Sichuan Basin. Natural Gas Industry,34: 50-54 (in Chinese with English abstract).

[67]

Zheng,X.Z.,2012.Geological Features and Genesis of WuSiHe Pb-Zn Deposit,Sichuan(Dissertation).Chang’an University, Xi’an(in Chinese with English abstract).

[68]

Zhou, M. F., Malpas, J., Song, X. Y., et al., 2002. A Temporal Link between the Emeishan Large Igneous Province (SW China) and the End-Guadalupian Mass Extinction. Earth and Planetary Science Letters, 196(3/4): 113-122. https://doi.org/10.1016/S0012-821X(1)00608-2

[69]

Zhou,C.N.,Du,J.H.,Xu,C.C.,et al.,2014. Formation, Distribution, Resource Potential and Discovery of the Sinian- Cambrian Giant Gas Field, Sichuan Basin, SW China. Petroleum Exploration and Development,41: 278-293 (in Chinese with English abstract).

[70]

Zhou,Y.S.,Yang,J.H.,Huang,Y.,et al.,2022.Provenance of the Lower Triassic Feixianguan Formation in Southwestern Guizhou Province and Reconstruction of Volcanic Denudation Sequence in Emeishan Large Igneous Province. Acta Geoscientica Sinica,1-18(in Chinese with English abstract).

[71]

Zhu, C. Q., Hu, S. B., Qiu, N. S., et al., 2018. Geothermal Constraints on Emeishan Mantle Plume Magmatism: Paleotemperature Reconstruction of the Sichuan Basin, SW China. International Journal of Earth Sciences, 107(1): 71 - 88. https://doi.org/10.1007/s00531-016-1404-2

[72]

Zhu,C.Q.,Tian,Y.T.,Xu,M.,et al.,2010.The Effect of Emeishan Supper Mantle to the Thermal Evolution of Source Rocks in the Sichuan Basin. Chinese Journal of Geophysics,53(1): 119-127 (in Chinese with English abstract).

[73]

Zi,J.W.,Fan,W.M.,Wang,Y.J.,et al.,2010.U-Pb Geochronology and Geochemistry of the Dashibao Basalts in the Songpan-Ganzi Terrane,SW China,with Implications for the Age of Emeishan Volcanism. American Journal of Science, 310: 1054-1080. https://doi.org/10.2475/09.2010.11

[74]

曹环宇,朱传庆,邱楠生,2016.川东地区古生界主要泥页岩最高古温度特征.地球物理学报, 59(3):1017-1029.

[75]

董才源,刘满仓,李德江,等,2020.四川盆地高石梯-磨溪地区下二叠统气源示踪.断块油气田, 27(3):273-277.

[76]

丰国秀,陈盛吉,1988.岩石中沥青反射率与镜质体反射率之间的关系.天然气工业, 8(1): 20-25.

[77]

何斌,徐义刚,肖龙,等,2003.峨眉山大火成岩省的形成机制及空间展布:来自沉积地层学的新证据.地质学报,77(2):194-202.

[78]

何冰辉, 2016.关于峨眉山大火成岩省一些问题的研究现状.地球科学进展, 31(1): 23-42.

[79]

李超, 孙鹏程, 孟会明, 等,2022. 沥青Re-Os同位素年龄地质意义解读. 岩石学报, 38: 1595-1604.

[80]

李锦诚,周旭霞,韦永先,等,2019. 桂西那坡百都辉绿岩年代学及地球化学特征:峨眉山大火成岩省基性岩浆活动的证据.桂林理工大学学报39(2):282-290.

[81]

梁霄,吴亮亮,李亚丁,等, 2021.川西坳陷天井山古油藏油源判识及其与深层油气成藏关系厘定.石油实验地质, 43: 96-111.

[82]

潘江涛,刘红豪,袁永盛, 等, 2022. 上扬子西缘晚二叠世宣威组凝灰岩:对峨眉山大火成岩省火山活动及古特提斯弧火山作用的约束. 地质学报, 96(6):1985-2000.

[83]

饶松,朱传庆,王强,等,2013.四川盆地震旦系-下古生界烃源岩热演化模式及主控因素.地球物理学报, 56(5): 1549-1559.

[84]

沈传波,梅廉夫,阮小燕,等, 2011.油气成藏定年的 Re-Os 同位素方法应用研究.矿物岩石, 31(4): 87-93.

[85]

沈传波,葛翔,白秀娟, 2019.四川盆地震旦-寒武系油气成藏的Re-Os年代学约束.地球科学, 44(3): 713-726.

[86]

沈传波,葛翔,梅廉夫,等,编著,2020.含油气系统铼-锇同位素年代学,科学出版社,1-186.

[87]

宋谢炎,侯增谦,汪云亮,等,2002.峨眉山玄武岩的地幔热柱成因.矿物岩石, 27(4): 27-32.

[88]

王华健,张水昌,王晓梅,2013.如何实现油气成藏期的精确定年.天然气地球科学, 24: 210-217.

[89]

王瑞华,谭钦银,付建元,等,2011. 峨眉山地幔柱沉积-构造演化及沉积响应.地学前缘, 18(3): 201-210.

[90]

吴越,2013.川滇黔地区MVT铅锌矿床大规模成矿作用的时代与机制(博士毕业论文).北京:中国地质大学.

[91]

吴越,张长青,毛景文,等, 2013.油气有机质与MVT铅锌矿床的成矿——以四川赤普铅锌矿为例.地球学报,34(4):425-436.

[92]

熊索菲,姚书振,宫勇军,等, 2016.四川乌斯河铅锌矿床成矿流体特征及TSR作用初探.地球科学, 41(1): 105-120.

[93]

徐义刚,2002.地幔柱构造、大火成岩省及其地质效应.地学前缘,(4):341-353.

[94]

徐义刚,何斌,罗震宇,等,2013.我国大火成岩省和地幔柱研究进展与展望.矿物岩石地球化学通报, 32(1): 25-39.

[95]

薛楠,朱光有,吕修祥,等,2020.油气成藏年代学研究进展.天然气地球科学,31(12):1733-1748.

[96]

杨平,汪正江,印峰,等, 2014.麻江古油藏油源识别与油气运聚分析:来自油气地球化学的证据.中国地质, 41(3): 982-994.

[97]

张长青,2008.中国川滇黔交界地区密西西比型(MVT)铅锌矿床成矿模型.中国地质科学院.

[98]

张招崇,侯通,程志国,2022.大火成岩省的成矿效应.地质学报,96(1):131-154.

[99]

张子枢,1988.焦沥青及其反射率的测定.新疆石油地质, 2(1): 1-4.

[100]

张学玉,李建国,1999.中国南方天然沥青、油气苗分布与找油关系. 西南石油学院院报, 21(2): 36-40.

[101]

赵靖舟,2002.油气成藏年代学研究进展及发展趋势.地球科学进展,2002(3):378-383.

[102]

邹才能,杜金虎,徐春春,等, 2014.四川盆地震旦系-寒武系特大型气田形成分布, 资源潜力及勘探发现.石油勘探与开发, 41: 278-293.

[103]

郑平,施雨华,邹春艳,等,2014.高石梯-磨溪地区灯影组、龙王庙组天然气气源分析.天然气工业, 34: 50-54.

[104]

郑绪忠,2012.四川乌斯河铅锌矿床地质特征及矿床成因(博士毕业论文).西安:长安大学.

[105]

周寅生,杨江海,黄燕,等,2022.黔西南下三叠统飞仙关组沉积物源分析对于峨眉山大火成岩省火山剥蚀序列的重建约束.地质学报: 1-18.

[106]

朱传庆,田云涛,徐明,等,2010.峨眉山超级地幔柱对四川盆地烃源岩热演化的影响.地球物理学报, 53(1): 119-127.

基金资助

国家自然科学基金面上项目(41672140)

湖北省自然科学基金创新群体项目(2021CFA031)

国家大学生创新创业训练计划项目(202110491024;S202210491185;S202210491024)

AI Summary AI Mindmap
PDF (4888KB)

184

访问

0

被引

详细

导航
相关文章

AI思维导图

/