松辽盆地西南部含铀岩系沉积时的古气候演变及其与铀成矿关系
江文剑 , 秦明宽 , 范洪海 , 贾立城 , 郭强 , 黄少华 , 宁君 , 肖菁
地球科学 ›› 2023, Vol. 48 ›› Issue (03) : 1232 -1245.
松辽盆地西南部含铀岩系沉积时的古气候演变及其与铀成矿关系
Paleoclimate Evolution and Uranium Mineralization during the Deposition of Uranium-Bearing Rocks in the Southwest of Songliao Basin
,
含铀岩系沉积时的古气候条件对铀成矿起着重要的控制作用,但是长期以来未引起人们足够重视.以松辽盆地西南部HLJ地区含矿目的层姚家组下段为研究对象,通过对代表性钻孔岩心的泥岩样品进行全岩主、微量元素和TOC测试,采用K/Na、a AlNa、CPA、CIX、PIA、CIW、CIA等多项化学风化指标来判断样品化学风化作用强度,重建其沉积时期古气候条件.同时,结合U和TOC含量及Fe2+/Fe3+比值来探讨含铀岩系沉积时的古气候条件对铀成矿的制约.结果表明,目的层碎屑岩经历了由弱‒强‒弱的化学风化作用,显示其沉积时的古气候由相对寒冷干旱‒相对温暖潮湿‒相对寒冷干旱的演变规律.这种古气候变化导致了铀储层砂体中TOC含量低(平均值0.05%),层间氧化带发育规模大,铀矿体主要形成于远离蚀源区的盆地腹部;形成于潮湿气候条件下的暗色泥岩具有更高TOC(平均值0.61%)和U含量(最高可达885×10-6),其沉积时发生了强烈的预富集作用而成为后期成矿过程中重要铀来源之一,其成岩期排泄出还原性孔隙水可能是铀储层砂体中构建氧化‒还原屏障的主要因素.沉积时的温暖潮湿气候增强了蚀源区化学风化作用强度,有利于母岩铀元素活化和淋漓及沉积区泥岩铀的预富集作用.
Although, the paleoclimate plays an important role in controlling uranium mineralization during the deposition of uranium-bearing rocks, it has not attracted enough attention of uranium geologists for a long time. The lower member of Yaojia formation is the ore bearing target layer in the southwest of Songliao basin. Taking the lower member of Yaojia formation as the research object, the contents of the main and trace elements and total organic carbon of mudstone samples from representative boreholes were tested. A number of chemical weathering indexes, such as K/Na ratio, a AlNa, chemical proxy of alteration (CPA), modified chemical index of alteration (CIX), plagioclase index of alteration (PIA), chemical index of weathering (CIW), chemical index of alteration (CIA), are used to judge the intensity of chemical weathering of the samples, and reconstruct the paleoclimate conditions during the depositional period. At the same time, combined with the contents of U and TOC and the ratio of Fe2+/Fe3+, the constraints of paleoclimate conditions on uranium mineralization during the deposition of uranium-bearing rock series in the study area are discussed. The results show that the clastic rocks in the study area have experienced the change of chemical weathering intensity from weak to strong to weak, indicating that the evolution law of paleoclimate from relative cold and drought to relative warm and humidity to relative cold and drought. This paleoclimate change leads to low TOC content in uranium reservoir sand bodies (average value 0.05%) and large-scale development of interlayer oxidation zone, so uranium ore bodies are mainly located in the hinterland of the basin far away from the erosion source area. Dark mudstone formed in humid climate has higher TOC (average 0.61%) and U content (up to 885×10-6). It has become one of the important sources of uranium due to its strong preconcentration during deposition. The discharge of reducing pore water during diagenesis may be the main factor for the construction of oxidation-reduction barrier in uranium reservoir sand bodies. During deposition, the warm and humid climate enhances the intensity of chemical weathering in the source area, which is conducive to the activation and leaching of uranium in the parent rock and the uranium preconcentration of mudstone in the sedimentary area.
化学风化 / 古气候 / 砂岩型铀矿 / 铀成矿作用 / 姚家组 / 松辽盆地 / 矿床地质
chemical weathering / paleoclimate / sandstone-type uranium deposit / uranium mineralization / Yaojia Formation / Songliao basin / mineral deposits
| [1] |
Bao, J., Song, C. H., Yang, Y. B., et al., 2019. Reduced Chemical Weathering Intensity in the Qaidam Basin (NE Tibetan Plateau) during the Late Cenozoic. Journal of Asian Earth Sciences, 170: 155-165. https://doi.org/10.1016/j.jseaes.2018.10.018 |
| [2] |
Bonnetti, C., Cuney, M., Malartre, F., et al., 2015. The Nuheting Deposit, Erlian Basin, NE China: Synsedimentary to Diagenetic Uranium Mineralization. Ore Geology Reviews, 69: 118-139. https://doi.org/10.1016/j.oregeorev.2015.02.010 |
| [3] |
Cai, C. F., Li, H. T., Qin, M. K., et al., 2007. Biogenic and Petroleum-Related Ore-Forming Processes in Dongsheng Uranium Deposit, NW China. Ore Geology Reviews, 32(1-2): 262-274. https://doi.org/10.1016/j.oregeorev.2006.05.003 |
| [4] |
Cai, J. F., Yan, Z. B., Zhang, L. L., et al., 2018. Relationship between Grey Sandstone and Uranium Mineralization in Yaojia Formation of Upper Cretaceous in Tongliao, Inner Mongolia. Journal of East China University of Technology (Natural Science), 41(4): 328-335 (in Chinese with English abstract). |
| [5] |
Cao, M. Q., Rong, H., Chen, Z. Y., et al., 2021. Quantitative Characterization and Controlling Factors of the Interlayer Oxidation Zone of Qianjiadian Uranium Deposit, Songliao Basin. Earth Science, 46(10): 3453-3466 (in Chinese with English abstract). |
| [6] |
Chen, D. S., Liu, W. S., Jia, L. C., 2011. Paleo-Climate Evolution in China and Its Control on the Metallization of Sandstone Type Uranium Deposit of Meso-Cenozoic Basins. Uranium Geology, 27(6): 321-326, 344 (in Chinese with English abstract). |
| [7] |
Chen, F. X., Nie, F. J., Zhang, C. Y., et al., 2016. Geological Characteristics and Genetic Mechanism of the Honghaigou Uranium Deposit in the Southern Margin of Yili Basin. Acta Geologica Sinica, 90(12): 3324-3336 (in Chinese with English abstract). |
| [8] |
Chen, Z. Y., Guo, Q. Y., 2007. Mechanism of U-Reduction and Concentration by Sulphides at Sandstone Type Uranium Deposits. Uranium Geology, 23(6): 321-327, 334 (in Chinese with English abstract). |
| [9] |
Cullers, R. L., 2000. The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian-Permian Age, Colorado, USA: Implications for Provenance and Metamorphic Studies. Lithos, 51(3): 181-203. https://doi.org/10.1016/S0024-4937(99)00063-8 |
| [10] |
Cuney, M., 2009. The Extreme Diversity of Uranium Deposits. Mineralium Deposita, 44(1): 3-9. https://doi.org/10.1007/s00126-008-0223-1 |
| [11] |
Fedo, C. M., Nesbitt, H. W., Young, G. M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921-924. https://doi.org/10.1130/0091-7613(1995)0230921: uteopm>2.3.co;2 |
| [12] |
Friedrich, O., Norris, R. D., Erbacher, J., 2012. Evolution of Middle to Late Cretaceous Oceans-A 55 M.y. Record of Earth’s Temperature and Carbon Cycle. Geology, 40(2): 107-110. https://doi.org/10.1130/g32701.1 |
| [13] |
Garzanti, E., Padoan, M., Setti, M., et al., 2013. Weathering Geochemistry and Sr-Nd Fingerprints of Equatorial Upper Nile and Congo Muds. Geochemistry, Geophysics, Geosystems, 14(2): 292-316. https://doi.org/10.1002/ggge.20060 |
| [14] |
Garzanti, E., Padoan, M., Setti, M., et al., 2014. Provenance Versus Weathering Control on the Composition of Tropical River Mud (Southern Africa). Chemical Geology, 366: 61-74. https://doi.org/10.1016/j.chemgeo.2013.12.016 |
| [15] |
Guo, F. N., 2017. Uranium Metallogenic Regularity and Prospect Prediction of Upper Cretaceous Yaojia Formation in Southern Songliao Basin (Dissertation).East China University of Technology, Nanchang (in Chinese with English abstract). |
| [16] |
Guo, W., 2007. The Study of Cretaceous Tectono-Sedimentary Evolution and Petroleum Accumulation Dynamics in Southern Songliao Basin (Dissertation). Jilin University, Changchun (in Chinese with English abstract). |
| [17] |
Guo, Y. L., Yang, S. Y., Su, N., et al., 2018. Revisiting the Effects of Hydrodynamic Sorting and Sedimentary Recycling on Chemical Weathering Indices. Geochimica et Cosmochimica Acta, 227: 48-63. https://doi.org/10.1016/j.gca.2018.02.015 |
| [18] |
Harnois, L., 1988. The CIW Index: A New Chemical Index of Weathering. Sedimentary Geology, 55(3-4): 319-322. https://doi.org/10.1016/0037-0738(88)90137-6 |
| [19] |
Hou, M. C., Jiang, W. J., Ni, S. J., et al., 2016. Geochemical Characteristic of the Lower and Middle Jurassic Clastic Rocks in the Southern Margin of the Yili Basin, Xinjiang and Its Constraints on Provenance. Acta Geologica Sinica, 90(12): 3337-3351 (in Chinese with English abstract). |
| [20] |
Hu, X. W., Yang, X. Y., Ren, Y. S., et al., 2020. Sedimentary Environment and Tectonic Evolution of Junggar Basin: Constrains on the Mineralization of Sandstone-Type Uranium Deposits. Geotectonica et Metallogenia, 44(4): 725-741 (in Chinese with English abstract). |
| [21] |
Jiang, H. Y., Xia, Y. Q., Liu, S. P., et al., 2021. Weathering Intensity and Color Genesis of Continental Sediments: A Case Study from the Shangshaximiao Formation of the Middle Jurassic in the Sichuan Basin. Acta Sedimentologica Sinica, Online (in Chinese with English abstract). https://doi.org/10.14027/j.issn.1000-0550.2021.149 |
| [22] |
Jiang, W. J., Qin, M. K., Fan, H. H., et al., 2022. Study on the Relationship between Diagenesis of Cretaceous Yaojia Formation Clastic Rocks and Uranium Mineralization in the Southwest of Songliao Basin. Uranium Geology, 38(2): 181-193 (in Chinese with English abstract). |
| [23] |
Jiao, Y. Q., Wu, L. Q., Peng, Y. B., et al., 2015. Sedimentary-Tectonic Setting of the Deposition-Type Uranium Deposits Forming in the Paleo-Asian Tectonic Domain, North China. Earth Science Frontiers, 22(1): 189-205 (in Chinese with English abstract). |
| [24] |
Jiao, Y.Q., Wu, L.Q., Rong, H., 2018. Model of Inner and Outer Reductive Media within Uranium Reservoir Sandstone of Sandstone-Type Uranium Deposits and Its Ore-Controlling Mechanism: Case Studies in Daying and Qianjiadian Uranium Deposits. Earth Science, 43(2): 459-474 (in Chinese with English abstract). |
| [25] |
Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2021. Review of Basin Uranium Resources in China. Earth Science, 46(8): 2675-2696 (in Chinese with English abstract). |
| [26] |
Jin, R. S., Cheng, Y. H., Li, J. G., et al., 2017. Late Mesozoic Continental Basin “Red and Black Beds” Coupling Formation Constraints on the Sandstone Uranium Mineralization in Northern China. Geology in China, 44(2): 205-223 (in Chinese with English abstract). |
| [27] |
Li, X. L., Zhang, X., Lin, C. M., et al., 2022. Overview of the Application and Prospect of Common Chemical Weathering Indices. Geological Journal of China Universities, 28(1): 51-63 (in Chinese with English abstract). |
| [28] |
Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0 |
| [29] |
Ning, J., Xia, F., Nie, F. J., et al., 2018. Analysis of the Relation between Uranium Mineralization and the Grey Sand Body in the Lower Part of Yaojia Formation in the South of Songliao Basin. Journal of East China University of Technology (Natural Science), 41(4): 336-342 (in Chinese with English abstract). |
| [30] |
Qin, M. K., He, Z. B., Liu, Z. Y., et al., 2017. Study on Metallogenic Environments and Prospective Direction of Sandstone Type Uranium Deposits in Junggar Basin. Geological Review, 63(5): 1255-1269 (in Chinese with English abstract). |
| [31] |
Romer, R. L., Cuney, M., 2018. Phanerozoic Uranium Mineralization in Variscan Europe-More than 400 Ma of Tectonic, Supergene, and Climate-Controlled Uranium Redistribution. Ore Geology Reviews, 102: 474-504. https://doi.org/10.1016/j.oregeorev.2018.09.013 |
| [32] |
Rong, H., Jiao, Y. Q., Liu, W. H., et al., 2021. Influence Mechanism of Palaeoclimate of Uranium-Bearing Strata on Mineralization: A Case Study from the Qianjiadian Sandstone-Hosted Uranium Deposit, Songliao Basin, China. Ore Geology Reviews, 138: 104336. https://doi.org/10.1016/j.oregeorev.2021.104336 |
| [33] |
Wang, M., Wu, B. L., Li, Y. Q., et al., 2022. Experimental Study on Possibility of Deep Uranium-Rich Source Rocks Providing Uranium Source in Ordos Basin. Earth Science, 47(1): 224-239 (in Chinese with English abstract). |
| [34] |
Xia, Y. L., Liu, H. B., 2005. Pre-Enrichment and Metallogeny of Uranium in Zhiluo Formation Sand Bodies of Dongsheng Area, Ordos Basin. World Nuclear Geoscience, 22(4): 187-191 (in Chinese with English abstract). |
| [35] |
Xie, H. L., Jiao, Y. Q., Liu, Z. Y., et al., 2020. Occurrence and Enrichment Mechanism of Uranium Ore Minerals from Sandstone-Type Uranium Deposit, Northern Ordos Basin. Earth Science, 45(5): 1531-1543 (in Chinese with English abstract). |
| [36] |
Xu, Z. L., Li, J. G., Zhu, Q., et al., 2019. Late Cretaceous Paleoclimate Change and Its Impact on Uranium Mineralization in the Kailu Depression, Southwest Songliao Basin. Ore Geology Reviews, 104: 403-421. https://doi.org/10.1016/j.oregeorev.2018.10.020 |
| [37] |
Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2016. Reconstructing Early Permian Tropical Climates from Chemical Weathering Indices. Geological Society of America Bulletin, 128(5-6): 739-751. https://doi.org/10.1130/b31371.1 |
| [38] |
Yang, J. H., Ma, Y., 2017. Paleoclimate Perspectives of Source-to-Sink Sedimentary Processes. Earth Science, 42(11): 1910-1921 (in Chinese with English abstract). |
| [39] |
Yu, W. B., 2009. Research on Metallogenic Conditions of Sandstone Type Uranium Deposit of Cretaceous in Southern Songliao Basin (Dissertation). Jilin University, Changchun (in Chinese with English abstract). |
| [40] |
蔡建芳,严兆彬,张亮亮,等,2018.内蒙古通辽地区上白垩统姚家组灰色砂体成因及其与铀成矿关系.东华理工大学学报(自然科学版),41(4): 328-335. |
| [41] |
曹民强,荣辉,陈振岩,等,2021.松辽盆地钱家店铀矿床层间氧化带结构定量表征及制约因素.地球科学,46(10): 3453-3466. |
| [42] |
陈戴生, 刘武生, 贾立城, 2011. 我国中新生代古气候演化及其对盆地砂岩型铀矿的控制作用. 铀矿地质, 27(6): 321-326, 344. |
| [43] |
陈奋雄,聂逢君,张成勇,等,2016. 伊犁盆地南缘洪海沟矿床富大矿体地质特征与成因机制研究.地质学报,90(12): 3324-3336. |
| [44] |
陈祖伊,郭庆银,2007.砂岩型铀矿床硫化物还原富集铀的机制.铀矿地质,23(6):321-327,334. |
| [45] |
郭福能,2017.松辽盆地西南部上白垩统姚家组铀成矿规律与远景预测(硕士学位论文).南昌:东华理工大学. |
| [46] |
郭巍,2007.松辽盆地南部白垩纪构造沉积演化与成藏动力学研究(博士学位论文).长春: 吉林大学. |
| [47] |
侯明才,江文剑,倪师军,等,2016.伊犁盆地南缘中下侏罗统碎屑岩地球化学特征及对物源制约.地质学报,90(12): 3337-3351. |
| [48] |
胡小文,杨晓勇,任伊苏,等,2020.准噶尔盆地沉积环境‒构造演化对砂岩型铀矿成矿的控制作用.大地构造与成矿学,44(4):725-741. |
| [49] |
蒋昊原,夏燕青,刘善品,等,2021. 陆相沉积物风化强度与颜色成因探讨——以四川盆地中侏罗统上沙溪庙组为例. 沉积学报, 网络首发. https://doi.org/10.14027/j.issn.1000-0550.2021.149 |
| [50] |
江文剑,秦明宽,范洪海,等,2022.松辽盆地西南部白垩系姚家组碎屑岩成岩作用与铀成矿.铀矿地质,38(2):181-193. |
| [51] |
焦养泉,吴立群,彭云彪,等,2015.中国北方古亚洲构造域中沉积型铀矿形成发育的沉积‒构造背景综合分析.地学前缘,22(1): 189-205. |
| [52] |
焦养泉,吴立群,荣辉,2018.砂岩型铀矿的双重还原介质模型及其联合控矿机理:兼论大营和钱家店铀矿床.地球科学,43(2): 459-474. |
| [53] |
焦养泉,吴立群,荣辉,等,2021.中国盆地铀资源概述.地球科学,46(8):2675-2696. |
| [54] |
金若时,程银行,李建国,等,2017.中国北方晚中生代陆相盆地红‒黑岩系耦合产出对砂岩型铀矿成矿环境的制约.中国地质, 44(2): 205-223. |
| [55] |
李绪龙,张霞,林春明,等,2022.常用化学风化指标综述:应用与展望.高校地质学报,28(1):51-63 |
| [56] |
宁君, 夏菲, 聂逢君, 等, 2018. 浅析松辽盆地南部姚下段灰色砂体与铀成矿关系. 东华理工大学学报(自然科学版), 41(4): 336-342. |
| [57] |
秦明宽, 何中波, 刘章月, 等, 2017. 准噶尔盆地砂岩型铀矿成矿环境与找矿方向研究. 地质论评, 63(5): 1255-1269. |
| [58] |
王苗,吴柏林,李艳青,等,2022.鄂尔多斯盆地深部富铀烃源岩提供铀源可能性的实验研究. 地球科学,47(1): 224-239. |
| [59] |
夏毓亮, 刘汉彬, 2005. 鄂尔多斯盆地东胜地区直罗组砂体铀的预富集与铀成矿. 世界核地质科学, 22(4): 187-191. |
| [60] |
谢惠丽,焦养泉,刘章月,等,2020.鄂尔多斯盆地北部铀矿床铀矿物赋存状态及富集机理. 地球科学,45(5): 1531-1543. |
| [61] |
杨江海,马严,2017.源‒汇沉积过程的深时古气候意义. 地球科学, 42(11): 1910-1921. |
| [62] |
于文斌,2009. 松辽盆地南部白垩系砂岩型铀矿成矿(博士学位论文).长春: 吉林大学. |
松辽盆地项目(地HSL1403-9)
核地院长基金(地QJ2102)
中国铀业有限公司‒东华理工大学核资源与环境国家重点实验室联合创新基金项目(NRE2021-18)
/
| 〈 |
|
〉 |