不同滑坡样本点和多边形表达模式下的易发性评价
邓明东 , 巨能攀 , 吴天伟 , 文艳 , 解明礼 , 赵伟华 , 何佳阳
地球科学 ›› 2024, Vol. 49 ›› Issue (05) : 1565 -1583.
不同滑坡样本点和多边形表达模式下的易发性评价
Evaluation of Susceptibility under Different Landslide Sample Points and Polygonal Expression Modes
,
滑坡编录模式常为点和多边形面,滑坡点的定位及多边形的采样范围会给滑坡易发性评价结果产生影响.为研究不同点和多边形滑坡样本采样方式下的易发性结果差异,以四川省宁南县为例,采用滑坡多边形和陡坎缓冲区来比较不同多边形表达模式对易发性评价的影响,用滑坡陡坎点和滑坡质心点来比较不同点表达模式对易发性评价的影响,选取3种评价模型支持向量机(SVM)、随机森林(RF)和人工神经网络(ANN)进行滑坡易发性建模,采用ROC曲线、均值、标准差等分析建模的差异.结果如下:(1)在滑坡样本为多边形表达模式下,陡坎缓冲区的评价效果优于滑坡多边形.在滑坡样本为点表达模式下,滑坡质心点的评价效果优于滑坡陡坎点.(2)RF模型在不同采样方式下易发性评价效果更好,不同采样方式下基于RF模型的易发性结果差异性也较小,相比SVM和ANN模型有更好的泛化能力.(3)离散型因子是导致点表达模式下采样方式易发性结果差异的主要因素.陡坎缓冲区采样方式相比于滑坡多边形保留如岩组等离散型环境因子的空间信息,因此评价效果较好.可见在县级尺度下使用滑坡陡坎区域等精细化地形特征作为滑坡采样方式可以提高易发性评价精度.
易发性评价 / 表达模式 / 采样方式 / 滑坡 / 滑坡样本点 / 滑坡多边形 / 灾害 / 地形特征
susceptibility evaluation / expression pattern / sampling strategy / landslides / landslide sample points / landslide polygon / hazards / terrain features
| [1] |
Abraham, M. T., Satyam, N., Lokesh, R., et al., 2021. Factors Affecting Landslide Susceptibility Mapping: Assessing the Influence of Different Machine Learning Approaches, Sampling Strategies and Data Splitting. Land, 10(9): 989. https://doi.org/10.3390/land10090989 |
| [2] |
Ali, R., Kuriqi, A., Kisi, O., 2020. Human-Environment Natural Disasters Interconnection in China: A Review. Climate, 8(4): 48. https://doi.org/10.3390/cli8040048 |
| [3] |
Bayat, M., Ghorbanpour, M., Zare, R., et al., 2019. Application of Artificial Neural Networks for Predicting Tree Survival and Mortality in the Hyrcanian Forest of Iran. Computers and Electronics in Agriculture, 164: 104929. https://doi.org/10.1016/j.compag.2019.104929 |
| [4] |
Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Machine Learning, 20(3): 273-297. https://doi.org/10.1007/BF00994018 |
| [5] |
Hu, T., Fan, X., Wang, S., et al., 2020. Landslide Susceptibility Evaluation of Sinan County Using Logistics Regression Model and 3S Technology. Bulletin of Geological Science and Technology, 39(2): 113-121 (in Chinese with English abstract). |
| [6] |
Huang, F.M., Cao, Y., Fan, X.M., et al., 2021. Influence of Different Landslide Boundaries and Their Spatial Shapes on the Uncertainty of Landslide Susceptibility Prediction. Chinese Journal of Rock Mechanics and Engineering, 40(S2): 3227-3240 (in Chinese with English abstract). |
| [7] |
Huang, F.M., Hu, S.Y., Yan, X.Y., et al., 2022. Landslide Susceptibility Prediction and Identification of Its Main Environmental Factors Based on Machine Learning Models. Bulletin of Geological Science and Technology, 41(2): 79-90 (in Chinese with English abstract). |
| [8] |
Huang, F.M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 45(12): 4535-4549 (in Chinese with English abstract). |
| [9] |
Huang, F.M., Yin, K.L., Jiang, S.H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156-167 (in Chinese with English abstract). |
| [10] |
Li, W.B., Fan, X.M., Huang, F.M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract). |
| [11] |
Liu, F.Z., Wang, L., Xiao, D.S., et al., 2021. Evaluation of Landslide Susceptibility in Ningnan County Based on Fuzzy Comprehensive Evaluation. Journal of Natural Disasters, 30(5): 237-246 (in Chinese with English abstract). |
| [12] |
Mao, Y.K., 2020. Stability Evaluation of Landslide Based on Machine Learning and System Development (Dissertation). University of Electronic Science and Technology of China, Chengdu (in Chinese with English abstract). |
| [13] |
Pardeshi, S. D., Autade, S. E., Pardeshi, S. S., 2013. Landslide Hazard Assessment: Recent Trends and Techniques. Springer Plus, 2(1): 523. https://doi.org/10.1186/2193-1801-2-523 |
| [14] |
Pourghasemi, H. R., Kornejady, A., Kerle, N., et al., 2020. Investigating the Effects of Different Landslide Positioning Techniques, Landslide Partitioning Approaches, and Presence-Absence Balances on Landslide Susceptibility Mapping. CATENA, 187: 104364. https://doi.org/10.1016/j.catena.2019.104364 |
| [15] |
Sahin, E. K., Colkesen, I., Kavzoglu, T., 2020. A Comparative Assessment of Canonical Correlation Forest, Random Forest, Rotation Forest and Logistic Regression Methods for Landslide Susceptibility Mapping. Geocarto International, 35(4): 341-363. https://doi.org/10.1080/10106049.2018.1516248 |
| [16] |
Süzen, M. L., Doyuran, V., 2004. Data Driven Bivariate Landslide Susceptibility Assessment Using Geographical Information Systems: A Method and Application to Asarsuyu Catchment, Turkey. Engineering Geology, 71(3/4): 303-321. https://doi.org/10.1016/S0013-7952(03)00143-1 |
| [17] |
Wu, R.Z., Hu, X.D., Mei, H.B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330 (in Chinese with English abstract). |
| [18] |
Xie, P., Wen, H. J., Ma, C. C., et al., 2018. Application and Comparison of Logistic Regression Model and Neural Network Model in Earthquake-Induced Landslides Susceptibility Mapping at Mountainous Region, China. Geomatics, Natural Hazards and Risk, 9(1): 501-523. https://doi.org/10.1080/19475705.2018.1451399 |
| [19] |
Xu, Q., Lu, H.Y., Li, W.L., et al., 2022. Types of Potential Landslide and Corresponding Identification Technologies. Geomatics and Information Science of Wuhan University, 47(3): 377-387 (in Chinese with English abstract). |
| [20] |
Yilmaz, I., 2010. The Effect of the Sampling Strategies on the Landslide Susceptibility Mapping by Conditional Probability and Artificial Neural Networks. Environmental Earth Sciences, 60(3): 505-519. https://doi.org/10.1007/s12665-009-0191-5 |
| [21] |
Zhang, Y., Wu, W. C., Qin, Y. Z., et al., 2020. Mapping Landslide Hazard Risk Using Random Forest Algorithm in Guixi, Jiangxi, China. ISPRS International Journal of Geo-Information, 9(11): 695. https://doi.org/10.3390/ijgi9110695 |
| [22] |
Zhou, C., Yin, K.L., Cao, Y., et al., 2020. Landslide Susceptibility Assessment by Applying the Coupling Method of Radial Basis Neural Network and Adaboost: A Case Study from the Three Gorges Reservoir Area. Earth Science, 45(6): 1865-1876 (in Chinese with English abstract). |
| [23] |
Zhou, X. T., Wu, W. C., Lin, Z. Y., et al., 2021. Zonation of Landslide Susceptibility in Ruijin, Jiangxi, China. International Journal of Environmental Research and Public Health, 18(11): 5906. https://doi.org/10.3390/ijerph18115906 |
| [24] |
Zhu, A. X., Miao, Y. M., Yang, L., et al., 2018. Comparison of the Presence-Only Method and Presence-Absence Method in Landslide Susceptibility Mapping. CATENA, 171: 222-233. https://doi.org/10.1016/j.catena.2018.07.012 |
四川省科技计划资助项目(2022YFG0183)
地质灾害防治与地质环境保护国家重点实验室自主课题项目(SKLGP2020Z006)
/
| 〈 |
|
〉 |