利用构造地貌方法限定走滑断裂第四纪滑动速率的不确定性及意义:以海原断裂带为例

王子君 ,  姚文倩 ,  刘静 ,  邵延秀 ,  王文鑫 ,  沈续文 ,  高云鹏 ,  徐晶

地球科学 ›› 2024, Vol. 49 ›› Issue (02) : 759 -780.

PDF (6813KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (02) : 759 -780. DOI: 10.3799/dqkx.2022.405

利用构造地貌方法限定走滑断裂第四纪滑动速率的不确定性及意义:以海原断裂带为例

作者信息 +

Application of Tectonic Geomorphology Method for Constraining the Slip Rate Uncertainty and Implication of Strike-Slip Faults:An Example from the Haiyuan Fault Zone

Author information +
文章历史 +
PDF (6975K)

摘要

断层滑动速率是理解复杂断层系统应变分配与评估地震危险性的重要参数,在多种研究方法中,利用构造地貌学方法限定走滑断裂的第四纪滑动速率较为普遍. 在青藏高原活动断裂体系中,海原断裂带承载了部分印度-欧亚板块碰撞产生的应变,其滑动速率的精细厘定也是高原构造变形动力学分析的重要参数. 过去三十年间前人采用构造地貌学方法对其进行了大量的滑动速率研究,结果位于2.3~16 mm/a之间,不同研究间相差较大,因此引发了众多争议与困惑. 在对已有研究进行详细评述的基础上,指出前人研究结果不确定性的重要原因是上级阶地与下级阶地重建模型的选择. 结果认为,基于两种位移累积起始时间定义的模型得到的往往是滑动速率的上限或下限,不能简单地将其等同于滑动速率真实值. 当缺乏观测数据可以辅助判别两种模型的可靠程度时,应基于上、下级阶地废弃年龄同时对滑动速率进行限定,这是对滑动速率计算过程中客观存在的不确定性的尊重和认可. 海原断裂带滑动速率的评估将为后续基于青藏高原内部诸多活动断裂进行两种端元变形模型合理性的分析工作提供重要的方法借鉴.

关键词

滑动速率 / 海原断裂带 / 构造地貌学 / 河流阶地陡坎 / 上、下限评估

Key words

fault slip rates / Haiyuan fault / geomorphology / river terrace risers / the upper and lower bound

引用本文

引用格式 ▾
王子君,姚文倩,刘静,邵延秀,王文鑫,沈续文,高云鹏,徐晶. 利用构造地貌方法限定走滑断裂第四纪滑动速率的不确定性及意义:以海原断裂带为例[J]. 地球科学, 2024, 49(02): 759-780 DOI:10.3799/dqkx.2022.405

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

断层滑动速率作为地球动力学研究中的重要参数,是理解活动构造变形分布与演化的重要指标,不仅能够揭示复杂断层系统的运动学与应变分配特征(Thompson et al., 2002Bennett et al., 2004Bird, 2009Dair and Cooke, 2009Goren et al., 2015Daout et al., 2016),并且在足够长的时间尺度上影响着活动构造环境中山脉形成与盆地沉积的速度(Bergen et al., 2017Li et al. 2018Burgette et al., 2020Peltzer et al., 2020Yang et al., 2020). 另一方面,断层滑动速率作为反映断裂活动性的重要参数,其时空变化特征可用于判断断裂的特殊几何结构(如断层弯折、阶区等)对地震破裂传播的控制作用(King and Nábělek, 1985King, 1986Acharya, 1997Wesnousky, 2006Klinger, 2010Biasi and Wesnousky, 2017). 总体说来,断层滑动速率可以反映不同时空尺度内断层的活动行为,与断层带地震破裂的复发周期存在直接联系. 此外,其与地震矩释放成比例,是地震中长期预测、地震区划以及地震安全性评价中的关键指标(Friedrich et al., 2003Chevalier et al., 2005Chéry and Vernant, 2006Frankel et al., 2007Kirby et al., 2007Field et al., 2014). 因此,断层滑动速率的精确厘定是活动构造领域最重要的基础研究内容之一.

目前获取断层滑动速率的方法主要包括大地测量学、古地震学、构造地貌学与传统地质学方法. 大地测量法的主要原理是通过GPS与InSAR手段观测记录到断层两侧一定宽度范围内(大型断层通常为50 km)数年到数十年弹性应变积累的快慢. 倘若该短期的应变速率模式不能代表长期稳定的加载过程,那么也就不能被直接用于验证地球动力学模型(Chéry and Vernant, 2006). 古地震学方法要基于探槽开挖揭示的沉积地层变形来获得一系列古地震事件的位错量,并利用第四纪年代学数据确定位错发生的时间,从而限定100~10 000 a时间尺度内的断层滑动速率(McGill and Sieh, 1991McGill and Rubin, 1999Weldon et al., 2005Scharer et al., 2007Scharer et al., 2011). 基于以上两种方法得到的滑动速率均被认为是短期滑动速率. 与之相比,某些地貌错断标志(如河流冲沟、冲洪积扇体、冰脊垄等)可保存10万年之久,常被用于计算涵盖多个地震周期的较长时间尺度内的平均滑动速率(Weldon and Sieh, 1985Zhang et al., 1988aLasserre et al., 1999). 通过该方法确定一条断裂不同段落上多个地貌位错点位的滑动速率,可以推断断层活动性的空间展布关系与演化历史(Frankel et al., 2007; Kirby et al., 2007; Hoeft and Frankel, 2010Gold and Cowgill, 2011Rood et al., 2011Blisniuk et al., 2013Gold et al., 2017). 在诸多的断错地貌体中,河流阶地陡坎因其良好的线性展布特征,成为了计算滑动速率中最常用的地貌标志,前人根据河流侵蚀作用的强弱提出了上级阶地重建与下级阶地重建两种端元模型,模型的选取是构造地貌学方法的核心问题之一(Lensen, 1968Sieh and Jahns, 1984Weldon and Sieh, 1985Cowgill, 2007). 此外,通过传统地质学方法,对断层两侧存在对应关系的地质体(如花岗岩体、古生代地层)进行位移测量和地质年代学定年,可大致估算出百万年时间尺度的断层滑动速率(Yue et al., 2001Yin et al., 2002).

早期研究人员普遍认为滑动速率的大小是评价青藏高原两类变形模型的关键参数. 自新生代伊始,印度-欧亚板块碰撞形成了举世瞩目的世界屋脊——“青藏高原”,而高原的构造变形机制一直存在两大端元模型间的对峙:“刚性块体”模型与“连续变形”模型. 前者强调高原的构造变形主要集中分布于高原周边与内部的关键构造带上,如一些边界大型走滑断裂带(Avouac and Tapponnier, 1993Peltzer and Saucier, 1996Tapponnier et al., 2001);后者则认为高原变形在空间上是连续和弥散的,没有主要和次要断裂的区别,极大弱化了大型边界走滑断裂在高原构造变形过程中的作用(Molnar and Tapponnier, 1975England and Houseman, 1986England and Molnar, 2005). 因此,前人对于青藏高原边界走滑断裂的滑动速率进行了颇为丰富的研究,对其解读也出现了较大争议(如:Peltzer et al., 1989Meyer et al., 1996Van Der Woerd et al., 1998, 20022006;Lasserre et al., 1999, 2002Mériaux et al., 2004, 20052012Cowgill, 2007Kirby et al., 2007Zhang et al., 2007Cowgill et al., 2009Li et al., 2009Gold et al., 2011Chevalier et al., 2016).

青藏高原东北缘作为高原扩展的前锋地带,是现今构造变形最强烈的地区之一,在其与北侧的戈壁-阿拉善块体和东侧的鄂尔多斯块体发生的强烈构造作用下,分割块体边界的一系列关键构造带成为了多数陆内强震的孕震构造,且存在较强的活动性,例如阿尔金断裂、海原断裂以及昆仑断裂等大型边界左旋走滑断层(图1). 其中历史地震记载1920年12月16日在海原断裂东段的宁夏海原发生了M~8级(M w 7.9)强震(Jing et al., 2015Ou et al., 2020),造成了至少约27万的人员伤亡及巨大的经济损失(刘百篪等, 2003). 前人最先对海原断裂带开展了活动构造相关研究,并产出了我国活动断裂研究中一些里程碑式的成果(翁文灏, 1922; 国家地震局地质所和宁夏回族自治区地震局, 1990; 邓起东等, 2011). 此外,该断裂贯穿了青海省、甘肃省和宁夏回族自治区,断裂带活动引发的地质灾害极有可能造成重大的经济损失与人员伤亡. 因此,精确厘定海原断裂的滑动速率具有极为深远的科研意义与现实意义,前人就该问题进行了大量研究,但得到的结果相差较大,下文将对滑动速率不确定性的原因进行分析,并对之后的相关研究提出建议,这也将为后续基于高原内部与边界诸多活动断裂变形进一步分析两种端元模型合理性提供了重要的方法借鉴.

1 海原断裂带概况

长约1 000 km的海原断裂带位于祁连山东南部,西起哈拉湖(~98°E),东至六盘山(106°E以东),其运动性质以左旋走滑为主,部分段落兼具正断和逆断分量(Tapponnier and Molnar, 1976Zhang et al., 1988bBurchfiel et al., 1991Gaudemer et al., 1995Lasserre et al., 1999Matrau et al., 2019). 断裂延伸至东端六盘山时,部分左旋走滑分量转换为六盘山地区的缩短挤压应变(Zheng et al., 2006). 前人基于断裂走向变化、阶区发育等特征将海原断裂带自西向东划分为7段,依次为哈拉湖段、冷龙岭段、金强河段、毛毛山段、老虎山段、海原段(狭义)以及六盘山段(图2). 其中在冷龙岭段与金强河段交界处,古浪-中卫分支断裂向东延伸开,展布约350 km后转为近南北走向,最后在固原附近与海原断裂交汇. 历史资料记载显示海原断裂带与古浪断裂是1709年中卫M 7.5级地震、1920年海原M ~8级地震与1927年古浪M 8.0级地震等大震事件的发震断裂,这些地震均对断裂沿线地区造成了严重的破坏(Deng et al., 1984Gaudemer et al., 1995).

过去三十年前人围绕海原断裂进行了关于活动构造多方面的考察研究,例如针对狭义海原段和毛毛山段的古地震研究揭示了地震可以造成单条断裂破裂或多条断裂的级联破裂,且在时间尺度上显示出丛集性(Zhang et al., 1988b, 2003冉勇康等, 1997向宏发等, 1998袁道阳等, 1998Jing et al., 2007, 2015);早期研究表明天祝地震空区与1920年海原地震地表破裂带处于闭锁状态(图2Gaudemer et al., 1995),但近期的大地测量研究揭示出天祝地震空区内存在约30~35 km的浅层蠕滑现象(Cavalié et al., 2008Jolivet et al., 2013Li et al., 2021);而针对海原断裂滑动速率,前人研究结果得到其量值位于2.3~16 mm/a之间(Zhang et al., 1988a, 1988bBurchfiel et al., 1991; Gaudemer et al., 1995; 袁道阳等, 1997向宏发等, 1998Lasserre et al., 1999, 2002何文贵等, 20002010Hetzel et al., 2002Jing et al., 2007Li et al., 2009Zheng et al., 2013Jiang et al., 2017刘金瑞等, 2018Matrau et al., 2019Yao et al., 2019Shao et al., 2021).

2 第四纪滑动速率研究方法

目前,构造地貌学方法是成熟度最高、相对可靠的晚第四纪滑动速率研究方法,利用该方法计算断层的第四纪滑动速率时,需要获取两个关键参数值——特征地貌体的位移量以及位移累积的起始时间(Lensen, 1968; Sieh and Jahns, 1984; Weldon and Sieh, 1985; Cowgill, 2007). 其中,通过将错断地貌(如河流阶地、冲积扇体、冲沟、冰碛物等)的标志线投影至活动断裂迹线上,利用地貌重建(back-slipping)可获得位移量. 相对而言,位移累积的起始时间较难确定(Cowgill, 2007Yao et al., 2019),其要求地貌体保存有合适的第四纪年代学样品,且被错断地貌与断层运动的时间关系清晰(Lensen, 1968; Sieh and Jahns, 1984; Weldon and Sieh, 1985; Cowgill, 2007Gold et al., 2009).

随着航空摄影以及激光雷达等技术的发展,错断地貌标志可通过高分辨率数字地形数据结合野外实地考察被精确识别,其中卫星和航空摄影技术可提供高精度影像,用于准确解译断层迹线及位错地貌标志(Tapponnier and Molnar, 1977Peltzer et al., 1989Meyer et al., 1998Lasserre et al., 1999Klinger et al., 2011Middleton et al., 2016李辉等, 2017);此外,机载激光雷达技术(ALS)的应用范围也越来越广(Hudnut et al., 2002Oskin et al., 2007Arrowsmith and Zielke, 2009马洪超, 2011刘静等, 2013),该方法可以实现毫米级精度地形数据的快速获取,借助这类高分辨率数字地形数据可以精细刻画微观地貌形态和构造变形特征,加深对断层滑动历史的理解(Hudnut et al., 2002; Oskin et al., 2007; Arrowsmith and Zielke, 2009; Zielke et al., 2010). 近年来,上述方法技术已经被广泛应用在海原断裂同震位移特征,地表破裂传播以及滑动速率研究中(Chen et al., 2014, 2018Ren et al., 2016Yao et al., 2019Ou et al., 2020Han et al., 2021Shao et al., 2021).

而可用于位错地貌体的定年方法包括绝对定年与相对定年,其中相对定年方法适用于缺乏合适年龄样品的地貌单元,例如陡坎形态分析、土壤剖面分析、基岩关系等(Rockwell et al., 1984Hanks and Schwartz, 1987Knuepfer,1992Koehler,2019Wells et al., 2020). 绝对定年手段在第四纪滑动速率研究中更加普遍且可靠,常用方法主要有14C、光释光以及宇宙成因核素暴露定年. 14C定年法的测年范围可追溯至晚更新世和全新世,但碳样的稀缺性限制了其在滑动速率研究领域的使用. 光释光(OSL)定年的目标矿物主要为石英和长石,可测定10 a~100 ka的年龄样品,该方法要求样品在沉积时释光信号被完全清空,沉积后的埋藏年龄可用辐射总量(等效剂量,De)与接收速率(年剂量率,Dr)的比值来表示(图3b赖忠平和欧先交, 2013). 宇宙成因核素暴露定年法要求目标矿物突然暴露于宇宙射线照射范围内(图3a),核素浓度开始随时间积累,常用于断层滑动速率测定的暴露定年方法包括阶地面岩石样品的直接采集法与深度剖面法,根据样品浓度与采样深度拟合出核素继承浓度随深度变化的曲线(图3c),利用特定公式计算得到地貌面的暴露年龄.

3 海原断裂带第四纪滑动速率研究进展

3.1 海原断裂带第四纪滑动速率研究概述

在1920年海原地震同震地表破裂的海原段,Zhang et al. (1988a)利用冲沟位错与14C定年限定出8 mm/a±2 mm/a的滑动速率. Burchfiel et al. (1991)通过详细的构造地质填图完成了基岩错断量的量测,并假设海原断裂左旋走滑运动起始时间为更新世,大致推测得到狭义海原段百万年地质时间尺度的滑动速率为5~10 mm/a,由于该结果缺乏测年数据支持,因此参考意义有限. Gaudemer et al. (1995)通过分析金强河段以及冷龙岭段阶地形成和古气候的关系,推测阶地形成时间受末次冰期最盛期影响,由此估算出金强河段和冷龙岭段的滑动速率分别为~11 mm/a和~15 mm/a. 袁道阳等(1997)通过对不同地貌面进行14C与热释光定年,并对比西北地区黄土剖面中古土壤年龄确定了毛毛山段多级地貌单元的年龄序列,计算得出了毛毛山段自中更新世晚期以来的滑动速率为2.3~3.9 mm/a. 向宏发等(1998)对六盘山段北侧冲沟进行了左旋位移量的测量,结合热释光定年结果以及对区域内水系形成时代的推测,估算得到该段的左旋滑动速率约为1~3 mm/a. Lasserre et al. (1999)以老虎山段保存较好的错断阶地为地貌标志,基于高精度影像数据进行了构造地貌的详细解译,并结合下阶地的14C年龄计算得到该段的理想滑动速率为11.6 mm/a±1.1 mm/a. 何文贵等(2000)在冷龙岭段宁缠丫豁点位进行了热释光定年,结合标准黄土剖面以及古气候推断各个量级河沟位错对应的起始时间,估算出冷龙岭段全新世以来的滑动速率为3.2~4.3 mm/a,晚更新世以来的滑动速率则为2.9~4.1 mm/a. 同样在冷龙岭段,Lasserre et al. (2002)依据冰碛物200 m的水平位移量,结合宇宙成因核素(TCNs)定年获得冷龙岭段滑动速率上限为19 mm/a±5 mm/a,下限为11 mm/a±3 mm/a. Li et al. (2009)基于详细的地貌填图与14C定年,采用上下级阶地年龄同时限定滑动速率的方法,在哨马营、高湾子、荒凉滩三点位得到的狭义海原段滑动速率值分别为4.2 mm/a±0.8 mm/a 、4.5 mm/a±0.7 mm/a与5.0 mm/a±2.5 mm/a. Yuan et al. (2008)投稿的AGU摘要对缺乏滑动速率研究的哈拉湖段进行了位错限定,结合14C与OSL定年技术给出木里盆地与冰沟河点位的滑动速率分别为1.6 mm/a±0.3 mm/a与4.7 mm/a±0.4 mm/a. 何文贵等(2010)利用高分辨率SPOT影像和全站仪地形实测手段对冷龙岭段两个点位为进行了较为详细的构造地貌填图,结合热释光与14C定年方法,通过下级阶地重建模型得到冷龙岭段自晚更新世以来的滑动速率为4.3 mm/a±0.7 mm/a,全新世晚期以来的滑动速率为3.9 mm/a±0.36 mm/a. Zheng et al. (2013)何文贵等(2010)填图基础上重新限定了讨拉柴陇点位的阶地陡坎位错,将该点位自晚更新世以来的滑动速率更新为4.4 mm/a±0.7 mm/a.

进入21世纪,随着高精度影像与地形数据获取的日益便捷以及第四纪年代学测试精度的提高,陆续涌现出一批主要基于微构造地貌精细解译的滑动速率研究. Jiang et al. (2017)依据地基LiDAR生成的高精度地形数据进行了详细的构造地貌解译,通过对阶地面14C和OSL年龄进行测算,从而计算得到冷龙岭东段的滑动速率约为6.6 mm/a±0.3 mm/a. 刘金瑞等(2018)在老虎山段骟马沟、张家岭以及新墩塆点位对阶地陡坎位错进行了限定,结合14C以及光释光定年手段,最终利用蒙特卡洛模拟方法给出了老虎山段自45 ka以来4.3 mm/a±0.16 mm/a的滑动速率. Yao et al. (2019)利用基于机载LiDAR生成的高精度地形数据对老虎山段松山点位进行了再评估,通过精细的微构造地貌解译以及更加全面的年代学方法将该点位更新世以来的滑动速率更新为5.0~8.9 mm/a. Matrau et al. (2019)对高精度卫星影像进行了详细填图,依据多级阶地面的10Be宇宙成因核素定年,限定了自15 ka以来穿过哈思山山前的1920年海原地震发震断层的滑动速率为2.7 mm/a±0.5 mm/a. Shao et al. (2021)Gaudemer et al. (1995)文中的三个墩点位重新分析,基于更详细的阶地位错解译,并通过一系列定年手段确定了阶地面的具体废弃时间,计算得到5~8 mm/a的滑动速率. Yao et al. (2022)基于小型无人机航拍采集的数据以及多级阶地的10Be深度剖面重新厘定了老虎山段哈思山周边自13 ka以来的滑动速率下限为4.1 mm/a±0.6 mm/a.

以上为近三十年比较具代表性的利用构造地貌学方法获取的海原断裂带第四纪滑动速率研究结果(表1图4),此外,大地测量学方法也被广泛应用于相关研究中,前人通过InSAR与GPS手段得到海原断裂带滑动速率为4~9 mm/a(Gan et al.,2007Cavalié et al., 2008Li et al., 2009Jolivet et al., 2013李煜航等, 2015Daout et al., 2016Wang et al., 2017Huang et al., 2022),该方法可以约束海原断裂的短期变形速率. 下文将以Yao et al.(2019)Shao et al.(2021)的文章为例对海原断裂滑动速率研究中的不确定性和误差进行详细评估,从而帮助理解海原断裂带滑动速率研究结果的不同缘由和意义.

3.2 马家湾点位滑动速率研究结果评估

Lasserre et al. (1999)基于三维摄影测量技术提取了高分辨率航空影像与数字高程模型,结合不同阶地面上覆黄土的14C年龄得到老虎山段马家湾点位和宣马湾点位的平均滑动速率值分别为(12±4) mm/a和(10.5±1.4) mm/a,远高于近年来大地测量学方法确定的海原断裂滑动速率值. Yao et al.(2019) 基于机载LiDAR技术获取的高精度DEM数据,结合详细的野外考察,更准确地对两处点位的多级阶地进行了划分并获取了阶地陡坎的位错值,同时采取了多种测年手段(14C、OSL、TCNs),最终确定老虎山段的滑动速率值位于5.0+1.5/-1.1 mm/a与8.9+0.5/-1.3 mm/a之间.

相较于Lasserre et al. (1999)的结果,Yao et al.(2019) 的滑动速率研究针对位移测量与年龄测定两大关键参数均做了改进. 位移测量方面,Lasserre et al. (1999)采用航空摄影技术与全站仪野外实地测量相结合的方式确定了马家湾 T4/T1阶地陡坎位错为(125±10) m,宣马湾T4/T1’阶地陡坎位错为(80±10) m. Yao et al.(2019) 基于激光雷达三维扫描技术提取出了分辨率高达1 m的数字高程模型(DEM),利用DEM提取了平行于断层的地形剖面(图5b),结合等高线、坡度图、RRIM等地貌参数,对两处点位的错断阶地面以及残余地质体进行了详细解译(图5a展示了马家湾点位的解译结果),在Lasserre et al. (1999)解译的基础上精细勾画出了马家湾处断层两侧对应的T2/T1阶地陡坎,以及宣马湾处T4/T1’阶地陡坎. 通过对阶地陡坎分别进行上界和下界的近场、远场投影,得到了更加精确的位错测量值(130±10) m和68+3/-10 m.

定年方面,Yao et al.(2019) 通过14C技术测定T1阶地最终年龄(9 445±30) a B.P.,类似于Lasserre et al. (1999)的定年结果(9 867±164) a B.P.,但由于近年来加速质谱技术的不断改进,Yao et al.(2019)得到的结果误差更小. 而Lasserre et al. (1999)对于较老阶地的定年采集的是阶地上覆黄土中的碳样,由于西北地区广泛覆盖的不同厚度的黄土,采用该方法对阶地面进行定年必定低估了阶地真实的废弃年龄. 基于此情况,Yao et al.(2019)采用宇宙成因核素暴露年龄深度剖面法(采样具体位置见图5a),结合阶地上覆黄土中多个光释光年代学样品,首先推算出黄土开始沉积至今经历的时间t 2;通过深度剖面法计算出阶地废弃后至黄土沉积前的时间t 1,最终由t 2t 1相加得到阶地面的真实废弃年龄.最终确定T2阶地的废弃年龄为~26 ka.

在计算滑动速率时,Lasserre et al. (1999)认为T4/T1陡坎被错断的起始时间更接近于下级阶地面T1的废弃时间,因而将T1阶地的14C定年结果作为该陡坎累积位错的起始年龄,最终计算出了较高的滑动速率值. Yao et al.(2019) 则基于详细的构造地貌演化历史分析认为海原断裂带河流流量较小,多数时段内气候都处于干旱状态,但在降水量较大的时段河流有足够的动力更新两侧的河岸沉积物,因此,位移累积的起始时间介于上级、下级阶地废弃年龄之间,应利用上、下级阶地模型同时限定.

3.3 三个墩点位滑动速率研究结果评估

Gaudemer et al.(1995) 曾对金强河段三个墩点位的滑动速率进行了详细调查,通过卫星影像与野外考察发现该点位三级主要阶地均被断错,且现代河道上存在明显的断层陡坎,但在断裂线上,阶地陡坎T1/T0并没有明显的水平位错,这表明在下级阶地废弃之前,阶地陡坎似乎不能保存水平位移. 因此根据测量,Gaudemer et al.(1995) 认为较低两级阶地的左旋位错量分别为35 m和89 m,并依据这两级阶地水平位移和垂直位移的比例外推最高级阶地的左旋位移约为143 m. 作者还发现三个墩点位阶地面存在大型砾石,认为在上一个冰盛期之后(14~11.5 ka B.P.),全球变暖导致冰川融化,这些砾石极有可能是随冰川融化形成的碎屑流搬运至此地的(Gasse et al., 1991). 因此,Gaudemer et al.(1995) 推测三个墩点位最老阶地年龄为(13.5±2) ka,估算金强河段滑动速率为(11±4) mm/a.

基于以上分析,Shao et al. (2021)对该研究点滑动速率进行了重新评估. 首先,采用14C、OSL和TCN等多种绝对定年方式,对金强河段三个墩点位上的断错阶地年龄进行了约束. 在最高级阶地T3上开挖了一个深度3 m的采样坑(图6a),发现阶地面的砾石层上覆有30 cm的黄土层,之上为80 cm的古土壤层. 对黄土层底部的OSL样品进行测定,得到的年龄结果为12.2 ka. 黄土开始沉积的年龄可能远小于阶地废弃年龄,这种现象在祁连山-河西走廊地区比较常见(Hetzel et al., 2004Küster et al., 2006),因此,为了更好约束阶地面的废弃年龄,Shao et al. (2021)采用了宇宙成因核素暴露定年深度剖面法(图3c),在砾石层位采集了8件不同深度的TCN样品,并获得了相应的10Be浓度. Shao et al. (2021)认为T3阶地面废弃至12.2 ka后黄土开始沉积,并假设黄土沉积速率恒定,利用两件OSL样品的采样深度与年龄结果得到速率为6.5 cm/ka. 同理,根据古土壤层两个14C年龄结果,得到其沉积速率为10.5 cm/ka,结合8件10Be样品的深度剖面拟合得到T3废弃年龄为(13.7±1.5) ka. 在较低两级阶地T2与T1表面上,Shao et al. (2021)采集了13块砾石(图6a),使用Prush and Oskin(2020)的宇宙成因核素暴露定年继承模型,得到T1和T2的表面碎屑数据,最终确定T2的废弃年龄为(9.3±0.6) ka,T1年龄小于(1.3±0.1) ka.

此外,Shao et al. (2021)结合由LiDAR点云数据获得的0.1 m分辨率的DEM、RTK地形剖面和通过UAV技术获得的航空正射影像数据,对该点位断错地貌进行了详细解译并提取了平行于断层走向的河流剖面,河流剖面清晰展示出不同级阶地间的高度差(图6b). Shao et al. (2021)通过对断错阶地陡坎形态的分析,发现下游断裂附近的较老阶地陡坎呈弧状. 这种现象指示在下阶地面没有废弃之前,由于断裂活动,下游阶地陡坎被断错到河道上,并遭受流水的侵蚀,但河道上的阶地陡坎并没有被完全冲刷掉,水平位移得以被保存下来(图6a). 他们认为,在该研究点上,阶地陡坎T3/T2和T2/T1在下阶地面废弃之前累积了一定的水平位移. 同时,他们还在T1阶地面上发现被断错的小冲沟,可以代表该阶地面的水平位移. 基于以上对不同阶地陡坎的形态分析,Shao et al. (2021)获得三个墩点位阶地T3、T2和T1的水平位错分别为>88 m、33~75 m和6.5 m.

结合阶地累积位移和相应年龄,Shao et al. (2021)计算得到该研究点滑动速率上下限,即根据T3的最小水平位移得到滑动速率下限为(6.4±1) mm/a,根据T2的最大水平位移获得上限为(7.7±0.6) mm/a,考虑到位移和年龄误差,给出滑动速率区间为5~8 mm/a.

4 讨论

4.1 上、下级阶地年龄共同限定断层滑动速率

河流阶地陡坎线性特征明显,是最常被应用于第四纪断层滑动速率研究的地貌体(图7a),但由于无法针对其进行直接定年,造成陡坎位错的起始年龄存在较大不确定性(Cowgill, 2007Harkins and Kirby, 2008Gold et al., 2009). 因此,前人提出了上级阶地与下级阶地重建模型,试图通过分析阶地陡坎记录的位移量与其两侧阶地废弃年龄的匹配关系来对陡坎错断的起始时间进行相对准确的约束(Lensen et al., 1968Weldon and Sieh, 1985Berryman, 1990Van Der Woerd et al., 1998, 2002Lasserre et al., 1999Mériaux et al., 2004, 2005Cowgill, 2007Yao et al., 2019; Shao et al., 2021). 如图7a~7c所示,上级阶地重建模型假设陡坎在上阶地废弃伊始便开始积累位错,河流在下切过程中对阶地陡坎没有侧向改造作用,陡坎水平位错得以全部保存,因此位错起始时间由上级阶地废弃时间记录;而下级阶地重建模型则假设位错阶地陡坎的上游突出部分(图7e虚线部分)持续接受河流的侧向侵蚀,使断层水平运动造成的阶地陡坎位错不断被抹平,直至下级阶地T1废弃,河流侧蚀作用消失,阶地陡坎才开始真正积累位错,因此下级阶地面废弃年龄代表陡坎开始位错的时间(Cowgill et al., 2009Gold et al., 2009, 20112017).

在青藏高原活动断裂的滑动速率研究中,选取上级阶地面还是下级阶地面的废弃年龄作为位移累积的起始时间一直以来都是滑动速率值差异和争议的主要来源(如:Cowgill, 2007Mériaux et al., 2004Zhang et al., 2007). 我们以上级与下级阶地模型的选取为标准对前人的滑动速率研究进行了判别(表1图8),发现在海原断裂带利用这两种重建模型得到的滑动速率结果相差较大,例如,Lasserre et al. (1999)在老虎山段利用下级阶地模型获得的滑动速率为(12±4) mm/a,刘金瑞等(2018)通过上级阶地模型确定的该段滑动速率为(4.3±0.16) mm/a. 当然,海原断裂带也存在上下级阶地同时限定滑动速率范围的研究(Li et al., 2009; Zheng et al., 2013; Yao et al., 2019; Shao et al., 2021),但研究数量非常有限(图8).

位移累积始于上级阶地废弃还是下级阶地废弃,主要取决于断层滑动快慢与阶地面形成过程中河流侧向侵蚀作用强度的竞争,其中河流侵蚀受到多种因素的影响,例如区域气候、沉积物供给、构造强度以及河流梯度等(Hancock and Anderson, 2002Poisson and Avouac, 2004Lague et al., 2005Mériaux et al., 2005Malatesta et al., 2018). 在全球范围内,早期针对一些大型走滑断层的研究常利用下级阶地年龄作为位移累积的起始时间计算滑动速率. 例如,加利福尼亚州的圣安德烈斯断层(Weldon and Sieh, 1985)、新西兰的Wairarapa与Wellington断层(Berryman, 1990Carne et al., 2011). 新西兰气候湿润,形成阶地陡坎的河流通常为大流量的永久性河流,因此具有较强的水动力对其两岸的陡坎进行完全更新. 然而在半干旱的青藏高原东北缘地区,通常只有在降水量较大的时段河流有足够的动力更新两侧的河岸沉积物,导致阶地陡坎被部分侵蚀. 基于此逻辑,国内研究人员通常选择上级阶地废弃年龄作为海原断裂带陡坎位错的起始时间. 但这不能解释加州圣安德烈斯断层的研究结果,加州大部分地区属于半干旱气候,圣安德烈斯断层部分区段甚至穿过沙漠地带,河流多处于枯水干涸的状态,但一些经典研究仍采用了下级阶地重建模型计算滑动速率. 例如Weldon and Sieh(1985)通过地貌填图得到的位错值与下级阶地14C定年结果,给出Cajon Creek周边阶地(24.5±3.5) mm/a的滑动速率. 因此位移累积起始时间的确定可能取决于多种因素,上级与下级阶地重建模型的选取没有简单的分类和判别标准,未来还需进行与滑动速率相关的数值模拟和观测证据相结合的机理性研究.

由于判别标准的不确定性,我们认为无论采用上级阶地还是下级阶地的废弃年龄作为阶地陡坎记录位移的起始时间,本质上都是一种假设,并非确定性事实. 上级阶地废弃模型与下级阶地废弃模型是极为理想化的状态. 但由于环境、陡坎形态等条件的限制,很难对河流侵蚀速率与位移累积速率进行客观比较. 很多情况下没有足够的证据可以论证所研究断裂(或具体点位)更适用于哪一种重建模型,即不能确定位错累积的具体起始时间. 事实上,断层位错形成的突出的阶地陡坎往往被部分侵蚀,如图9所示,陡坎实际位移bc一定小于上级阶地位移ab,可位于0与ab之间的任何一段距离,因此,位移累积的起始时间位于上级阶地废弃与下级阶地废弃之间的任何一个时间点,存在着很大不确定性. 此时应当采取保守原则,分别采用上级阶地与下级阶地废弃年龄作为位移累积起始时间的下限和上限.

前人部分研究仅采取单一的阶地废弃模型进行滑动速率计算,例如Gold et al. (2011)以上级阶地废弃年龄作为位移累积的起始时间,将不同级阶地得到的结果差异理解为断层滑动速率在时间域上的变化. 此观点本质上还是对单一模型的认可,默认使用上级阶地废弃年龄得到的滑动速率计算结果是可靠的. 而实际上并没有足够的证据表明断层滑动速率在不同级阶地废弃之间是随时间改变的,根据上级阶地废弃年龄得到的结果本身只是滑动速率真实值的下限,将该误差过度解释为断层行为变化并不合理.

Shao et al. (2021)文章中三个墩点位为例(图10a),如果选择上级阶地重建模型,根据T2/T1陡坎得到的滑动速率为3.5 mm/a(自9.3 ka起),但T3/T2陡坎得到的结果为12 mm/a(13.7~9.3 ka),是T2/T1滑动速率的四到五倍(图10b绿色部分);如果选择下级阶地重建模型,T2/T1陡坎得到的滑动速率为27 mm/a(自1.3 ka起),然而T2/T1陡坎得到的滑动速率为5.6 mm/a(9.3~1.3ka),该值仅为27 mm/a的五分之一(图10b红色部分). 通过以上对比可得,在没有额外证据支撑的情况下,仅选择上级阶地或下级阶地重建模型是不合理的,同一条断层的滑动速率不太可能在短时间发生如此明显的改变,最终滑动速率结果的误差是由于上级阶地废弃后陡坎位移起始时间的不确定性造成的,不能将该误差理解为断层行为随时间改变,这便是Shao et al. (2021)在滑动速率估算中采用上、下级阶地同时限定的内在逻辑.

综上所述,不能简单地认为上级或下级阶地废弃年龄等同于位错累积的起始时间. 表面上,单一端元模型得到的结果误差更小,但该结果本质上仅是滑动速率的上限或下限,而非滑动速率值本身. 目前在没有更加精确的滑动速率限定方法的情况下,不能因为追求精确的结果和看似合理的解释而忽略断层滑动速率计算中的误差.

断层滑动速率研究可以参考古地震事件的限定方式,体现对速率计算结果不确定性的尊重和认可. 古地震事件的年龄限定方式可以为滑动速率的确定提供参考,某次古地震事件的发生时间通常是以该次地震错断的最老地层年龄为下限,以未错断的最新地层年龄为上限,这种年龄区间的限定方式得到的误差大于地层的年龄误差,确保了发生时间的准确性. 早期研究中不时可见以地震层位之上或之下地层的单一年龄作为古地震事件发生年龄的做法,但现在误差较大的上下限形式更被认可. 为了更精确限定滑动速率,通过确定滑动速率上限(下级阶地模型重建结果)的最小值与滑动速率下限(上级阶地模型重建结果)的最大值,找到上下限差异最小的研究点位. 因此在后续相关研究中,最好明确指出滑动速率值及其误差是上限、下限或涵盖上下限,而非默认将结果自动等同于滑动速率本身.

4.2 对高原变形模式的启示

早期部分研究将青藏高原边界大型走滑断层的滑动速率大小作为评估高原两种端元变形模式的依据之一. 其中“刚性块体”模式认为构造变形多集中在块体边界的大型走滑活动断裂上,内部变形相对较小,因此,大型块体边界走滑断裂具有较大的滑动速率(10~30 mm/a);“连续变形”模式则认为块体边界与内部变形不存在量级的区分,各断层具有近似相等的滑动速率. 但是先前部分研究存在对构造地貌演化过程的错误理解或阶地年代的粗略估计,造成一些较大滑动速率值的出现( Gaudemer et al., 1995Lasserre et al., 1999),因此部分学者究认为“刚性块体”模型更接近于青藏高原真正的演化模式. 实际上,经过上述对构造地貌学方法不确定性的分析,揭示出过往研究采取单一阶地重建模型得到的结果往往是滑动速率真实值的上限或下限,并不能作为高原变形模式的判定标准,后续需要做详细的工作进行矫正. 因此,滑动速率绝对值不能为变形模式合理性的判别提供绝对依据,判断端元模型可靠程度应关注的重点是应变承载的构造是否有主次之分. 但目前关于高原内部断裂的研究相对较少,后续需要对这些断裂投入更多精力,以验证块体内部变形是否与边界变形相当,进而更加全面精确地分析青藏高原端元变形模式的合理性.

另外一些研究认为若地貌学方法获取的滑动速率值与大地测量方法得到的结果相当,可以证明地貌学方法的可靠性,以此作为青藏高原“连读变形”演化模式的判断标准. 实际上大地测量学方法获得的数十年以来的滑动速率反映的是断裂短期弹性应变累积的快慢,而利用地貌学方法获得的则是断裂上中-长时间尺度应变释放的平均速率,两种方法探讨的根本问题不同,通过比较两种结果反映的是断层滑动速率在不同时间尺度上是否变化,而不能证明滑动速率的正确与否. 若不同时间尺度的滑动速率值相当,那么断裂的弹性应变累积转化成不可恢复的永久变形时表现为一个稳态的过程,即地震复发有可能是比较简单的模式;若两种时间尺度的滑动速率不一致,则指示了断层上的应变累积和释放可能存在着非线性关系(Friedrich et al., 2003Chéry and Vernant, 2006Rollins et al., 2018). 这种差异体现了断裂在时间尺度上的本征特征,同样也不能为验证滑动速率准确性与判断青藏高原变形模式合理性提供参考.

5 结论

海原断裂作为青藏高原东北缘重要的大型边界走滑断裂之一,其滑动速率的精确厘定有着深远的研究意义. 本文对海原断裂带滑动速率研究结果进行了细致的梳理工作,并对部分段落滑动速率的研究进行了上限与下限的评估. 分析认为前人研究结果的差异性主要来源于滑动速率限定中假设条件的不确定性. 在同一点位采用上级阶地废弃年龄和下级阶地废弃年龄作为阶地陡坎位移累积起始时间得到的结果可能相差很大,导致单一模型得到的速率值可能远远偏离实际结果,将其作为滑动速率真实值是对概念本身的升级. 因此,利用上、下级阶地同时限定得到的滑动速率上下限的做法更加客观,也更能体现滑动速率计算中的真实误差. 基于此理论本文建议后续的滑动速率工作最好明确指出研究结果究竟是滑动速率的上限还是下限.

参考文献

[1]

Acharya, H. K., 1997. Influence of Fault Bends on Ruptures. Bulletin of the Seismological Society of America, 87(6): 1691-1696. https://doi.org/10.1785/bssa0870061691

[2]

Arrowsmith, J. R., Zielke, O., 2009. Tectonic Geomorphology of the San Andreas Fault Zone from High Resolution Topography: An Example from the Cholame Segment. Geomorphology, 113(1/2): 70-81. https://doi.org/10.1016/j.geomorph.2009.01.002

[3]

Avouac, J. P., Tapponnier, P., 1993. Kinematic Model of Active Deformation in Central Asia. Geophysical Research Letters, 20(10): 895-898. https://doi.org/10.1029/93gl00128

[4]

Bennett, R. A., Friedrich, A. M., Furlong, K. P., 2004. Codependent Histories of the San Andreas and San Jacinto Fault Zones from Inversion of Fault Displacement Rates. Geology, 32(11): 961. https://doi.org/10.1130/g20806.1

[5]

Bergen, K. J., Shaw, J. H., Leon, L. A., et al., 2017. Accelerating Slip Rates on the Puente Hills Blind Thrust Fault System beneath Metropolitan Los Angeles, California, USA. Geology, 45(3): 227-230. https://doi.org/10.1130/g38520.1

[6]

Berryman, K., 1990. Late Quaternary Movement on the Wellington Fault in the Upper Hutt Area, New Zealand. New Zealand Journal of Geology and Geophysics, 33(2): 257-270. https://doi.org/10.1080/00288306.1990.10425683

[7]

Biasi, G. P., Wesnousky, S. G., 2017. Bends and Ends of Surface Ruptures. Bulletin of the Seismological Society of America, 107(6): 2543-2560. https://doi.org/10.1785/0120160292

[8]

Bird, P., 2009. Long‐term Fault Slip Rates, Distributed Deformation Rates, and Forecast of Seismicity in the Western United States from Joint Fitting of Community Geologic, Geodetic, and Stress Direction Data Sets. Journal of Geophysical Research: Solid Earth, 114(B11): 403. https://doi.org/10.1029/2009jb006317

[9]

Blisniuk, K., Oskin, M., Mériaux, A. S., et al., 2013. Stable, Rapid Rate of Slip since Inception of the San Jacinto Fault, California. Geophysical Research Letters, 40(16): 4209-4213. https://doi.org/10.1002/grl.50819

[10]

Burchfiel, B. C., Zhang, P. Z., Wang, Y. P., et al., 1991. Geology of the Haiyuan Fault Zone, Ningxia‐Hui Autonomous Region, China, and its Relation to the Evolution of the Northeastern Margin of the Tibetan Plateau. Tectonics, 10(6): 1091-1110. https://doi.org/10.1029/90tc02685

[11]

Burgette, R. J., Hanson, A. M., Scharer, K. M., et al., 2020. Late Quaternary Slip Rate of the Central Sierra Madre Fault, Southern California: Implications for Slip Partitioning and Earthquake Hazard. Earth and Planetary Science Letters, 530(1): 115907. https://doi.org/10.1016/j.epsl.2019.115907

[12]

Carne, R., Little, T., Rieser, U., 2011. Using Displaced River Terraces to Determine Late Quaternary Slip Rate for the Central Wairarapa Fault at Waiohine River, New Zealand. New Zealand Journal of Geology and Geophysics, 54(2): 217-236. https://doi.org/10.1080/00288306.2010.532224

[13]

Cavalié, O., Lasserre, C., Doin, M. P., et al., 2008. Measurement of Interseismic Strain Across the Haiyuan Fault (Gansu, China), by InSAR. Earth and Planetary Science Letters, 275(3/4): 246-257. https://doi.org/10.1016/j.epsl.2008.07.057

[14]

Chen, T., Liu, Z. J., Shao, Y. X.,et al., 2018. Geomorphic Offsets along the Creeping Laohu Shan Section of the Haiyuan Fault, Northern Tibetan Plateau. Geosphere, 14(3): 1165-1186. https://doi.org/10.1130/GES01561.1

[15]

Chen, T., Zhang, P. Z., Liu, J., et al., 2014. Quantitative Study of Tectonic Geomorphology along Haiyuan Fault Based on Airborne LiDAR. Chinese Science Bulletin, 59(20): 2396-2409. https://doi.org/10.1007/s11434-014-0199-4

[16]

Chéry, J., Vernant, P., 2006. Lithospheric Elasticity Promotes Episodic Fault Activity. Earth and Planetary Science Letters, 243(1/2): 211-217. https://doi.org/10.1016/j.epsl.2005.12.014

[17]

Chevalier, M. L., Leloup, P. H., Replumaz, A., et al., 2016. Tectonic-Geomorphology of the Litang Fault System, SE Tibetan Plateau, and Implication for Regional Seismic Hazard. Tectonophysics, 682(5): 278-292. https://doi.org/10.1016/j.tecto.2016.05.039

[18]

Chevalier, M. L., Ryerson, F. J., Tapponnier, P., et al., 2005. Response to Comment on “Slip-Rate Measurements on the Karakorum Fault may Imply Secular Variations in Fault Motion”. Science, 309(5739): 1326-1326. https://doi.org/10.1126/science.1112629

[19]

Cowgill, E., 2007. Impact of Riser Reconstructions on Estimation of Secular Variation in Rates of Strike-Slip Faulting: Revisiting the Cherchen River Site along the Altyn Tagh Fault, NW China. Earth and Planetary Science Letters, 254(3/4): 239-255. https://doi.org/10.1016/j.epsl.2006.09.015

[20]

Cowgill, E., Gold, R. D., Chen, X. H., et al., 2009. Low Quaternary Slip Rate Reconciles Geodetic and Geologic Rates along the Altyn Tagh Fault, Northwestern Tibet. Geology, 37(7): 647-650. https://doi.org/10.1130/g25623a.1

[21]

Dair, L., Cooke, M. L., 2009. San Andreas Fault Geometry through the San Gorgonio Pass, California. Geology, 37(2): 119-122. https://doi.org/10.1130/g25101a.1

[22]

Daout, S., Jolivet, R., Lasserre, C., et al., 2016. Along-Strike Variations of the Partitioning of Convergence Across the Haiyuan Fault System Detected by InSAR. Geophysical Journal International, 205(1): 536-547. https://doi.org/10.1093/gji/ggw028

[23]

Deng, Q. D., 2011. Learning and Progress through Scientific Practices: Commemorating the 90th Anniversary of the Tragic Haiyuan Earthquake, Striving to Advance Our Abilities of Earthquake Prediction and Seismic Hazard Reduction. Seismology and Geology, 33(1): 1-14 (in Chinese with English abstract).

[24]

Deng, Q. D., Sung, F., Zhu, S. L., et al., 1984. Active Faulting and Tectonics of the Ningxia‐Hui Autonomous Region, China. Journal of Geophysical Research: Solid Earth, 89(B6): 4427-4445. https://doi.org/10.1029/jb089ib06p04427

[25]

England, P., Houseman, G., 1986. Finite Strain Calculations of Continental Deformation: 2. Comparison with the India‐Asia Collision Zone. Journal of Geophysical Research: Solid Earth, 91(B3): 3664-3676. https://doi.org/10.1029/jb091ib03p03664

[26]

England, P., Molnar, P., 2005. Late Quaternary to Decadal Velocity Fields in Asia. Journal of Geophysical Research: Solid Earth, 110(B12): 401. https://doi.org/10.1029/2004jb003541

[27]

Field, E. H., Arrowsmith, R. J., Biasi, G. P., et al., 2014. Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3):The Time-Independent Model. Bulletin of the Seismological Society of America, 104(3): 1122-1180. https://doi.org/10.1785/0120130164

[28]

Frankel, K. L., Dolan, J. F., Finkel, R. C., et al., 2007. Spatial Variations in Slip Rate along the Death Valley‐Fish Lake Valley Fault System Determined from LiDAR Topographic Data and Cosmogenic 10Be Geochronology. Geophysical Research Letters, 34(18): L18303. https://doi.org/10.1029/2007gl030549

[29]

Friedrich, A. M., Wernicke, B. P., Niemi, N. A., et al., 2003. Comparison of Geodetic and Geologic Data from the Wasatch Region, Utah, and Implications for the Spectral Character of Earth Deformation at Periods of 10 to 10 Million Years. Journal of Geophysical Research: Solid Earth, 108(B4): 2199. https://doi.org/10.1029/2001jb000682

[30]

Gan, W. J., Zhang, P. Z., Shen, Z. K.,et al., 2007. Present-Day Crustal Motion within the Tibetan Plateau Inferred from GPS Measurements. Journal of Geophysical Research: Solid Earth, 112(B8): B08416. https://doi.org/10.1029/2005JB004120

[31]

Gasse, F., Arnold, M., Fontes, J. C., et al., 1991. A 13,000-Year Climate Record from Western Tibet. Nature, 353(6346): 742-745. https://doi.org/10.1038/353742a0

[32]

Gaudemer, Y., Tapponnier, P.,Meyer, B.,et al., 1995. Partitioning of Crustal Slip between Linked, Active Faults in the Eastern Qilian Shan, and Evidence for a Major Seismic Gap, the ‘Tianzhu Gap’, on the Western Haiyuan Fault, Gansu (China). Geophysical Journal International, 120(3): 599-645. https://doi.org/10.1111/j.1365-246X.1995.tb01842.x

[33]

Gold, R. D., Cowgill, E., 2011. Deriving Fault-Slip Histories to Test for Secular Variation in Slip, with Examples from the Kunlun and Awatere Faults. Earth and Planetary Science Letters, 301(1-2): 52-64. https://doi.org/10.1016/j.epsl.2010.10.01

[34]

Gold, R. D., Cowgill, E., Arrowsmith, J. R., et al., 2009. Riser Diachroneity, Lateral Erosion, and Uncertainty in Rates of Strike‐Slip Faulting: A Case Study from Tuzidun along the Altyn Tagh Fault, NW China. Journal of Geophysical Research: Solid Earth, 114(B4): B04401. https://doi.org/10.1029/2008jb005913

[35]

Gold, R. D., Friedrich, A., Kübler, S., et al., 2017. Apparent Late Quaternary Fault‐Slip Rate Increase in the Southern Lower Rhine Graben, Central Europe. Bulletin of the Seismological Society of America, 107(2): 563-580. https://doi.org/10.1785/0120160197

[36]

Goren, L., Castelltort, S., Klinger, Y., 2015. Modes and Rates of Horizontal Deformation from Rotated River Basins: Application to the Dead Sea Fault System in Lebanon. Geology, 43(9): 843-846. https://doi.org/10.1130/g36841.1

[37]

Han, L. F., Jing, L. Z., Yao, W. Q., et al., 2021. Coseismic Slip Gradient at the Western Terminus of the 1920 Haiyuan Mw 7.9 Earthquake. Journal of Structural Geology, 152(1): 104442. https://doi.org/10.1016/j.jsg.2021.104442

[38]

Hancock, G. S., Anderson, R. S., 2002. Numerical Modeling of Fluvial Strath-Terrace Formation in Response to Oscillating Climate. GSA Bulletin, 114(9): 1131-1142. https://doi.org/10.1130/0016-7606(2002)114<1131:nmofst>2.0.co;2

[39]

Hanks, T. C., Schwartz, D. P., 1987. Morphologic Dating of the Pre-1983 Fault Scarp on the Lost River Fault at Doublespring Pass Road, Custer County, Idaho. Bulletin of the Seismological Society of America, 77(3): 837-846. https://doi.org/10.1785/BSSA0770030837

[40]

Harkins, N., Kirby, E., 2008. Fluvial Terrace Riser Degradation and Determination of Slip Rates on Strike-Slip Faults: An Example from the Kunlun Fault, China. Geophysical Research Letters, 35(5): L05406. https://doi.org/10.1029/2007gl033073

[41]

He, W. G., Liu, B. H., Yuan, D. Y., et al., 2000. Research on Slip Rates of the Lenglongling Active Fault Zone. Northwestern Seismological Journal, 22(1): 90-97 (in Chinese with English abstract).

[42]

He, W. G., Yuan, D. Y., Ge, W. P., et al., 2010. Determination of the Slip Rate of the Lenglongling Fault in the Middle and Eastern Segments of the Qilian Mountain Active Fault Zone. Earthquake, 30(1): 131-137 (in Chinese with English abstract).

[43]

Hetzel, R., Niedermann, S., Tao, M. X., et al., 2002. Low Slip Rates and Long-Term Preservation of Geomorphic Features in Central Asia. Nature, 417(6887): 428-432. https://doi.org/10.1038/417428a

[44]

Hetzel, R., Tao, M. X.,Stokes, S.,et al., 2004. Late Pleistocene/Holocene Slip Rate of the Zhangye Thrust (Qilian Shan, China) and Implications for the Active Growth of the Northeastern Tibetan Plateau. Tectonics, 23(6): TC6006. https://doi.org/10.1029/2004TC00165

[45]

Hoeft, J. S., Frankel, K. L., 2010. Temporal Variations in Extension Rate on the Lone Mountain Fault and Strain Distribution in the Eastern California Shear Zone-Walker Lane. Geosphere, 6(6): 917-936. https://doi.org/10.1130/ges00603.1

[46]

Huang, Z. C., Zhou, Y., Qiao, X., et al., 2022. Kinematics of the ∼1 000 Km Haiyuan Fault System in Northeastern Tibet from High-Resolution Sentinel-1 InSAR Velocities: Fault Architecture, Slip Rates, and Partitioning. Earth and Planetary Science Letters, 583(6773): 117450. https://doi.org/10.1016/j.epsl.2022.117450

[47]

Hudnut, K. W., Borsa, A., Glennie, C., et al., 2002. High-Resolution Topography along Surface Rupture of the 16 October 1999 Hector Mine, California, Earthquake (Mw 7. 1) from Airborne Laser Swath Mapping. Bulletin of the Seismological Society of America, 92(4): 1570-1576. https://doi.org/10.1785/0120000934

[48]

Institute of Geology, China Earthquake Administration, Earthquake Administration of Ningxia Hui Autonomous Region, 1990. Active Haiyuan Fault Zone. Seismological Press, Beijing (in Chinese).

[49]

Jiang, W. L., Han, Z. J., Guo, P., et al., 2017. Slip Rate and Recurrence Intervals of the East Lenglongling Fault Constrained by Morphotectonics: Tectonic Implications for the Northeastern Tibetan Plateau. Lithosphere, 9(3): 417-430. https://doi.org/10.1130/l597.1

[50]

Jing, L. Z., Klinger, Y., Xu, X., et al., 2007. Millennial Recurrence of Large Earthquakes on the Haiyuan Fault near Songshan, Gansu Province, China. Bulletin of the Seismological Society of America, 97(1B): 14-34. https://doi.org/10.1785/0120050118

[51]

Jing, L. Z., Shao, Y. X., Klinger, Y., et al., 2015. Variability in Magnitude of Paleoearthquakes Revealed by Trenching and Historical Records, along the Haiyuan Fault, China. Journal of Geophysical Research: Solid Earth, 120(12): 8304-8333. https://doi.org/10.1002/2015jb012163

[52]

Jing, L. Z.,Chen, T., Zhang, P. Z., et al., 2013. Illuminating the Active Haiyuan Fault, China by Airborne Light Detection and Ranging. Chinese Science Bulletin, 58(1): 41-45 (in Chinese with English abstract).

[53]

Jolivet, R., Lasserre, C., Doin, M. P., et al., 2013. Spatio-Temporal Evolution of Aseismic Slip along the Haiyuan Fault, China: Implications for Fault Frictional Properties. Earth and Planetary Science Letters, 377-378(2-3): 23-33. https://doi.org/10.1016/j.epsl.2013.07.020

[54]

King, G., 1986. Speculations on the Geometry of the Initiation and Termination Processes of Earthquake Rupture and Its Relation to Morphology and Geological Structure. Geophysical Research Letters, 124(3): 567-585. https://doi.org/10.1007/BF00877216

[55]

King, G., Nábělek, J., 1985. Role of Fault Bends in the Initiation and Termination of Earthquake Rupture. Science (New York, N.Y.), 228(4702): 984-987. https://doi.org/10.1126/science.228.4702.984

[56]

Kirby, E.,Harkins, N., Wang, E. Q.,et al., 2007. Slip Rate Gradients along the Eastern Kunlun Fault. Tectonics, 26(2): TC2010. https://doi.org/10.1029/2006TC002033

[57]

Klinger, Y., 2010. Relation between Continental Strike-Slip Earthquake Segmentation and Thickness of the Crust. Journal of Geophysical Research: Solid Earth, 115: B07306. https://doi.org/10.1029/2009JB006550

[58]

Klinger, Y., Etchebes, M., Tapponnier, P., et al., 2011. Characteristic Slip for Five Great Earthquakes along the Fuyun Fault in China. Nature Geoscience, 4(6): 389-392. https://doi.org/10.1038/ngeo1158

[59]

Knuepfer, P. L. K., 1992. Temporal Variations in Latest Quaternary Slip Across the Australian‐Pacific Plate Boundary, Northeastern South Island, New Zealand. Tectonics, 11(3): 449-464. https://doi.org/10.1029/91tc02890

[60]

Koehler, R. D., 2019. Active Faulting in the North Valleys Region of Reno, Nevada: A Distributed Zone within the Northern Walker Lane. Geomorphology, 326(5): 38-53. https://doi.org/10.1016/j.geomorph.2018.09.015

[61]

Küster, Y., Hetzel, R., Krbetschek, M., et al., 2006. Holocene Loess Sedimentation along the Qilian Shan (China): Significance for Understanding the Processes and Timing of Loess Deposition. Quaternary Science Reviews, 25(1/2): 114-125. https://doi.org/10.1016/j.quascirev.2005.03.003

[62]

Lague, D., Hovius, N., Davy, P., 2005. Discharge, Discharge Variability, and the Bedrock Channel Profile. Journal of Geophysical Research: Earth Surface, 110(F4): F04006. https://doi.org/10.1029/2004JF000259

[63]

Lai, Z. P., Ou, X. J., 2013. Basic Procedures of Optically Stimulated Luminescence (OSL) Dating.Progress in Geography, 32(5): 683-693 (in Chinese with English abstract).

[64]

Lasserre, C.,Gaudemer, Y., Tapponnier, P.,et al., 2002. Fast Late Pleistocene Slip Rate on the Leng Long Ling Segment of the Haiyuan Fault, Qinghai, China. Journal of Geophysical Research: Solid Earth, 107(B11): 2276. https://doi.org/10.1029/2000JB000060

[65]

Lasserre, C.,Morel, P. H., Gaudemer, Y.,et al.,1999. Postglacial Left Slip Rate and Past Occurrence of M≥8 Earthquakes on the Western Haiyuan fault, Gansu, China. Journal of Geophysical Research: Solid Earth, 104(B8): 17633-17651. https://doi.org/10.1029/1998JB900082

[66]

Lensen, G. J., 1968. Analysis of Progressive Fault Displacement during Downcutting at the Branch River Terraces, South Island, New Zealand. Geological Society of America Bulletin, 79(5): 545. https://doi.org/10.1130/0016-7606(1968)79[545:aopfdd]2.0.co;2

[67]

Li, C. Y., Zhang, P. Z., Yin, J. H.,et al., 2009. Late Quaternary Left-Lateral Slip Rate of the Haiyuan Fault, Northeastern Margin of the Tibetan Plateau. Tectonics, 28: TC5010. https://doi.org/10.1029/2008TC002302

[68]

Li, H., Yu, Z. D., Cai, X. B., et al., 2013. River Terrace Extraction Based on Unmanned Aerial Vehicle Remote Sensing. Earth Science, 42(5): 734-742 (in Chinese with English abstract).

[69]

Li, Y. C., Nocquet, J. M., Shan, X. J., et al., 2021. Geodetic Observations of Shallow Creep on the Laohushan-Haiyuan Fault, Northeastern Tibet. Journal of Geophysical Research: Solid Earth, 126(6). https://doi.org/ 10.1029/2020JB021576

[70]

Li, Y. C., Shan, X. J., Qu, C. Y., et al., 2018. Crustal Deformation of the Altyn Tagh Fault based on GPS. Journal of Geophysical Research: Solid Earth, 123(11): 10309-10322. https://doi.org/10.1029/2018JB015814

[71]

Li, Y. H., Cui, D. X., Hao, M., 2015. GPS-Constrained Inversion of Slip Rate on Major Active Faults in the Northeastern Margin of Tibet Plateau. Earth Science, 40(10): 1767-1780 (in Chinese with English abstract).

[72]

Liu, B. H., Zhang, J. L., Wu, J. H., et al., 2003. Reevaluating on Casualty in the Haiyuan Ms 8.5 Earthquake on December 16, 1920. Earthquake Research in China, 19(4): 386-399.

[73]

Liu, J. R., Ren, Z. K., Zhang, H. P., et al., 2018. Late Quaternary Slip Rate of the Laohushan Fault within the Haiyuan Fault Zone and Its Tectonic Implications. Chinese Journal of Geophysics, 61(004): 1281-1297 (in Chinese with English abstract).

[74]

Ma, H. C., 2011. Review on Applications of LiDAR Mapping Technology to Geosciences. Earth Science, 36(2): 347-354 (in Chinese with English abstract).

[75]

Malatesta, L. C.,Avouac, J. P., Brown, N. D., et al., 2018. Lag and Mixing during Sediment Transfer across the Tian Shan Piedmont Caused by Climate-Driven Aggradation-Incision Cycles. Basin Research, 30(4): 613-635. https://doi.org/ 10.1111/bre.12267

[76]

Matrau, R.,Klinger, Y., Van der Woerd, J.,et al., 2019. Late Pleistocene-Holocene Slip Rate along the Hasi Shan Restraining Bend of the Haiyuan Fault: Implication for Faulting Dynamics of a Complex Fault System. Tectonics, 38(12): 4127-4154. https://doi.org/ 10.1029/2019TC005488

[77]

McGill, S. F., Rubin, C. M., 1999. Surficial Slip Distribution on the Central Emerson Fault during the June 28, 1992, Landers Earthquake, California. Journal of Geophysical Research: Solid Earth, 104(B3): 4811-4833. https://doi.org/10.1029/98jb01556

[78]

McGill, S. F., Sieh, K., 1991. Surficial Offsets on the Central and Eastern Garlock Fault Associated with Prehistoric Earthquakes. Journal of Geophysical Research: Solid Earth, 96(B13): 21597-21621. https://doi.org/10.1029/91jb02030

[79]

Mériaux, A. S.,Ryerson, F. J.,Tapponnier, P.,et al., 2004. Rapid Slip along the Central Altyn Tagh Fault: Morphochronologic Evidence from Cherchen He and Sulamu Tagh. Journal of Geophysical Research: Solid Earth, 109(B6): B06401. https://doi.org/ 10.1029/2003JB002558

[80]

Mériaux, A. S.,Tapponnier, P.,Ryerson, F. J.,et al., 2005. The Aksay Segment of the Northern Altyn Tagh Fault: Tectonic Geomorphology, Landscape Evolution, and Holocene Slip Rate. Journal of Geophysical Research: Solid Earth, 110(B4): B04404. https://doi.org/ 10.1029/2004JB003210

[81]

Mériaux, A. S.,Van der Woerd, J.,Tapponnier, P.,et al., 2012. The Pingding Segment of the Altyn Tagh Fault (91°E): Holocene Slip-Rate Determination from Cosmogenic Radionuclide Dating of Offset Fluvial Terraces. Journal of Geophysical Research: Solid Earth, 117(B9). https://doi.org/ 10.1029/2012JB009289

[82]

Meyer, B., Tapponnier, P., Bourjot, L.,et al., 1998. Crustal Thickening in Gansu-Qinghai, Lithospheric Mantle Subduction, and Oblique, Strike-Slip Controlled Growth of the Tibet Plateau. Geophysical Journal International, 135(1), 1-47. https://doi.org/ 10.1046/j.1365-246X.1998.00567.x

[83]

Meyer, B., Tapponnier, P., Gaudemer, Y., et al., 1996. Rate of Left-Lateral Movement along the Easternmost Segment of the Altyn Tagh Fault, East of 96°E (China). Geophysical Journal International, 124(1): 29-44. https://doi.org/10.1111/j.1365-246x.1996.tb06350.x

[84]

Middleton, T. A., Walker, R. T., Parsons, B., et al., 2016. A Major, Intraplate, Normal‐faulting Earthquake: The 1739 Yinchuan Event in Northern China. Journal of Geophysical Research: Solid Earth, 121(1): 293-320. https://doi.org/10.1002/2015jb012355

[85]

Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 189(4201): 419-426. https://doi.org/ 10.1126/science.189.4201.419

[86]

Oskin, M., Perg, L., Blumentritt, D., et al., 2007. A Slip Rate of the Calico Fault: Implications for Geologic versus Geodetic Rate Discrepancy in the Eastern California Shear Zone. Journal of Geophysical Research: Solid Earth, 112(B7): B03402. https://doi.org/ 10.1029/2006JB004451

[87]

Ou, Q.,Kulikova, G.,Yu, J.,et al., 2020. Magnitude of the 1920 Haiyuan Earthquake Reestimated Using Seismological and Geomorphological Methods. Journal of Geophysical Research: Solid Earth, 125(8). https://doi.org/ 10.1029/2019JB019244

[88]

Peltzer, G., Saucier, F., 1996. Present‐day Kinematics of Asia Derived from Geologic Fault Rates. Journal of Geophysical Research: Solid Earth, 101(B12): 27943-27956. https://doi.org/10.1029/96jb02698

[89]

Peltzer, G., Tapponnier, P., Armijo, R., 1989. Magnitude of Late Quaternary Left-Lateral Displacements along the North Edge of Tibet. Science, 246(4935): 1285-1289. https://doi.org/10.1126/science.246.4935.1285

[90]

Peltzer, G.,Brown, N. D.,Meriaux, A. S., et al., 2020. Stable Rate of Slip along the Karakax Section of the Altyn Tagh Fault from Observation of Interglacial and Postglacial Offset Morphology and Surface Dating. Journal of Geophysical Research: Solid Earth, 125 (5). https://doi.org/ 10.1029/2019JB018893

[91]

Poisson, B., Avouac, J. P., 2004. Holocene Hydrological Changes Inferred from Alluvial Stream Entrenchment in North Tian Shan (Northwestern China). The Journal of Geology, 112(2): 231-249. https://doi.org/10.1086/381659

[92]

Prush, V. B., Oskin, M. E., 2020. A Mechanistic Erosion Model for Cosmogenic Nuclide Inheritance in Single-Clast Exposure Ages. Earth and Planetary Science Letters, 535(268): 116066. https://doi.org/10.1016/j.epsl.2020.116066

[93]

Ran, Y. K., Duan, R. T., Deng, Q. D., et al., 1997. 3D Trench Excavation and Paleoseismology at Gaowanzi of the Haiyuan Fault. Seismology and Geology, 19(2): 97-107 (in Chinese with English abstract).

[94]

Ren, Z. K., Zhang, Z. Q., Chen, T.,et al., 2016. Clustering of Offsets on the Haiyuan Fault and Their Relationship to Paleoearthquakes. Geological Society of America Bulletin, 128(1-2): 3-18. https://doi.org/ 10.1130/B31155.1

[95]

Rockwell, T. K., Keller, E. A., Clark, M. N., et al., 1984. Chronology and Rates of Faulting of Ventura River Terraces, California. Geological Society of America Bulletin, 95(12): 1466. https://doi.org/10.1130/0016-7606(1984)95<1466:carofo>2.0.co;2

[96]

Rollins, C., Avouac, J. P., Landry, W.,et al., 2018. Interseismic Strain Accumulation on Faults beneath Los Angeles, California. Journal of Geophysical Research: Solid Earth, 123(8): 7126-7150. https://doi.org/ 10.1029/2017JB015387

[97]

Rood, D. H., Burbank, D. W., Finkel, R. C., 2011. Spatiotemporal Patterns of Fault Slip Rates Across the Central Sierra Nevada Frontal Fault Zone. Earth and Planetary Science Letters, 301(3/4): 457-468. https://doi.org/10.1016/j.epsl.2010.11.006

[98]

Scharer, K. M., Biasi, G. P., Weldon, R. J., 2011. A Reevaluation of the Pallett Creek Earthquake Chronology Based on New AMS Radiocarbon Dates, San Andreas Fault, California. Journal of Geophysical Research: Solid Earth, 116: B12111. https://doi.org/ 10.1029/2010JB008099

[99]

Scharer, K. M., Weldon, R. J., Fumal, T. E., et al., 2007. Paleoearthquakes on the Southern San Andreas Fault, Wrightwood, California, 3000 to 1500 B.C.: A New Method for Evaluating Paleoseismic Evidence and Earthquake Horizons. Bulletin of the Seismological Society of America, 97(4): 1054-1093. https://doi.org/10.1785/0120060137

[100]

Shao, Y. X., Jing, L. Z., Van Der Woerd, J.,et al., 2021. Late Pleistocene Slip Rate of the Central Haiyuan Fault Constrained from Optically Stimulated Luminescence, 14C, and Cosmogenic Isotope Dating and High-Resolution Topography. Geological Society of America Bulletin, 133(7-8): 1347-1369. https://doi.org/ 10.1130/B35571.1

[101]

Sieh, K. E., Jahns, R. H., 1984. Holocene Activity of the San Andreas Fault at Wallace Creek, California. Geological Society of America Bulletin, 95(8): 883-896. https://doi.org/ 10.1130/0016-7606(1984)95<883:HAOTSA>2.0.CO;2

[102]

Tapponnier, P., Molnar, P., 1976. Slip-Line Field Theory and Large-Scale Continental Tectonics. Nature, 264(5584): 319-324. https://doi.org/10.1038/264319a0

[103]

Tapponnier, P., Molnar, P., 1977. Active Faulting and Tectonics in China. Journal of Geophysical Research, 82(20): 2905-2930. https://doi.org/10.1029/jb082i020p02905

[104]

Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978

[105]

Thompson, S. C.,Weldon, R. J., Charles, M.,et al., 2002. Late Quaternary Slip Rates across the Central Tien Shan, Kyrgyzstan, Central Asia. Journal of Geophysical Research: Solid Earth, 107(B9): ETG 7-1-ETG 7-32. https://doi.org/ 10.1029/2001JB000596

[106]

Van Der Woerd, J,Ryerson, F. J., Tapponnier, P.,et al., 1998. Holocene Left-Slip Rate Determined by Cosmogenic Surface Dating on the Xidatan Segment of the Kunlun Fault (Qinghai, China). Geology, 26(8): 695-698. https://doi.org/ 10.1130/0091-7613(1998)026<0695:HLSRDB>2.3.CO;2

[107]

Van Der Woerd, J., Tapponnier, P., Ryerson, F. J.,et al., 2002. Uniform Postglacial Slip-Rate along the Central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C Dating of Riser Offsets, and Climatic Origin of the Regional Morphology. Geophysical Journal International, 148(3): 356-388. https://doi.org/ 10.1046/j.1365-246x.2002.01556.x

[108]

Van Der Woerd, J.,Klinger, Y., Sieh, K.,et al., 2006. Long-Term Slip Rate of the Southern San Andreas Fault from 10Be-26Al Surface Exposure Dating of an Offset Alluvial Fan. Journal of Geophysical Research: Solid Earth, 111(B4). https://doi.org/ 10.1029/2004JB003559

[109]

Wang, W., Qiao, X. J., Yang, S. M.,et al., 2017. Present-Day Velocity Field and Block Kinematics of Tibetan Plateau from GPS Measurements. Geophysical Journal International, 208(2): 1088-1102. https://doi.org/ 10.1093/gji/ggw445

[110]

Weldon, R. J., Fumal, T. E., Biasi, G. P., et al., 2005. Past and Future Earthquakes on the San Andreas Fault. Science, 308(5724): 966-967. https://doi.org/10.1126/science.1111707

[111]

Weldon, R. J., Sieh, K. E., 1985. Holocene Rate of Slip and Tentative Recurrence Interval for Large Earthquakes on the San Andreas Fault, Cajon Pass, Southern California. Geological Society of America Bulletin, 96(6): 793. https://doi.org/10.1130/0016-7606(1985)96<793:hrosat>2.0.co;2

[112]

Wells, R. E., Blakely, R. J., Bemis, S., 2020. Northward Migration of the Oregon Forearc on the Gales Creek Fault. Geosphere, 16(2): 660-684. https://doi.org/10.1130/ges02177.1

[113]

Weng, W. H., 1922. The 1920-12-16 Earthquake in Gansu Province. Science, 7: 105-144 (in Chinese).

[114]

Wesnousky, S. G., 2006. Predicting the Endpoints of Earthquake Ruptures. Nature, 444(7117): 358-360. https://doi.org/10.1038/nature05275

[115]

Xiang, H. F., Guo, S. M., Zhang, B. L., et al., 1988. Active Features of the Eastern Liupanshan Piedmont Reverse Fault Zone since Late Qurternary. Seismology and Geology, 20(4): 312-327 (in Chinese with English abstract).

[116]

Yang, H. B.,Yang, X. P., Cunningham, D.,et al., 2020. A Regionally Evolving Transpressional Duplex along the Northern Margin of the Altyn Tagh Fault: New Kinematic and Timing Constraints from the Sanweishan and Nanjieshan, China. Tectonics, 39(2). https://doi.org/ 10.1029/2019TC005749

[117]

Yao, W. Q., Liu-Zeng, J.,Klinger, Y.,et al., 2022. Late Quaternary Slip Rate of the Zihong Shan Branch and ItsImplications for Strain Partitioning Along the Haiyuan Fault,Northeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 127(5). https://doi.org/ 10.1029/2021JB023162

[118]

Yao, W. Q., Liu-Zeng, J.,Oskin, M. E.,et al., 2019. Reevaluation of the Late Pleistocene Slip Rate of the Haiyuan Fault Near Songshan, Gansu Province, China. Journal of Geophysical Research: Solid Earth, 124(5): 5217-5240. https://doi.org/ 10.1029/2018JB016907

[119]

Yin, A., Rumelhart, P. E., Butler, R., et al., 2002. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation. Geological Society of America Bulletin, 114(10): 1257-1295. https://doi.org/10.1130/0016-7606(2002)114<1257:thotat>2.0.co;2

[120]

Yuan, D. Y., Liu, B. H., Lv, T. Y., et al., 1997. Slip Rates of the Maomaoshan Fault Zone in Gansu Province Obtainted by Using Ages of Loess Palaeosoil Sequence. Seismology and Geology, 19(1): 1-8 (in Chinese with English abstract).

[121]

Yuan, D. Y., Liu, B. H., Lv, T. Y., et al., 1998. Study on the Segmentation in East Segment of the Northern Qilianshan Fault Zone. Northwestern Seismological Journal, 20(4): 27-34 (in Chinese with English abstract).

[122]

Yuan, D. Y., Zhang, P. Z., Ge, W. P., et al., 2008. Late Quaternary Strike-Slip Features along the Western Segment of Haiyuan-Qilianshan Fault. In: NE Tibetan Plateau. American Geophysical Union Fall Meeting, San Francisco.

[123]

Yue, Y. J., Ritts, B. D., Graham, S. A., 2001. Initiation and Long-Term Slip History of the Altyn Tagh Fault. International Geology Review, 43(12): 1087-1093. https://doi.org/10.1080/00206810109465062

[124]

Zhang, P. Z., Deng, Q. D., Zhang, G. M., et al., 2003. Active Tectonic Blocks and Strong Earthquakes in the Continent of China. Science in China Series D Earth Sciences, 46(S2): 13-24. https://doi.org/10.1360/03dz0002

[125]

Zhang, P. Z., Molnar, P., Burchfiel, B. C., et al., 1988a. Bounds on the Holocene Slip Rate of the Haiyuan Fault, North-Central China. Quaternary Research, 30(2): 151-164. https://doi.org/10.1016/0033-5894(88)90020-8

[126]

Zhang, P. Z., Molnar, P., Xu, X. W., 2007. Late Quaternary and Present-Day Rates of Slip along the Altyn Tagh Fault, Northern Margin of the Tibetan Plateau. Tectonics, 26(5). https://doi.org/ 10.1029/2006TC002014

[127]

Zhang, P. Z.,Molnar, P., Zhang, W. Q.,et al., 1988b. Bounds on the Average Recurrence Interval of Major Earthquakes along the Haiyuan Fault in North-Central China. Seismological Research Letters, 59: 81-89. https://doi.org/ 10.1785/gssrl.59.3.81

[128]

Zheng, D. W., Zhang, P. Z., Wan, J. L., et al., 2006. Rapid Exhumation at ~8 Ma on the Liupan Shan Thrust Fault from Apatite Fission-Track Thermochronology: Implications for Growth of the Northeastern Tibetan Plateau Margin. Earth and Planetary Science Letters, 248(1/2): 198-208. https://doi.org/10.1016/j.epsl.2006.05.023

[129]

Zheng, W. J., Zhang, P. Z., He, W. G., et al., 2013. Transformation of Displacement between Strike-Slip and Crustal Shortening in the Northern Margin of the Tibetan Plateau: Evidence from Decadal GPS Measurements and Late Quaternary Slip Rates on Faults. Tectonophysics, 584(B7): 267-280. https://doi.org/10.1016/j.tecto.2012.01.006

[130]

Zielke, O., Arrowsmith, J. R., Ludwig, L. G., et al., 2010. Slip in the 1857 and Earlier Large Earthquakes along the Carrizo Plain, San Andreas Fault. Science, 327(5969): 1119-1122. https://doi.org/10.1126/science.1182781

[131]

邓起东,2011. 在科学研究的实践中学习和进步——纪念海原大地震90周年,为地震预测和防震减灾事业而努力.地震地质,33(1):1-14.

[132]

国家地震局地质研究所,宁夏回族自治区地震局,1990. 海原活动断裂带. 北京:地震出版社:1-286.

[133]

何文贵,刘百篪,袁道阳,等,2000. 冷龙岭活动断裂的滑动速率研究. 西北地震学报,22(1):90-97.

[134]

何文贵,袁道阳,葛伟鹏,等,2010. 祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定. 地震,30(1):131-137.

[135]

赖忠平,欧先交,2013. 光释光测年基本流程. 地理科学进展,32(5):683-693.

[136]

李辉,余忠迪,蔡晓斌等,2017. 基于无人机遥感的河流阶地提取. 地球科学,42(5):734-742.

[137]

李煜航,崔笃信,郝明,2015. 利用GPS数据反演青藏高原东北缘主要活动断裂滑动速率. 地球科学,40(10):1767-1780.

[138]

刘百篪,张俊玲,吴建华等,2003. 1920年12月16日海原8.5级大地震的伤亡人口再评估.中国地震,19(4):386-399.

[139]

刘金瑞,任治坤,张会平等,2018. 海原断裂带老虎山段晚第四纪滑动速率精确厘定与讨论.地球物理学报,61(4):1281-1297.

[140]

刘静,陈涛,张培震,等,2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构. 科学通报,58(1):41-45.

[141]

马洪超,2011. 激光雷达测量技术在地学中的若干应用.地球科学,36(2):347-354.

[142]

冉勇康,段瑞涛,邓起东,等,1997. 海原断裂高湾子地点三维探槽的开挖与古地震研究. 地震地质,19(2):97-107.

[143]

翁文灏,1922. 民国九年十二月十六日甘肃的地震. 科学,7:105-114.

[144]

向宏发,虢顺民,张秉良,等,1998. 六盘山东麓活动逆断裂构造带晚第四纪以来的活动特征. 地震地质,20(4):312-327.

[145]

袁道阳,刘百篪,吕太乙,等,1997. 利用黄土剖面的古土壤年龄研究毛毛山断裂的滑动速率. 地震地质,19(1):1-8.

[146]

袁道阳,刘百篪,吕太乙,等,1998. 北祁连山东段活动断裂带的分段性研究. 西北地震学报,20(4):27-34.

基金资助

国家重点研发计划项目(2021YFC3000605-04)

国家自然科学基金(U1839203;42011540385;42104061)

AI Summary AI Mindmap
PDF (6813KB)

169

访问

0

被引

详细

导航
相关文章

AI思维导图

/