准噶尔盆地阜康凹陷三工河组流体包裹体特征与成藏期压力恢复
张洪瑞 , 刘华 , 韩载华 , 李君 , 张卫彪
地球科学 ›› 2024, Vol. 49 ›› Issue (07) : 2420 -2433.
准噶尔盆地阜康凹陷三工河组流体包裹体特征与成藏期压力恢复
Characteristics of Fluid Inclusions and Pressure Recovery during Hydrocarbon Accumulation Period in Jurassic Sangonghe Formation in Fukang Sag, Junggar Basin
,
,
油气成藏时间与地层压力恢复对于油气成藏过程分析具有重要意义.综合利用包裹体观测技术以及盐度‒均一温度法和PVTx模拟法,恢复了阜康凹陷三工河组油气成藏时间与储层压力.研究表明,研究区侏罗系自4 500 m开始发育超压,三工河组超压明显.三工河组发育两期烃类包裹体:第一期发育在石英颗粒内部,多呈黄色、黄绿色荧光,伴生盐水包裹体均一温度主区间为85~95 ℃,对应早白垩世中期成藏;第二期沿切穿石英次生加大或整个石英颗粒的愈合缝发育,多呈蓝白色荧光,气液两相明显增多,伴生盐水包裹体均一温度主区间为105~115 ℃,对应新近纪至今成藏.油气运聚成藏时,三工河组发育超压,第一期压力系数介于1.39~1.44,第二期高达2.11,呈现“增压‒泄压‒强增压”演化模式.强超压代表了油气运移动力较强,是侏罗系致密储层成藏的关键因素.
准噶尔盆地 / 流体包裹体 / PVTx模拟 / 古压力恢复 / 压力演化 / 成藏动力 / 石油地质.
Junggar Basin / fluid inclusion / overpressure / paleopressure recover / pressure evolution / petroleum geology
| [1] |
Aplin, A. C., MacLeod, G., Larter, S. R., et al., 1999. Combined Use of Confocal Laser Scanning Microscopy and PVT Simulation for Estimating the Composition and Physical Properties of Petroleum in Fluid Inclusions. Marine and Petroleum Geology, 16(2): 97-110. https://doi.org/10.1016/S0264-8172(98)00079-8 |
| [2] |
Burnham, A. K., Sweeney, J. J., 1989. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 53(10): 2649-2657. https://doi.org/10.1016/0016-7037(89)90136-1 |
| [3] |
Gong, Y.J., Zhang, K.H., Zeng, Z.P., et al., 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation of Jurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588-3600 (in Chinese with English abstract). |
| [4] |
Hao,F., Zou,Y.H., Jiang,J.Q., et al., 2005. Hydrocarbon Generation Dynamics and Hydrocarbon Accumulation Mechanism in Overpressure Basins. Science Press, Beijing, 239-254 (in Chinese). |
| [5] |
He, D.F., Zhang, L., Wu, S.T., et al., 2018. Tectonic Evolution Stages and Features of the Junggar Basin. Oil & Gas Geology, 39(5): 845-861 (in Chinese with English abstract). |
| [6] |
Hunt, J.M., Liu, S.Y., 1990. Generation and Migration of Oil in Abnormal Pressure Fluid Interval. Geology- Geochemistry, 18(6): 13-22 (in Chinese). |
| [7] |
Li, J., Zhao, J. Z., Wei, X. S., et al., 2019. Origin of Abnormal Pressure in the Upper Paleozoic Shale of the Ordos Basin, China. Marine and Petroleum Geology, 110: 162-177. https://doi.org/10.1016/j.marpetgeo.2019.07.016 |
| [8] |
Li, P.P., Zou, H.Y., Hao, F., et al., 2006.Restoration of Eroded Strata Thickness in Cretaceous/Jurassic Unconformity in Hinterland of Junggar Basin. Acta Petrolei Sinica, 27(6): 34-38 (in Chinese with English abstract). |
| [9] |
Lindsay, R., Towner, B., 2001. Pore Pressure Influence on Rock Property and Reflectivity Modeling. The Leading Edge, 20(2): 184-187. https://doi.org/10.1190/1.1438906 |
| [10] |
Liu, B., 2001.Density and Isochoric Formulae for NaCl-H2O Inclusions with Medium and High Salinity and Their Applications. Geological Review, 47(6): 617-622 (in Chinese with English abstract). |
| [11] |
Liu, H., Hu, X.Q., Liang, J.J., et al., 2018. Characteristics of Jurassic Fault and Its Control Effect on Hydrocarbon Accumulation in the Block 4 in the Middle of the Junggar Basin. Geological Review, 64(6): 1489-1504 (in Chinese with English abstract). |
| [12] |
Liu, H., Jiang, Y.L., Lu, H., et al., 2016. Restoration of Fluid Pressure during Hydrocarbon Accumulation Period and Fluid Inclusion Feature in the Bonan Sag. Earth Science, 41(8): 1384-1394 (in Chinese with English abstract). |
| [13] |
Luo, X. R., Wang, Z. M., Zhang, L. Q., et al., 2007. Overpressure Generation and Evolution in a Compressional Tectonic Setting, the Southern Margin of Junggar Basin, Northwestern China. AAPG Bulletin, 91(8): 1123-1139. https://doi.org/10.1306/02260706035 |
| [14] |
Mao, C., Chen, Y., Zhou, Y.Q., et al., 2015. Improved Thermodynamic Simulation Method of Hydrocarbon Fluid Inclusions and Its Application in Oil and Gas Accumulation Research. Journal of Jilin University (Earth Science Edition), 45(5): 1352-1364 (in Chinese with English abstract). |
| [15] |
O’Connor, S., Swarbrick, R., Lahann, R., 2011. Geologically-Driven Pore Fluid Pressure Models and Their Implications for Petroleum Exploration. Introduction to Thematic Set. Geofluids, 11(4): 343-348. https://doi.org/10.1111/j.1468-8123.2011.00354.x |
| [16] |
Qiu, N.S., Wang, X.L., Yang, H.B., et al., 2001. The Characteristics of Temperature Distribution in the Junggar Basin. Scientia Geologica Sinica, 36(3): 350-358 (in Chinese with English abstract). |
| [17] |
Roedder, E., Bodnar, R. J., 1980. Geologic Pressure Determinations from Fluid Inclusion Studies. Annual Review of Earth and Planetary Sciences, 8: 263-301. https://doi.org/10.1146/annurev.ea.08.050180.001403 |
| [18] |
Shi, H.G., 2017. Jurassic Reservoir Development in Fukang Deep Sag, Central Junggar Basin. Petroleum Geology & Experiment, 39(2): 238-246 (in Chinese with English abstract). |
| [19] |
Su, A., Chen, H.H., Lei, C., et al., 2014. Application of PVTx Simulation of Fluid Inclusions to Estimate Petroleum Charge Stages and Restore Pressure: Using Pinghu Structural Belt in Xihu Depression as an Example. Geological Science and Technology Information, 33(6): 137-142 (in Chinese with English abstract). |
| [20] |
Su, A., Chen, H. H., Zhao, J. X., et al., 2020. Integrated Fluid Inclusion Analysis and Petrography Constraints on the Petroleum System Evolution of the Central and Southern Biyang Sag, Nanxiang Basin, Eastern China. Marine and Petroleum Geology, 118: 104437. https://doi.org/10.1016/j.marpetgeo.2020.104437 |
| [21] |
Thomas, A. V., Pasteris, J. D., Bray, C. J., et al., 1990. H2O-CH4-NaCl-CO2 Inclusions from the Footwall Contact of the Tanco Granitic Pegmatite: Estimates of Internal Pressure and Composition from Microthermometry, Laser Raman Spectroscopy, and Gas Chromatography. Geochim. Cosmochim. Acta, 54(3): 559-573. https://doi.org/10.1016/0016-7037(90)90353-M |
| [22] |
Tian, X.R., Zhang, Y.Y., Zhuo, Q.G., et al., 2019. Tight Oil Charging Characteristics of the Lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin: Evidence from Fluid Inclusions in Alkaline Minerals. Acta Petrolei Sinica, 40(6): 646-659 (in Chinese with English abstract). |
| [23] |
Wang, F.L., Tang, G.M., Chen, R.T., et al., 2021. Thickening Mechanism and Reservoir Formation Model of Bozhong 29-6 Oilfield in Huanghekou Sag, Bohai Bay Basin. Earth Science, 46(9): 3189-3202 (in Chinese with English abstract). |
| [24] |
Wu, H.S., Zheng, M.L., He, W.J., et al., 2017. Formation Pressure Anomalies and Controlling Factors in Central Junggar Basin. Oil & Gas Geology, 38(6): 1135-1146 (in Chinese with English abstract). |
| [25] |
Xu, W.L., Liu, R., Wen, H.G., et al., 2017. Diagenesis and Diagenetic Facies of 2nd Member of Lower Juriassic Sangonghe Formation in Fubei Area, Junggar Basin. Geological Bulletin of China, 36(4): 555-564 (in Chinese with English abstract). |
| [26] |
Yang, Z., Zou, C.N., Chen, J.J., et al., 2021. “Exploring Petroleum inside or near the Source Kitchen”: Innovations in Petroleum Geology Theory and Reflections on Hydrocarbon Exploration in Key Fields. Acta Petrolei Sinica, 42(10): 1310-1324 (in Chinese with English abstract). |
| [27] |
Yin, W., Zheng, H.R., 2009. Hydrocarbon Accumulation Stages and Exploration Directions in the Central Junggar Basin. Petroleum Geology & Experiment, 31(3): 216-220, 226 (in Chinese with English abstract). |
| [28] |
Zhang, F.Q., Lu, X.S., Zhuo, Q.G., et al., 2020. Genetic Mechanism and Evolution Characteristics of Overpressure in the Lower Play at the Southern Margin of the Junggar Basin, Northwestern China. Oil & Gas Geology, 41(5): 1004-1016 (in Chinese with English abstract). |
| [29] |
Zhang, Y. G., Frantz, J. D., 1987. Determination of the Homogenization Temperatures and Densities of Supercritical Fluids in the System NaCl KCl CaCl2 H2O Using Synthetic Fluid Inclusions. Chemical Geology, 64(3-4): 335-350. https://doi.org/10.1016/0009-2541(87)90012-X |
国家自然科学基金项目(41972141;41772136)
/
| 〈 |
|
〉 |